
Models of LCF

ROBIN MILNER January 1973

Stanford Artificial Intelligence Laboratory Memo AIM-186

Computer Science Department Report CS-332

School of Humanities and Sciences, Stanford University STAN-CS-73-332

Typeset with typographic corrections by Patryk Zadarnowski, March 2010.

LCF is a deductive system for computable functions proposed by D. Scott in 1969 in an unpub-
lished memorandum. The purpose of the present paper is to demonstrate the soundness of the

system with respect to certain models, which are partially ordered domains of continuous func-

tions. This demonstration was supplied by Scott in his memorandum; the present paper is merely
intended to make this work more accessible.

1. INTRODUCTION

The logic of computable functions proposed by Dana Scott in 1909, in an unpub-
lished note, has since been the subject of an interactive proof checking program
designed as a first step in formally based machine-assisted reasoning about com-
puter programs. This implementation is fully documented in [1], and its subsequent
applications are reported in later papers [2,3,4,5]. However the model theory of the
logic, which Scott originally supplied, is not discussed in those papers, and the
purpose of this Memorandum is to present that theory. Nothing is added here to
Scott’s work. The concept of a continuous function, which is central to the the-
ory, has since been developed by him to provide models for the λ-calculus and to
yield his mathematical theory of continuous lattices; the interested reader can fol-
low these topics in Scott [6]. However, since LCF is only a version of the typed
λ-calculus, these developments are not necessary for the present purpose, and the
present paper contains all that is needed to understand LCF.

2. CONTINUOUS FUNCTION DOMAINS

In this section we define a particular sort of a partially ordered domain, called a
complete partial order (CPO), and the concept of a continuous function. We prove
some propositions for later use; in particular, that if D and E are CPOs, then the
set of continuous functions from D to E is itself a CPO.

Definition 2.1. A partial order (PO) is a pair (D,v), where D is any set (do-
main) and v is a transitive, reflexive, antisymmetric relation over D.

This research was supported in part by the Advanced Research Projects Agency of the Office of

the Secretary of Defense under Contract No. SD-183.
The views and conclusions contained in this document are those of the author and should not

be interpreted as necessarily representing the official policies, either expressed or implied, of the

Advanced Research Projects Agency or the U.S. Government.
Reproduced in the USA. Available from the National Technical Information Service, Springfield,

Virginia 22151.

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

2 · Robin Milner

Definition 2.2. For a PO (D,v), a set X ⊆ D is a chain if X = {xi | i ≥ 0} and
x0 v x1 v x2 v

Definition 2.3. A PO (D,v) is a complete partial order (CPO) if

(1) it has a minimum element, which we denote by ⊥D or just ⊥ if there is no
confusion, and

(2) every chain X ⊆ D has a least upper bound (LUB) in D, which we denote
by

⊔
X.

Definition 2.4. If D and E are CPOs, then a function f : D → E is continuous
if every chain X ⊆ D satisfies

⊔
{f(x) | x ∈ X} = f(

⊔
X).

Thus a continuous function is one which preserves the LUBs of chains. Note
that the set on the left-hand side of the above equation is a chain, since if X =
{x0, x1, . . .} and x0 v x1 v . . . then we also have f(x0) v f(x1) v To see
this, we only need to observe that any continuous function is monotonic—that is,
x v y ⇒ f(x) v f(y), and this is true because, if Y is the chain {x v y}, then⊔
Y = y, so we have f(x) v

⊔
{f(x), f(y)} = f(

⊔
Y) = f(y).

We should also note that there is an alternative (more restrictive) definition of
a CPO which uses the concept of a directed set (X is directed iff x, y ∈ X ⇒
∃z ∈ X.x, y v z) instead of a chain. This, in turn, leads to an alternative (more
restrictive) definition of a continuous function. We have chosen the less restrictive
alternative, but we remark that the theory can be done equally well (as far as we
are here concerned) with either definition.

Notice that we use the same symbol v for the relation in every PO under dis-
cussion. This should give no difficulty. We also use names like D and E both for
POs and for their domains.

Definition 2.5. We denote the set of continuous functions from D to E, where
these are CPOs, by [D → E].

