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Abstract

The static single assignment (SSA) form is central to a range of optimisation algo-
rithms relying on data flow information, and hence, to the correctness of compilers
employing those algorithms. It is well known that the SSA form is closely related
to lambda terms (i.e., functional programs), and, considering the large amount of
energy expended on theories and frameworks for formal reasoning in the lambda
calculus, it seems only natural to leverage this connection to improve our capa-
bilities to reason about compiler optimisations. In this paper, we discuss a new
formalisation of the mapping from SSA programs to a restricted form of lambda
terms, called administrative normal form (ANF). We conjecture that this connec-
tion improves our ability to reason about SSA-based optimisation algorithms and
provide a first data point by presenting an ANF variant of a well known SSA-based
conditional constant propagation algorithm.

1 Introduction

The static single assignment (SSA) form is a popular intermediate represen-
tation for compiler optimisations [7], and hence, of considerable significance
when it comes to reasoning about the correctness of those optimisations. Un-
fortunately, a formal treatment of the semantics of SSA programs and SSA-
based optimisation algorithms is complicated due to, the so-called φ-functions,
which control the merging of data flow edges entering code blocks [4].

Kelsey [12] and Appel [3,2] pointed to a correspondence between programs
in SSA form and lambda terms (i.e., functional programs). We believe that
this correspondence can be leveraged to simplify reasoning about compiler
optimisations that hitherto were based on the SSA form. In particular, we
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suggest that intermediate forms based on the lambda calculus lead to clearer
algorithms, which we expect to positively impact the correctness of concrete
implementations, even if they are not formally verified. In this paper, we
concentrate on a restricted form of lambda terms, called administrative normal
form (ANF) [8], as they have a more clearly defined operational interpretation
than general lambda terms.

Kelsey [12] related the SSA form to a different form of restricted lambda
terms, called continuation passing style (CPS). However, Flanagan et al. [8,17]
showed that, for data flow analysis, there is no real advantage to using CPS
over direct-style representations, such as ANF. In fact, CPS requires additional
transformations and, without special measures, non-distributive flow analysis
in CPS is more costly than necessary. Hence, instead of using Kelsey’s CPS-
based approach, we prefer to formalise the mapping of programs from SSA to
ANF (in Section 2); we do so more formally than Appel [2].

Section 3 exploits the correspondence of SSA and ANF by rephrasing Weg-
man and Zadeck’s [22] sparse conditional constants algorithm, which performs
constant propagation and unreachable code elimination. In the following, we
call Wegman and Zadeck’s original SSA-based algorithm Sccssa and call our
new ANF-based algorithm Sccanf. We present Sccanf in a notation that has a
well-defined semantics, as opposed to the informal notation used by Wegman
and Zadeck. We believe that the semantic rigour of our notation in combi-
nation with the well-defined semantics of our intermediate language (namely
ANF) implies that Sccanf is significantly better suited to formal analysis.

In summary, this paper makes the following technical contributions:

• We formalise the mapping of programs in SSA form to programs in ANF
(Section 2.3).

• We introduce the algorithm Sccanf, of which we claim that it implements the
same analysis on ANF programs as Sccssa does on SSA programs (Section 3).
However, Sccanf is more rigorously defined.

• We establish that Sccanf is conservative; i.e., that the variables marked as
constant are indeed constant (Section 4).

However, we do not actually prove that Sccanf and Sccssa implement the
same analysis. In fact, this would be hard to achieve due to Wegman and
Zadeck’s [22] rather informal presentation. We do, however, present formal
statements about the soundness of our mapping of SSA programs to ANF
programs and about the soundness of Sccanf.

We like to regard the results in this paper as a step towards reaping the
well established benefits of typed, functional intermediate languages in com-
pilers for conventional languages. These benefits include simplified reason-
ing about the correctness of compiler optimisations, type-based validation of
optimised code at compile time, and support for the generation of certified
binaries [9,20,16,14,18]. Moreover, ANF naturally integrates intra-procedural
with inter-procedural analysis.
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2 Making Dataflow Explicit

In this section, we define a concrete notation for both SSA and ANF. In ad-
dition, we characterise the relationship between these two intermediate forms
by a translation procedure that takes programs in SSA form into equivalent
programs in ANF.

