
Intermediate Program Representations for

Register Allocation

Patryk Zadarnowski

University of New South Wales
<patrykz@cse.unsw.edu.au>

Abstract. The recent advent of the load/store architectures, combined
with the growing disproportion between the register and memory access
times, has exerted an increasing pressure on compiler designers to expend
substantial effort on the register allocation phase of compilation, promot-
ing it from its original role as an optional optimizing pass to an intrinsic
part of the compilation process and an important design factor in deter-
mining the global structure of a compiler. There is a strong tendency for
modern compilers to be clearly divided into a portable symbolic phase
encompassing the bulk of transformations, and an unportable register-
allocated phase comprising of architecture specific transformations such
as instruction scheduling and cache-related optimizations, and connected
to the portable phase through register allocation. In this report, we re-
view the past and present register allocation methodologies employed by
compiler designers, with an emphasis on their influence on the design of
intermediate program representations.

1 Introduction

Register allocation refers to the general problem of an effective utilization of the
limited resources provided by the CPU register files for storage of the unbounded
set of variables referenced in a program.

Originally, register allocation has been viewed as an optional optimizing
transformation intended to reduce the number of instructions while possibly
offering some limited performance improvements over the the canonical repre-
sentation of the program in which every variable was allocated a fixed location
in memory, usually in the stack frame of the current proceduredure. [3] How-
ever, with the advent of load/store architectures such as Reduced Instruction Set

Computing (RISC) [31], this approach ceased to be feasible. There is a marked
tendency in modern instruction set architectures to depricate or completely elim-
iate computational instructions on values stored in memory, forcing variables on
the stack to be loaded into a register files before being operated on, and there-
fore requiring a pair of additional load and store instructions for every variable
access. Under these conditions, executing a register-unallocated program could
result in tripling of the code size and a potential ten-fold degradition of per-
formance as the access times to main memory the CPU registers continue to
diverge. [20]



Further, the large register files of modern processors have made it feasible to
associate variables with registers by default and to fall back to the data stack
only as a last-resort alternative. This, in turn has prompted compiler design-
ers to focus development on optimizations designed to operated on a symbolic
representations of the program which assume an infinite number of available
registers, effectively dividing the compiler into symbolic and register-allocated
phases, with register allocation promoted to the role of an intrinsic structural
element linking the two stages of compilation. Today, we can indentify three
clearly-separated stages in most modern compilers:

1. Language-specific transformations

First, the compiler performs a number of transformations specific to the
source language, usually operating on a high-level symbolic intermediate rep-
resentation closely resembling the abstract syntax tree of the input program.
These transformations include, for example deforestration and unboxing in
compilers for lazy functional languages such as Haskell [23, 34, 11]

2. Portable symbolic transformations

The bulk of optimizing transformations is typically performed on a quasi-
portable low-level representation. These representations tend to vary a lot
in format and the level of abstraction, but one commonality is that, by the
end of the phase, the program is transformed into a normalized low-level
representation in which all intermediate results of computation are assigned
to named temporary variables. Typically, the final assembly instructions are
selected at the end of this phase, and the only difference between that rep-
resentation and the final assembly output is the presumption of availability
of an infinite number of registers to hold the variables and temporaries of
the program.

3. Architecture specific transformations

In the final phase of compilation, a limited number of transformations such
as instruction scheduling [28] and instruction-cache optimizations [27] are
performed on the assembly representation of the program. Since these trans-
formations are highly sensitive to the details of the target machine, they must
be performed with a detailed knowledge of the registers selected for storage
of variables during calculation, and therefore assume a representation of the
program that offers little abstraction over the final machine language.

Ocassionally, compilers interleave transformations from the language-specific
and portable categories, repeatadly translating the program between the high-
level and low-level symbolic representations, but, with only few notable ex-
ceptions architecture-specific transformations are never mixed with portable
passes. [29] This restriction is dictated by the sensitivity of transformations such
as instruction scheduling to even a slightest change of the program: converting
the program into a portable representation would almost certainly nullify any
benefits previously gained through these transformations.