Proposition 2.1. If D and E are CPOs, then F = [D → E] is a CPO under
the relation

f v g iff ∀x.f(x) v g(x)

Proof. First, F is a PO under this relation (check reflexivity, transitivity and
antisymmetry). Second, the minimum element ⊥F of F is easily seen to be λx . ⊥E .
Finally, we need that any chain Z ⊆ F has a LUB

⊔
Z ∈ F . Define

⊔
Z =

λx .
⊔
{f(x) | f ∈ Z}. This is a well-defined function since, for each x in D,

{f(x) | f ∈ Z} is easily seen to be a chain in E. Next, it bounds above every f ∈ Z
since, for each x ∈ D, f(x) v

⊔
{f(x) | f ∈ Z}. Further, it is a LUB, since if h is

any other upper bound for Z, then, for each x ∈ D and f ∈ Z, we have f(x) v h(x);
it follows that (

⊔
Z)(x) v h(x), and hence

⊔
Z v h.

But we must also show that
⊔
Z ∈ F , i.e.,

⊔
Z is continuous. Let X ⊆ D be a

chain. We require

(
⊔
Z)(

⊔
X) =

⊔
{(

⊔
Z)(x) | x ∈ X},

But
Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

Models of LCF · 3

(
⊔
Z)(

⊔
X) =

⊔
{f(

⊔
X) | f ∈ Z} by the definition of

⊔
Z

=
⊔
{f(x) | f ∈ Z, x ∈ X}

=
⊔
{(

⊔
Z)(x) | x ∈ X}.

This completes the proof.

Proposition 2.2. For any CPO D, every f ∈ [D → D] has a minimum fixed
point Yf ∈ D, i.e., we have f(Yf) = Yf and, for all x ∈ D, f(x) = x implies
Yf v x.

Remark. This proposition ensures the existence of the least fixed point operator
Y : [D → D] → D. The next proposition shows that Y is continuous, i.e., Y ∈
[[D → D]→ D].

Proof. The set S = {f i(⊥D) | 0 ≤ i} is a chain by the monotonicity of f . Define
Yf =

⊔
S. By the continuity of f , we have f(Yf) =

⊔
{f i+1(⊥D) | 0 ≤ i} = Yf , so

Yf is a fixed point of f . Let x be any other fixed point. Now by the monotonicity
of f we have f(⊥D) v f(x) = x and, by induction on i, we can show f i(⊥D) v x
for all i ≥ 0, so Yf =

⊔
{f i(⊥D) | 0 ≤ i} v x, and thus Yf is the minimum fixed

point of f .

Proposition 2.3. Y is continuous, so Y ∈ [[D → D]→ D].

Proof. Let Z be any chain ⊆ [D → D]. We must show that Y(
⊔
Z) =

⊔
{Yf |

f ∈ Z}. In one direction (w) the proof is easy since, for each f ∈ Z,
⊔
Z w f ,

so Y(
⊔
Z) w Yf by the monotonicity of Y, which in turn follows directly from the

definition of Yf . In the other direction, we only need to show that
⊔
{Yf | f ∈ Z}

is a fixed point of
⊔
Z, since then it dominates the least such, which is Y(

⊔
Z).⊔

Z(
⊔
{Yf | f ∈ Z}) =

⊔
{g(

⊔
{Yf | f ∈ Z}) | g ∈ Z}

=
⊔
{g(Yf) | g ∈ Z, f ∈ Z} by continuity of g

=
⊔
{f(Yf) | f ∈ Z}

since g(Yf) v h(Yh) where h = max(g, f)
=

⊔
{Yf | f ∈ Z}

which is the required fixed point property. This completes this proof.

3. PURE LCF TERMS

In this section we give the term syntax of Pure LCF, and then after defining a
standard interpretation as a function from identifiers into the union of a family of
CPOs, we show how such an interpretation is extended uniquely to a function from
all terms into the same range. The terms of Pure LCF are just those of a typed
λ-calculus.

3.1 Types

(1) ind and tr are (basic) types.
(2) If β1, β2 are types then (β1 → β2) is a type.
(3) These are all the types.