2.1 Static Single Assignment Form

The static single assignment (SSA) form [1] is an imperative representation
of programs which encodes data flow information explicitly by requiring that
there be exactly one assignment for every variable. Figure 2 presents the
factorial function in SSA form. Except for the two φ-functions, the program
resembles standard three-address code: “fac” consists of two basic blocks con-
nected by jumps, with the second (labelled L1) constituting the main loop of
the program. For brevity, we allow inlining of blocks in the branches of a con-
ditional statement; in reality, the two assignments in the if statement should
be placed in a separate block, so that if indeed represents a conditional jump.

The values of the variables x and r are updated in three places in “fac”.
To achieve the single assignment property, we create a new variable for each
update, splitting x into x, x0 and x1, and similarly for r. Since, the block L1

can be reached either from the start block or from L1 itself, at the beginning
of L1 we must merge the two sources of values for x and r using the so-called
φ-function, which selects a value based on the source block of the jump. Note
that, in SSA, the single-assignment property is purely syntactic, since, in the
loop L1, variables are still updated at runtime on every iteration.

A procedure can be put in the SSA form by arranging the basic blocks
into a dominator tree, where the parent of each node dominates its children.
An assignment dominates an expression if every path to the expression from
the start of the procedure includes that assignment. The SSA form has been
popularised by Cytron et al. [7], who describe an algorithm for computing the
dominance information in linear time and demonstrate how SSA increases the
power of many optimisations which require data-flow analysis.

Figure 1 presents an abstract syntax of the structured SSA form; i.e.,
to our variant of SSA in which the dominator tree is explicitely encoded in
the block structure. The body of each procedure consists of a sequence of
labelled expressions structured into the dominator tree (the first block in each
braced group dominates the remaining blocks in that group). Intuitively, the
braces provide a traditional scoping hierarchy for block labels. Further, instead
of packing variables into a CFG, we follow Kelsey [12] in annotating each
parameter to a φ function with the label of the basic block that computes the
corresponding value, or start when the value is computed in the unlabelled
entry block of the procedure.

A complete SSA program p consists of a set of (possibly-recursive) pro-
cedures and an entry point e. An SSA expression consists of a sequence of
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p ::= proc x(x) {b} p | e
b ::= e | b; x:e | b1; x:{b2}

e ::= x← φ(g); e |
x← v; e | x← v(v); e |
goto x; |
ret v; | ret v(v); |
if v then e1 else e2

g ::= l:v

l ::= x | start
v ::= x | c
x ::= x, x | ǫ
v ::= v, v | ǫ
g ::= g, g | ǫ

x ::= variable or label
c ::= constant

e ::= v | v(v) |
let x = v in e |
let x = v(v) in e |
letrec f in eS |
if v then e1 else e2

f ::= x(x) = e

v ::= x | c
x ::= x, x | ǫ
v ::= v, v | ǫ
f ::= f; f | ǫ

x ::= variable
c ::= constant

(SSA) (ANF)

Fig. 1. Static Single Assignment and A-normal Forms

assignments ending with a jump. For the purpose of this discussion, we leave
the set of constants unspecified; in general, it will include integers, floating
point numbers and machine opcodes (primitives). For simplicity, we assume
that all variables and labels in a program are unique.

2.2 Administrative Normal Form

The right-hand side of Figure 1 presents an abstract syntax of programs in the
administrative normal form (ANF) [8], a direct-style form of lambda terms
which, like SSA, restricts function parameters to atomic expressions. As
demonstrated by the example ANF code in Figure 2, functions are introduced
using letrec expressions, which correspond both to a complete program and
the CFG structure of a particular procedure in the SSA form. Tail calls are
made explicit by their placement within a let expression: function applica-
tions appearing on the right-hand side of a variable binding represent normal
calls, while those appearing in the body represent tail calls (jumps).