It is entirely possible to envisage a compiler design in which register allocation
is performed after the code is transformed into the final representation (initially



with all variables allocated in memory) and this used to be the standard design
decision in compilers implemented before the advent of RISC architectures. [26]
This design is distinguished by the fact that the input to the register allocator is a
sub-optimal register-allocated program, transformed by the allocator by shifting
some variables from memory into registers, making the design a favourite for
local or semi-local register allocators, in which register allocation is guided by
the loop structure of the program.

With the advent of graph coloring techniques [9, 8], this approach has lost its
appeal in favour of global register allocators, which, by design, allocate variables
to registers, given an unallocated symbolic representation of the program. For
that reason, global register allocators are best placed in the compiler structure
as a connecting element between the second and third groups of transforma-
tions, transforming the program from its portable to the final representation.
Because of their efficiency and effectiveness, global register allocators are now
the standard approach in modern compilers.

The reminder of this report is structured as follows: in Section 1.1, we give
a quick overview of the local register allocation approaches, followed by a brief
introduction to the graph coloring approach to register allocation. In Section 2,
we expand on the details of the graph coloring algorithms, and include a brief
discussion of the recently-proposed optimal graph coloring algorithm. Section 3
discusses a number of key additional issues that must be handled by a register
allocator. The techniques are brought together in Section 4, where we discuss
register allocation as it applies to four major types of program representation,
and its influence on these representation. Finally, we conclude the paper in Sec-
tion 5, with a brief comparison of these representations.

1.1 Overview of Register Allocation

There are two predominant approaches to register allocation: local approaches,
which rely on the structure of the program to supply heuristics for the choice of
variables to be shifted from memory to registers in the most performance critical
sections of a suboptimally-allocated program, and global approaches, which col-
lect and analyze information on the interference between all symbolic variables
in a procedure, and attempt to allocate all (or as many as possible) of these
variables to registers. In the first approach, all variables are stored in mem-
ory by default, while in the second, all variables are assumed to be stored in
registers, and shifted to memory only temporarily whenever no free register is
available. [29]

In both approaches, register allocation can be separated into two stages:

1. Register allocation, which selects the set of variables to reside in registers
at a particular point in the program, and

2. Register assignment, which selects physical registers to hold values of
variables during evaluation.



As always, multi-stage algorithms introduce a phase ordering problem: infor-
mation about the selection of physical registers obtained during register assign-
ment may aid the register allocation phase. In the rest of this section, we give
an overview of the two predominant approaches, and discuss the benefits of the
global approach as it relates to resolving the above phase ordering problem.

1.2 Local Approaches

The local approaches, popular in compilers written before the advent of the
graph coloring techniques, are concerned predominantly with the register allo-
cation stage (selection of variables to be stored in registers.) Typically, some
fixed number of registers is reserved to hold the most acive values in each inner
loop, while always using registers to store values local to a basic block. This
methodology has been pioneered by Lowry and Medlock [26] and implemented
in their Fortran H compiler for the IBM-360 series machines. Its primary ad-
vantage is simplicity, and yet, the approach tends to provide reasonable results
when combined with efficient heuristics for variable selection.

In the Lowry and Medlock approach, we commence the register allocation in
each innermost loop of the procedure, and progress to the outer loops as long as
some available registers remain unused.

For each loop, we typically collect usage count information for every vari-
ables, and pick the most frequently used variables for storage in registers for the
duration of the loop.

Specifically, we begin by generating code in which all variables are stored in
memory between basic blocks, but in which all operations within a basic block
are performed on values stored in registers. A basic block may be split if it uses
more variables than the number of available registers. Variables are loaded into
register upon entry into the basic block and stored back in memory on exit.

For each loop in the program (beginning with the innermost loop) we then
proceed to estimate the savings to be realized by moving each variable into a
register for the duration of the loop. Specifically, we count one unit of credit to
a variable for each use of that variable within the loop that is not preceeded
by an assignment to the variable in the same block. In addition, we count two
units of savings for each block containing an assignment to the variable, for
which the variable is live on exit from the block. For each loop, we select the
variables which offer the most savings for storage in registers. Note that, using
this algorithm, most variables will still be loaded from memory on entry into the
loop and stored back on exit.