We use β, β1, β2, . . . to denote types, and frequently omit parentheses, assuming that
‘→’ associates to the right, so that β1 → β2 → β3 abbreviates (β1 → (β2 → β3)).

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

4 · Robin Milner

3.2 Terms

Each term has a well defined type. We use s, t, u to denote terms, and write s : β
to mean that s has type β.

(1) Any identifier is an (atomic) term. We do not need to describe them, except
to say that there are infinitely many at each type, that the type of each is
determined in some way (perhaps by explicit subscripting), and that they in-
clude TT : tr, FF : tr and the families (indexed by type) UUβ , ⊃tr→β→β→β and
Y(β→β)→β . These identifiers are special only in that each standard interpreta-
tion will assign a particular element to each of them. We use x, y to denote
arbitrary identifiers.

(2) If s : β1 → β2 and t : β1 are terms then s(t) : β2 is a term. If x : β1 is an
identifier and s : β2 is a term, then [λx . s] : β1 → β2 is a term.

(3) These are all the terms.

Remark. In the machine implementation of LCF, and often for intelligibility, we
have written terms of the form ⊃(s)(t)(u) and Y([λx . s]) respectively as (s→ t, u)
and [αx.s], and have dispensed with ⊃ and Y. It is clear that every term of imple-
mented LCF is then a transcription of a term of Pure LCF, and it therefore suffices
to discuss the semantics of the latter.

3.3 Semantics

A standard model (of LCF) is a family {Dβ} of CPOs, one for each type β, where
Dind is an arbitrary CPO, Dtr is the CPO {tt,ff,⊥tr} under the partial order given
by the diagram

tt ff
↖↗
⊥tr

and Dβ1→β2 = [Dβ1 → Dβ2]. Note that Dind completely determines a standard
model.

Let I be the set of identifiers of Pure LCF. A standard interpretation (of LCF)
is a standard model {Dβ} together with a standard assignment, which is a function

A : I →
⋃
{Dβ}

which satisfies the further conditions

(1) A[[x : β]] ∈ Dβ . We write the (syntactic) arguments of A in decorated brackets
as an aid to the eye.

(2) The value of A for the special identifiers is given by the following:

A[[TT]] = tt,
A[[FF]] = ff,
A[[UUβ]] = ⊥β ,

A[[⊃tr→β→β→β]] = λξ ∈ Dtr . λη ∈ Dβ . λχ ∈ Dβ] . (ξ → η, χ), and
A[[Y(β→β)→β]] = Y(β→β)→β

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

Models of LCF · 5

where (ξ → η, χ), the conditional, takes the values ⊥, η, χ according as ξ =
⊥tr, tt,ff, and where we have subscripted the fixed point operator Y on the
right to indicate that it belongs to [[Dβ → Dβ]→ Dβ]. Note that the Y on the
left is an identifier, and the Y on the right a function. It is easy to check that
A[[⊃]] is a continuous function, and Proposition 2.3 has assured us that A[[Y]] is
also continuous.

If A satisfies condition (1) above, but not necessarily condition (2), we call it just an
assignment, yielding an interpretation (not necessarily standard). We also confuse
the terms assignment and interpretation, since we have no occasion to discuss here
different standard models.

We write Aξ/x to indicate the assignment differing from A only in that its value
at x is ξ; clearly we have that

(Aξ/x)η/y =

{
Aη/y if x = y,

(Aη/y)ξ/x otherwise.

We now show how to extend the domain of an assignment A to all terms, preserving
the condition that

A[[s : β]] ∈ Dβ

which states not only that A respects types, but also that (for composite types) it
yields a continuous function over the appropriate domains.

We define A by induction on the structure of terms, as follows:

A[[s(t)]] = A[[s]](A[[t]])
A[[[λx . s]]] = λξ . Aξ/x[[s]].

That A respects types is obvious. That A[[s]] ∈ Dβ for all β and s : β is a corollary
of the following.

Proposition 3.1. For each assignment A and for each x : β1, s : β2, we have
λξ ∈ Dβ1 . Aξ/x[[s]] ∈ [Dβ1 → Dβ2].