Like the SSA form, ANF encodes data flow explicitly by naming all subex-
pressions within the program and permitting only a single definition of any
particular variable. However, in ANF this restriction is dynamic, since, at
runtime, a new scope is created for every invocation of a function. This makes
formulation of the ANF semantics straight-forward and intuitive. Further, it
reduces the number of mechanisms present for expressing data flow from two
(φ-functions and procedures parameters) to one (parameters only), simplifying
program analysis and eliminating the artificial distinction between intra- and
inter-procedural data flow in SSA. Finally, the syntactically-clear scoping of
definitions simplifies formulation of many valid and useful optimisations that
involve code motion across basic blocks. In SSA, design of those algorithms is
hampered by the need to preserve the dominance property of a program [2]. A
formal operational semantics of SSA and ANF programs are presented in the
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proc fac(x) {

r ← 1;
goto L1;;

L1: r0 ← φ(start:r, L1:r1);

x0 ← φ(start:x, L1:x1);

if x0 then

r1 ← mul(r0, x0);

x1 ← sub(x0, 1);
goto L1;

else

ret r0;}

ret fac(10);

letrec

fac(x) =

letrec

fac′(x0,r0) =

if x0 then

let r1 = mul(r0, x0)

x1 = sub(x0, 1)
in fac′(x1, r1)

else

r0

in fac′(x, 1)
in fac(10)

(SSA) (ANF)

Fig. 2. SSA and ANF representations of the factorial function

unabridged version of this paper [5]. Variants of ANF are used as the inter-
mediate representation in many compilers for functional languages, including
GHC [11,21] for Haskell and TIL [20] for ML.

2.3 From SSA to ANF

The similarities between the SSA and ANF forms of the factorial function
in Figure 2 are immediately obvious: SSA blocks are translated into ANF
functions, with the list of arguments derived from the list of φ-expressions in
the block. In Figure 3, we define a function F which formalises the translation
of a well-formed structured SSA program into ANF.

The translation follows the structure of a program in the SSA form. The
complete program is translated by F and Fp into an all-encompassing outer-
most letrec. Within each procedure, Fb and Fl generate an ANF function
for every SSA block, with each level of the dominator tree translated into a
separate nested letrec. This makes variables defined along the dominator
path visible through the usual scoping rules for nested procedures, while con-
structing a new dynamic scope for each iteration through a translated SSA
block. The dominator of a group is selected for the body expression of the
letrec. Further, since the leaves of the dominator tree cannot be reached
except through their immediate dominator, the scoping rules for ANF en-
force the dominance property of the SSA form. If desired, the nested letrec

structure in the resulting program can be flattened using the standard lambda-
lifting [10] transformation.

Each SSA block is translated into a separate ANF function. A jump is
translated into a tail call to the corresponding function, with the list of pa-
rameters obtained by Fg from the list of φ-nodes in the destination block.
When translating a block into a function, the corresponding list of formal pa-
rameters is computed using Fφ. Since, in SSA, a variable not defined along
the dominator path must be accessed through a φ-node, this enforces the
well-formedness of the resulting program.
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The translation function:

F(JpK) = letrec Fp(p) in Fe(Sp(p), start, 〈〉)

Collect SSA procedures for the outer letrec:

Fp(JeK) = ǫ

Fp(Jproc x(x) {b} pK) = x(x)=Fb(b, start,B(b, 〈〉));Fp(p)

Construct the inner letrec structure from the dominator tree:

Fb(JeK, l, B) = letrec Fl(b, B) in Fe(Sb(b), l, B)

Collect the SSA blocks into an inner letrec list:

Fl(JeK, B) = ǫ

Fl(Jb; x:eK, B) = x(Fφ(e, ǫ))=Fe(e, x, B);Fl(b, B)
Fl(Jb1; x:{b2}K, B) = x(Fφ(Sb(b2), ǫ))=Fb(b2, x,B(b2, B));Fl(b1, B)

Convert an SSA block to an ANF expression:

Fe(Jx← φ(g); eK, l, B) = Fe(e, l, B)
Fe(Jx← v; eK, l, B) = let x = v in Fe(e, l, B)
Fe(Jx← v(v); eK, l, B) = let x = v(v) in Fe(e, l, B)
Fe(Jret v;K, l, B) = v

Fe(Jret v(v);K, l, B) = v(v)

Fe(Jif v then e1 else e2K, l, B) = if v then Fe(e1, l, B) else Fe(e2, l, B)
Fe(Jgoto x;K, l, B) = x(Fg(β(B, x), l, ǫ))

Construct a list of function parameters from the φ-nodes:

Fφ(Jx← φ(g); eK, x) = x,Fφ(e, x)
Fφ(Jx← v; eK, x) = Fφ(e, x)
Fφ(Jx← v(v); eK, x) = Fφ(e, x)
Fφ(Jif v then e1 else e2K, x) = Fφ(e1,Fφ(e2, x))
Fφ(JeK, x) = x

Construct an argument list for a translated jump:

Fg(Jx← φ(g); eK, l, x) = κ(g, l),Fg(e, l, x)
Fg(Jx← v; eK, l, x) = Fg(e, l, x)
Fg(Jx← v(v); eK, l, x) = Fg(e, l, x)
Fg(Jif v then e1 else e2K, l, x) = Fg(e1, l,Fg(e2, l, x))
Fg(JeK, l, x) = x

Find the entry expression for the program:

Sp(JeK) = e

Sp(Jproc x(x) {b} pK) = Sp(p)

Find the entry block for a procedure:

Sb(JeK) = e

Sb(Jb x:eK) = Sb(b)
Sb(Jb1; x:{b2}K) = Sb(b1)

Construct the label list for a procedure:

B(JeK, B) = B

B(Jb; x:eK, B) = B(b, B),x 7→ e

B(Jb1; x:{b2}K, B) = B(b1, B), x 7→ Sb(b2)

Search the list of φ parameters for a label:

κ(Jx1:v,gK, x2) = if x1 = x2 then v else κ(g, x2)

Look up a label environment:

β(JB, x1 7→ eK, x2) = if x1 = x2 then e else β(B, x2)

Auxiliary syntax for the label environment:

B ::= 〈〉 | B, x 7→ e

Fig. 3. Translation of SSA to ANF
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Theorem 2.1 For any well-formed SSA program p, F(p) generates a well-
formed ANF program.

The proof of Theorem 2.1 relies on well-formedness properies for SSA and
ANF, which is presented in the unabridged version of this paper [5].

3 Sparse Conditional Constants in Functional Form

To demonstrate the advantages of ANF over SSA, we introduce an ANF vari-
ant of the SSA-based sparse conditional constants algorithm Sccssa. Due to
space constraints, we are not able to present the original algorithm in this
paper; please refer to the article of Wegman & Zadeck [22] for a comparison.
The reminder of this section defines Sccanf, which we claim discovers the same
constants as Sccssa and removes the same unreachable code, given the ANF
term computed from the SSA program using the function F from Figure 3.

3.1 Prerequisites

We assume that the analysed program is in ANF (as defined in Figure 1),
that it is first-order, and that all variable names are unique and contained in
the set Var. (We discuss higher-order programs in Section 3.5.) Moreover, the
set Prim ⊂ Var contains the names of all primitive functions. The analysis
proceeds over an abstract domain Abs = {⊥,⊤} ∪ Const, where the c ∈ Const

are the constant values of the concrete value domain. A partial order ⊏ is
defined on Abs, which has ⊥ as its least element and ⊤ as its largest element. 2

More precisely, for each constant c ∈ Const, we have ⊥ ⊏ c ⊏ ⊤. In addition,
we define, for x, y ∈ Abs, z = x⊓y to be the least value in Abs such that x ⊑ z
and y ⊑ z. The intuition underlying this abstract domain is that whenever a
variable or function maps to ⊥, it never receives a concrete value; 3 whenever
it maps to a constant, this is the only value it ever assumes; and whenever it
maps to ⊤, it is non-constant.

We require a function E that implements the evaluation of primitives from
Prim; i.e., for p ∈ Prim and ci ∈ Const, EJp(c1, . . . , cn)K computes the result of
applying p to the ci. Moreover, EAbs extends E to the abstract domain Abs—
i.e., if any argument to the primitive is ⊥ or ⊤, it yields ⊥ or ⊤, respectively;
otherwise, it behaves as E .