Proof. First, suppose s is an atomic term, i.e., an identifier. Either s = x, in
which case β1 = β2 and λξ . Aξ/x[[s]] is the identity function over Dβ1 , or s 6= x,
in which case it is a constant function from Dβ1 to Dβ2 . In either case it is a
continuous function, hence ∈ [Dβ1 → Dβ2].

Next, suppose s is t(u), t : β3 → β2 and u : β3. Assume the proposition for t and
u. We have to show that, for any chain X ⊆ Dβ1 ,⊔

{Aξ/x[[t(u)]] | ξ ∈ X} = AF
X/x[[t(u)]];

that is, that ⊔
{Aξ/x[[t]](Aξ/x[[u]]) | ξ ∈ X} = AF

X/x[[t]](Aξ/x[[u]]).

Now if we denote λξ . Aξ/x[[t]] and λξ . Aξ/x[[u]] by f and g, the inductive assumption
tells us that f ∈ [Dβ1 → [Dβ3 → Dβ2]] and g ∈ [Dβ1 → Dβ3], and the required
equation merely states that, for such f and g, λξ . f(ξ)(g(ξ)) is continuous. The
proof of this we leave to the reader; it is hardly more than proving that for a chain
X, {f(ξ)(g(ξ)) | ξ ∈ X} and {f(ξ)(g(η)) | ξ, η ∈ X} are cofinal chains.

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

6 · Robin Milner

Finally, suppose s is [λy . t], y : β3, t : β4 and β2 = β3 → β4. We need to show
that

λξ ∈ Dβ1 . Aξ/x[[[λy . t]]] ∈ [Dβ1 → [Dβ3 → Dβ4]]
that is, that, for any chain X ⊆ Dβ1 ,⊔

{λη ∈ Dβ3 . (Aξ/x)η/y[[t]] | ξ ∈ X} = λη ∈ Dβ3 . (AF
X/x)η/y[[t]].

Now, in the case x = y, we have (Aξ/x)η/y = (AF
X/x)η/y = Aη/y and the equation

reduces to a tautology. If x 6= y, then (Aξ/x)η/y = (Aη/y)ξ/x, and the induc-
tive hypothesis (that the proposition is true for t) tells us that λξ . (Aη/y)ξ/x[[t]]
is continuous, hence monotonic, so {(Aξ/x)η/y[[t]]} is a chain in Dβ4 , for each η.
Moreover, the inductive hypothesis also tells us that, for each ξ, λη . (Aξ/x)η/y[[t]]
is in [Dβ3 → Dβ4 ,and by the previous remark the set of these functions, as ξ ranges
over X, is a chain in [Dβ3 → Dβ4]. Thus, by the definition of

⊔
for function spaces

(Proposition 2.1) we can replace the left-hand side of the desired equation by

λη ∈ Dβ3 .
⊔
{(Aη/y)ξ/x[[t]] | ξ ∈ X}

. λη ∈ Dβ3 . (Aη/y)F
X/x[[t]]

. λy ∈ Dβ3 . (AF
X/x)η/y[[t]] since x 6= y

and we are done. We have therefore proved the proposition by induction on the
structure of terms.

Corollary 3.2. For every assignment A, type β and term s : β, A[[s]] ∈ Dβ.

Proof. For atomic terms the corollary is assured by the definition of an assign-
ment. For λ-terms, the proposition gives the corollary directly. For an application
term s(t) : β, the proposition tells us that λξ ∈ Dβ1 . Aξ/x[[s(t)]] ∈ [Dβ1 → Dβ] so,
by application to A[[x]], we get A[[s(t)]] = AA[[x]]/x[[s(t)]] ∈ Dβ as required.

4. PURE LCF FORMULAE, SENTENCES, RULES AND VALIDITY

In this section we define the remainder of the syntax of Pure LCF, extending the
domain of assignments A still further and, after defining the concept of validity of
a sentence, we give the rules of inference and show that they preserve validity.

4.1 Atomic well-formed formulae (AWFFs)

If s, t : β are terms, then s ⊂ t is an AWWF. Let us add the truth values T,F (not
to be confused with TT, FF) to the range of an assignment, and extend any A to
AWFFs by

A[[s ⊂ t]] =

{
T if A[[s]] v A[[t]],
F otherwise.