Apart from the input program, the central data structure of the algorithm
is an environment Γ : Var → Abs that maps variable names to values of
the abstract domain. The environment includes entries for value and function
variables, where the latter determine the result value of the function. We write

2 We use the abstract interpretation convention that⊥ represents no result and⊤ represents
conflicting values. This is opposite to the use of the same symbols in the dataflow analysis
literature.
3 Note that this includes non-terminating functions; hence, it is not a sufficient condition
for concluding that the function is dead code.
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Γx to denote the lookup of the value associated with x in the environment Γ
and Γ[x 7→ a] to denote updating of the value associated with x to be a. In
addition, DomΓ denotes the variables that have an entry in Γ. Finally, we
define the refinement of the entry for x by a as

Γ ⊓ [x 7→ a] | x /∈ DomΓ = Γ[x 7→ a]
| otherwise = Γ[x 7→ (Γ x ⊓ a)]

The initial value for the environment is ΓPrim = [p 7→ ⊤ | ∀p ∈ Prim].

We use FV f to denote all variables that are free in the body of function
f ; note that this includes all argument variables and, in the case of a recursive
function, the function name itself. Conversely, Occ x denotes all functions f ,
in the program, for which x ∈ FV f . The algorithm maintains a work list Ω
of names of functions that need to be processed; Ω is initially empty.

3.2 The Algorithm

The algorithm computes the optimised form of the program in two phases: The
first phase, A, analyses the program by computing the variable environment
Γ and the second phase, S, computes the optimised version based on Γ. Both
phases are syntax-directed (i.e., proceed according to the ANF grammar from
Fig. 1). Note that in the definition of A and S, the meta-variable v may either
be a constant c or a value variable x. We assume the canonical extension of
Γ to constant values, so that Γc = c.

We denote A and S using a notation that can be understood as a LATEX-
enhanced version of the purely functional programming language Haskell [15].
Consequently, the semantics of our algorithm is accurately defined by the
language definition of Haskell.

3.2.1 The first phase: program analysis

The function A, which is being displayed in Figure 4 (see the next page), gets
three arguments: (1) an ANF expression e that is being traversed recursively,
(2) the current variable environment Γ, and (3) the current work list Ω. It
returns a triple containing (a) the abstract value of e, (b) an updated variable
environment, and (c) a new work list. The latter contains functions that
are used, but not defined in e, and whose usage has increased the knowledge
about the range of argument values with which the functions are invoked. The
computationally most costly case of A is that of letrec expressions, where
we need to iterate until Γ does not collect any new information.

Given a program e in ANF, if AJeK ΓPrim {} = 〈a, Γ, {}〉, we can distinguish
three cases:

• If a = ⊥, the program does not terminate.

• If a = c, for a constant c, the program invariably results in c.

• If a = ⊤, the environment Γ characterises the usage of all variables in the
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AJvK Γ Ω = 〈Γ v , Γ, Ω〉
AJf (v1, . . . ,vn)K Γ Ω
| f ∈ Prim = EAbsJf (Γ v1, . . . , Γ vn)K
| otherwise = 〈Γ′ f , Γ′, if changed then Ω ∪ {f } else Ω〉
where

f is defined as f(x1, . . . ,xn) = e
Γ′ = Γ ⊓ [f 7→ ⊥, x1 7→ Γ v1, . . . , xn 7→ Γ vn ]
changed = ∃ i . Γ xi ⊏ Γ vi -- indicates whether Γ changed

AJlet x=e1 in e2K Γ Ω = let
〈a, Γ′, Ω′〉 = AJe1K Γ Ω
Γ′′ = Γ′ ⊓ [x 7→ a]
changed = Γ x ⊏ Γ a
affected = Occ x ∩DomΓ

-- ∩DomΓ removes not yet used functions
in
AJe2K Γ′′ (if changed then Ω ∪ affected else Ω)

AJif v then e1 else e2K Γ Ω
| Γ v == ⊥ = 〈⊥, Γ, Ω〉
| Γ v == True = AJe1K Γ Ω
| Γ v == False = AJe2K Γ Ω
| Γ v == ⊤ = let

〈a1, Γ1, Ω1〉 = AJe1K Γ Ω
〈a2, Γ2, Ω2〉 = AJe2K Γ1 Ω1

in
〈a1 ⊓ a2, Γ2, Ω2〉

AJletrec f1, . . . , fn in eKΓ Ω =
let
〈a, Γ′, Ω′〉 = AJeK Γ {}
〈Γ′′, Ω′′〉 = AfixJf1, . . . , fnK Γ′ (Ω ∪ Ω′)

in
if Γ′ == Γ′′ then 〈a, Γ′, Ω′′〉 else AJletrec f1, . . . , fn in eK Γ′′ Ω′′

AfixJfun1, . . . ,funnK Γ Ω | ∄ i .fi ∈ Ω = 〈Γ, Ω〉
| otherwise =

let
〈a, Γ′, Ω′〉 = AJeK Γ {}
Γ′′ = Γ′ ⊓ [fi 7→ a]
Ω′′ = Ω ∪ Ω′ \ {fi}

in
AfixJfun1, . . . , funnK Γ′′ (if Γ fi ⊏ Γ a then Ω′′ ∪ (Occ fi ∩DomΓ) else Ω′′)

where
(fi (x1, . . . , xm) = e) = funi

Fig. 4. The analysis function of Sccanf
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program. In particular, all variables mapping to constant values may be
replaced by said constants. Moreover, all functions f /∈ DomΓ constitute
unreachable code.

The various equations of A operate as follows. If the analysed expression
is simply a constant or variable, we use Γ to determine its abstract value. In
the case of the application of a primitive p(v1, . . . ,vn), we use Γ to obtain the
abstract values of the arguments vi and apply the abstract evaluation function
EAbs. More interesting is the case of the application of a user-defined function,
f(v1, . . . ,vn). The environment Γ is refined to Γ′ by refining the mapping of
each xi (the formal parameters to f) by Γ vi (the concrete values at which f
is called). If Γ actually changes during this refinement, f is added to the work
list Ω, as we need to (re)process its definition in view of the new environment.
The refinement f 7→ ⊥ is important to ensure that f occurs in Γ; i.e., it is
flagged as reachable code.

If the analysed expression has the form let x=e1 in e2, we refine the map-
ping of x in Γ based on the abstract value of e1; if this refinement changes
Γ, all functions that contain x as a free variable are added to the work list,
as their abstract value may change as a consequence. Note that we need to
intersect Occ x with DomΓ to ensure that only functions that are guaranteed
to be reachable are added to the work list. If the analysed expression is a con-
ditional if v then e1 else e2, we form the meet a1 ⊓ a2 of the abstract values
of the two branches if the condition variable v is non-constant; otherwise, we
choose the branch determined by v.

Finally, in the case of an expression letrec f1, . . . , fn in e , we first tra-
verse the body expression e, to collect all uses of functions from the mutually
recursive set of bindings f1, . . . , fn in the modified work list Ω′; afterwards,
we analyse the fi using the auxiliary function Afix. The latter is a recursive
function that, on each call, picks a function fi that occurs in the current work
list and analyses its right hand side. It uses the result to refine the entry of fi

in Γ; as in the case of plain let bindings, the work list is extended by Occ fi
if Γ changes. The function Afix terminates if none of the fi occur in the work
list Ω anymore. This does not mean that Ω is necessarily empty; it may still
contain functions defined in enclosing letrec expressions.

3.2.2 The second phase: program specialisation

On the basis of the assignment of abstract values to variables in Γ, the func-
tion S transforms the original program into an optimised program that has
constant variables and unreachable code removed. The function S operates in
a single sweep over the program and exploits the following properties: When-
ever Γ maps a variable (function) to a constant c, this variable (function) will
contain (return) c in any possible run of the program that uses the variable
(invokes the function). Moreover, a value of ⊥ for a function indicates that
it does not terminate. Hence, any occurrence of such a function may be re-
placed by an arbitrary diverging computation, which we again denote by ⊥.