4.2 Well-formed formulae (WFFs)

A WFF is a set of AWFFs. We use P,Q, P1, Q1, . . . to denote arbitrary WFFs.
Extend A to WFFs by

A[[P]] =

{
T if A ∈ P ⇒ A[[A]] = T,
F otherwise.

We use s ≡ t to abbreviate {s ⊂ t, t ⊂ s}.
Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

Models of LCF · 7

4.3 Sentences

If P,Q are WFFs, then P ` Q is a sentence (if P = ∅, we just write ` Q). Extend
A to sentences by

A[[P ` Q]] ==

{
F if A[[P]] = T, A[[Q]] = F,
T otherwise.

We say that P ` Q is false in A, true in A respectively. We say that a sentence is
valid iff it is true in all standard interpretations.

We now introduce the rules of inference of Pure LCF, accompanying each by a
proof—often very trivial—that it is valid (a rule is valid if whenever its hypotheses
are valid its conclusion is valid.) The proofs will rely on two facts about assignments
which are fairly easy to prove (we omit their proofs.) First, if A is any syntactic
entity in the domain of an assignment A and x is not free in A, then A[[A]] is
independent of A[[x]]; more precisely, Aξ/x[[A]] = A[[A]]. Second, in specifying the
inference rules, we use A{t/x} to mean: substitute t for x in A with suitable
changes of bound variables, so that no identifier free in t becomes bound after the
substitution, and we need the fact that A[[A{t/x}]] = AA[[t]]/x[[A]].

4.4 Rules of Inference

We write the hypotheses of each rule above a solid line. If there are none, we omit
the solid line. We use the same names for rules as in [1].

INCL P ` Q (Q ⊆ P)

Clearly P true in A implies Q true in A.

CONJ
P ` Q1 P ` Q2

P ` Q1 ∪Q2

Clearly valid.

CUT
P1 ` P2 P2 ` P3

P1 ` P3

Clearly valid.

APPL t ⊂ u ` s(t) ⊂ s(u)

If A[[t]] v A[[u]], then A[[s(t)]] = A[[s]](A[[t]]) v A[[s]](A[[u]]) = A[[s(u)]], using the
monotonicity of A[[s]].

REFL ` s ⊂ s

Clearly valid, by reflexivity of v.
Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

8 · Robin Milner

TRANS s ⊂ t, t ⊂ u ` s ⊂ u

Clearly valid, by transitivity of v.

MIN1 ` UU ⊂ s

Clearly valid, by minimality of ⊥β .

MIN2 ` UU(s) ⊂ UU

Clearly valid, by the definition ⊥β1→β2 = λξ ∈ β1 . ⊥β2 .
Note that in the last two rules we have omitted the type subscripts from UU,

intending that they be supplied in such a way as to yield a proper AWFF, i.e.,
that the terms on either side should have the same type. We could have written
UUβ1→β2(s : β1) ⊂ UUβ2 . Similarly we will omit subscripts from ⊃ and Y.

CONDT ` ⊃(TT)(s)(t) ≡ s

CONDU ` ⊃(UU)(s)(t) ≡ UU

CONDF ` ⊃(FF)(s)(t) ≡ t

These rules are justified by the standard interpretation of ⊃.

ABSTR
P ` s ⊂ t

P ` [λx . s] ⊂ [λx . t]
x not free in P

Let A be such that A[[P]] = T. Since x is not free in P , we have also Aξ/x[[P]] = T
for any ξ. So the hypotheses of the rule assures us that, for each ξ in Dβ , where
x : β, Aξ/x[[s]] v Aξ/x[[t]]. Hence λξ . Aξ/x[[s]] v λξ . Aξ/x[[t]], which is to say that
A[[[λx . s] ⊂ [λx . t]]] = T as required.

CONV ` [λx . s](t) ≡ s{t/s}

We have that A[[[λx . s](t)]] = (λξ . Aξ/x[[s]])(A[[t]]) = AA[[t]]/x[[s]], which is equal to
A[[s{t/x}]] by the second of the facts about assignments which we have assumed.

ETACONV ` [λx . y(x)] ≡ y y distinct from x

A[[[λx . y(x)]]] = λξ . Aξ/x[[y(x)]] = λξ . Aξ/x[[y]](Aξ/x[[x]]) = λξ . A[[y]](ξ) (since x
is distinct from y, so does not occur free in y) = A[[y]].