10



Chakravarty, Keller and Zadarnowski

Any function not in DomΓ is dead code. The specialisation function that
takes the original program in combination with the environment Γ computed
by A to the optimised program is defined as follows:

SJvK | Γ v /∈ {⊤,⊥} = Γ v -- constant
| otherwise = v -- non-constant

SJf (v1, . . . ,vn)K | Γ f 6= ⊤ = Γ f
| eval = EJf (w1, . . . , wn)K
| otherwise = f (w1, . . . , wn)

where
wi = SJviK, ∀ i ∈ {1, . . . , n}
eval = f ∈ Prim and ∀ i ∈ {1, . . . , n}. wi ∈ Const

SJlet x=e1 in e2K | Γ x /∈ {⊤,⊥} = SJe2K -- x is constant
| otherwise = let x=SJe1K in SJe2K

SJif v then e1 else e2K
| Γ v == True = SJe1K
| Γ v == False = SJe2K
| otherwise = if v then SJe1K else SJe2K

SJf (x1, . . . ,xn) = eK | f /∈ DomΓ = ǫ -- unused code
| Γ f 6= ⊤ = ǫ -- constant function
| otherwise = f (x1, . . . , xn) = SJeK

SJletrec f1, . . . , f2 in eK =
letrec SJf1K, . . . , SJf2K in SJeK

3.3 Side-Effects

So far, we have not discussed how Sccanf treats side-effecting primitives (such
as I/O operations). They require some extra care, but do not pose any funda-
mental problems. Whenever A encounters a side-effecting primitive p (second
equation in Figure 4), the result of evaluating the application of p is assumed
to be⊤. Moreover, any function whose body contains a side-effecting primitive
is mapped to ⊤ in Γ. The rationale for the latter is that, even if the function
is constant, it must not be removed as its invocation carries an effect.

Note that the existence of side-effecting primitives is the only reason why
we need to be able to distinguish between functions that are dead code and
non-terminating functions. If a non-terminating function has an effect, we
cannot replace it by an arbitrary diverging computation. In other words, the
functions

undefined () = undefined ()

ones () = let x = write char (’1’) in ones ()

need to be treated differently; although, A would assign ⊥ to both.

11
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3.4 Inlining

As ANF already includes a notion of function abstraction, it lends itself to
a uniform representation of a set of functions or procedures, which opens a
path to inter-procedural analysis and, in our case, inter-procedural constant
propagation. It is well known that combining inlining or procedure integration
with constant propagation improves the results. For non-recursive functions
(that do not contain side-effecting primitives), this can be easily achieved in
Sccanf, by treating them as primitives in A and S.

More precisely, in the second equation of the definition of both A and S,
we replace the condition f ∈ Prim by a more liberal condition of the form
“f ∈ Prim or f is non-recursive.” Moreover, we extend E and EAbs by the
ability to evaluate non-recursive functions.

3.5 Higher Order Functions

Sccanf requires a first-order program, as it does not explicitly handle higher-
order variables. Nevertheless, the treatment of higher-order variables is impor-
tant for modern object-oriented and functional languages. There are various
ways—of varying sophistication— in which Sccanf can be extended to handle
higher-order variables. The simplest scheme, giving the least precise results,
refines Γ to Γ ⊓ [x1 7→ ⊤, . . . , xn 7→ ⊤] for all functions f(x1, . . . , xn) = e that
are assigned to a variable (as opposed to being invoked). This reflects that
we cannot gain any knowledge about the range of argument values at which
f is invoked. Moreover, A needs to return ⊤ for any higher-order call site
x(x1, . . . , xn), where x is an unknown function value.

Although the above mapping of the xi to ⊤ is correct, it is too conservative
as we may be able to statically infer the call sites of some functions that are
assigned to variables. In particular, we improve on the basic scheme by using
constant propagation to identify higher-order call sites that, for all possible
executions of a program, invoke the same function. To do so, it suffices to
extend the set of constants contained in the abstract domain Abs with symbols
representing the various functions that are used as values. Whenever A derives
Γx = f for a call site x(x1, . . . , xn), we can treat this call site as f(x1, . . . , xn).

However, by noting the similarity of Sccanf and abstract interpretation [6]
as well as the fact that Sccanf corresponds to what is known as a 0CFA anal-
ysis [19], we can use power sets of abstract closures as the abstract domain
for higher-order variables. A detailed description of the resulting algorithm is
beyond the scope of this paper, but it is related to the constant propagation
algorithm studied by Sabry and Felleisen [17].

4 Soundness of the New Algorithm

To establish soundness, we need three auxiliary definitions. The first one
relates environments w.r.t. the free variables of an expression. It is oblivious
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to the entries relating to bound variables.

Definition 4.1 Γ0 ≤FV(e) Γ1 ⇔ ∀ x ∈ FV e ∩ Dom Γ0, Γ0 x = Γ1 x .

The next two definitions cover the validity of the algorithm A and its
auxiliary function Afix for one particular expression.

Definition 4.2 A is valid for an expression e (denoted AJeK) iff for any two
environments Γ0 and Γ′, with Γ0 ≤FV(e) Γ′, AJeK Γ0 {} = 〈a, Γ, Ω〉 implies
EAbsJeK Γ′ = EAbsJS e ΓK Γ′; furthermore, if Ω = {}, EAbsJeK Γ′ = a .

Definition 4.3 Afix is valid for a set of function bindings fs and a work list Ω0

(denoted AfixJfsK Ω0) iff for any two environments Γ0 and Γ′, with Γ0 ≤FV(fs)

Γ′, we have for every binding f (x1, . . . , xn) = e , AfixJfsK Γ0 Ω0 = 〈Γ, Ω〉 im-
plies EAbsJeK Γ′ = EAbsJS e ΓK Γ′ whenever f ∈ Ω0.

Since the relation ≤FV(e) is oblivious to bound variables, validity implies
that the algorithm yields a suitable environment even if bound variables in the
input environment differ from the actual value assigned to a variable. This
property is important as the algorithm is optimistic—i.e., intermediate envi-
ronments constructed during execution of the algorithm may make incorrect
assumptions about the values of some variables. However, the algorithm does
not terminate unless all of these bindings are replaced by ⊤.

Theorem 4.4 (Soundness of A) A is valid for all ANF expressions e.

The proof proceeds by induction over the nesting depth of letrecs in an
expression and contains the following three main steps:

(i) Base Case (A(0)): We assert that for every ANF expression e that
contains no letrec expression, we have AJeK.

(ii) Auxiliary Step (A(n) ⇒ Afix(n)): Given a list of function bindings fs
and a work list Ω, we assert that AfixJfsK Ω holds only if, for all bindings
f (x1, . . . , xn) = e from fs, AJeK holds.

(iii) Inductive Step (A(n)⇒ A(n + 1)): Given a list of function bindings
fs and an ANF expression e, we assert that AJeK and AfixJfsK together
imply AJletrec fs in eK.

We detail these three steps in the unabridged version of this paper [5].

5 Conclusion

We have formalised the mapping of programs in SSA form to ANF and pre-
sented an ANF version of Wegman & Zadeck’s conditional constant propaga-
tion algorithm, which we called Sccanf. Moreover, we have outlined how the
ANF-based algorithm can be extended to include inlining and higher-order
functions.

We are interested in assessing the usefulness of typed, functional inter-
mediate languages in compilers for conventional languages. The algorithm
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Sccanf is more rigorously defined than Wegman & Zadeck’s original algorithm
as, firstly, ANF has a well-defined semantics and, secondly, our notation is
essentially a nicely typeset version of the programming language Haskell. 4

Such semantic clarity is a prerequisite for any rigorous formal reasoning about
compiler optimisations. Moreover, it is a prerequisite for a serious comparison
of the work on abstract interpretation with that in the classic dataflow anal-
ysis literature. An alternative method for formalising conditional constant
propagation in a graph-based framework was introduced by Lerner et al. [13].
However, their focus is on the modular composition of dataflow analyses.

Acknowledgements. We thank the referees for their helpful comments.
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