CASES
P, s ≡ TT ` Q P, s ≡ UU ` Q P, s ≡ FF ` Q

P ` Q
Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

Models of LCF · 9

Let A be such that A[[P]] = T. Since s : tr, A[[s]] must take one of the values
{tt,⊥tr, FF}, so that one of A[[s ≡ TT]], A[[s ≡ UU]], A[[s ≡ FF]] takes the value T.
The validity of the appropriate hypothesis ensures A[[Q]] = T.

FIXP ` Y(x) ≡ x(Y(x))

Clearly valid by the standard interpretation of Y.

INDUCT
P ` Q{UU/x} P ∪Q ` Q{s(x)/x}

P ` Q{Y(s)/x
x not free in P or s

For simplicity, we consider just the case that Q is an AWFF. Moreover, we can
assume that it is of the form t(x) ⊂ u(x) where x is not free in t or u since, for
any term t′, A[[t′]] = A[[λy . t′{y/x}](x)]], y distinct from x, and then x is not
free in [λy . t′{y/x}]. Let A be a standard assignment, A[[P]] = T, and assume
that A[[s]] = f , A[[t]] = g, A[[u]] = h. We first show by induction on i that, for
each i ≥ 0, g(f i(⊥β)) v h(f i(⊥β)), where x : β. For i == 0, the first hypothesis
gives that A⊥β/x[[Q]] = T, that is A[[t]](⊥β) v A[[u]](⊥β) (since x is not free in
t, u), so g(⊥β) v h(⊥β). Now assume the inequality for i. That is, we assume
Afi(⊥β)/x[[Q]] = T. Since x is not free in P , we also have Afi(⊥β)/x[[P]] = T,
and we deduce from the second hypothesis that Afi(⊥β)/x[[Q{s(x)/x}]] = T. Now
Afi(⊥β)[[s(x)]] = f(f i(⊥β)), since x is not free in s, = f i+1(⊥β) so, from the sec-
ond fact which we assumed for assignments, we deduce that Afi+1(⊥β)/x[[Q]] =
T, that is g(f i+1(⊥β)) v h(ff+1(⊥β)). So the induction is complete. Now
A[[Q{Y(s)/x}]] = AY(f)/x[[Q]], which we require to take the value T. That is, we
require g(Y(f)) v h(Y(f)). But g(Y(f)) =

⊔
{g(f i(⊥β)) | i ≥ 0} (by the continu-

ity of g), v
⊔
{h(f i(⊥β)) | i ≥ 0} (by what we have proved), v h(Y(f)) by the

monotonicity of h, and the justification is complete.
This completes also our justification of the validity of the Rules of LCF.

5. REFERENCES

[1] Milner, R., Logic for Computable Functions. Description of a Machine Imple-
mentation, Artificial Intelligence Laboratory Memo No. AIM-169, Computer
Science Department, Stanford University (1972).

[2] Milner, R., Implementation and Applications of Scott’s Logic for Computable
Functions, Proc. ACM Conference on Proving Assertions about Programs, New
Mexico State University, Las Cruees, New Mexico, (1972).

[3] Weyhrauch, R. and Milner, R., Program Semantics and Correctness in a Mecha-
nized Logic, Proc. USA-Japan Computer Conference, Tokyo (1972) (to appear).

[4] Milner, R. and Weyhrauch, R., Proving Compiler Correctness in a Mechanized
Logic, Machine Intelligence 7, ed. D. Michie, Edinburgh University Press (1972)
(to appear).

[5] Milner, R., A Calculus for the Mathematical Theory of Computation, Proc.
Symposium on Theoretical Programming, Novosibirsk, USSR (1972) (to appear
in the Springer-Verlag Lecture Notes Series).

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

10 · Robin Milner

[6] Scott, D., Continuous Lattices, Proc. 1971 Dalhousie Conference, Springer Lec-
ture Note Series, Springer-Verlag, Heidelberg.

Stanford Artificial Intelligence Laboratory Memo AIM-186, STAN-CS-73-332, January 1973