Despite its simplicity, this algorithm tends to perform very well in practice,
and is still of some interest in environments where the compilation speed is im-
portant, such as optimizing just-in-time compilers. However, in most compilers,
the efficiency of the global techniques described in the remainder of the paper,
and the importance of effective register allocation on modern RISC architectures,
more than amply outweight the penalty in compilation speed, and therefore local
techniques have now been all but forgotten by compiler designers.



1.3 Global Approaches — Register Allocation as Graph Coloring

While the local approach described above is clearly pessimistic in nature, assum-
ing that a variable cannot be stored in a register unless proven otherwise, global
approaches tend to be optimistic, focusing on the problem of sharing registers for
storage of different variables. This approach relies on an observation that, while
there is almost always more variables to allocate than the number of registers in
the processor, the lifespans of these variables rarely overlap, and therefore, more
often than not, multiple variables can share the same register in a procedure.

Specifically, two variables can be allocated to the same register precisely
if their lifespans do not overlap. A lifespan of a variable extends from its first
assignment to its last use. If we construct a graph in which each node corresponds
to a variable, with an edge between two variables precisely when their lifespans
overlap, we can reduce the problem of register allocation to the well-understood
problem of graph coloring. [9, 8] Such a graph is called the variable interference

graph of the program.
Graph coloring refers to the problem of coloring nodes in a graph with k

distinct colors, such that no two adjacent nodes are assigned the same color in
the graph. In general, graph coloring in known to be NP-hard, but in practice, a
number of very efficient algorithms exist for finding good approximation to the
solution in linear or quadratic time.

To refolmulate the register allocation problem as graph coloring, we take the
variable interference graph for a procedure and attempt to colour its notes with
k colours, where k is the number of available registers. If k-coloring cannot be
achieved on the original procedure, we move (spill) some variables into memory
for a portion of their lifespan, and attempt k-coloring on the modified graph.
As will be demonstrated in the next section, it is possible to perform k-coloring
incrementally in such a way as to avoid a complete recomputation of the graph
after each spill.

One advantage of the graph coloring approach is that it is trivial to extend
it to accomodate architectures with non-uniform register files. Occasionaly, pro-
cessors place restrictions on registers which may be used as operands for certain
instructions. For example, on most architectures, floating point operations are
performed on dedicated FPU registers, and boolean values obtained from integer
test instructions are stored in a limited number of condition flags with severe
restrictions placed on their usage. The graph coloring approach can be extended
to handle this scenarios by adding nodes for each physical register to the in-
terference graph, and drawing edges between these registers and variables that
cannot be stored in them.

Most register allocators used in practice are based on graph coloring. We
devote the next section to finding an approximate solution to the graph coloring
problem for a register interference graph, and delay discussion of alternative
global techniques until Section 5 of this paper.



s1 ← arg1

s2 ← arg2

s3 ← add(s1, s2)
s4 ← add(s1, s3)
s5 ← mul(s1, 1)
s6 ← mul(s4, 2)
ret(s5, s6)

s2 s4 s6

s3 s1 s5

(A) (B)

Fig. 1. Register allocation by graph coloring

2 Implementation of Graph Coloring Allocators

The connection between register allocation and graph coloring has been made by
Cocke [4], and the first register allocator based on this result has been published
by Chaitin [9] and implemented in the experimental IBM 370 PL/I compiler,
soon followed by a number of papers proposing numerous improvements to the
original approach, the most important being the introduction of priority-based

graph coloring by Chow and Hennessy. [10]
To this day, virtually all successful graph coloring techniques are based on

one important result known as the degree < k rule. Since optimal graph col-
oring is known to be NP-hard, these allocators compute an approximation of
the optimal solution, meaning that they may fail to deliver perfect allocation
for some program, and therefore introduce unnecessary spills. In practice these
situations are rare, and recently Andersson [6] proposed an alternative optimal
graph coloring algorithm which operates in linear time for all practical input
programs.

2.1 The degree < k Rule

While optimal graph coloring is known to be NP-hard, a remarkable result known
as the degree < k rule permits us to efficiently approximate k-coloring of most
graphs encountered in practice with a very good precision.

The rule states that a graph containing a node with less than k neighbours is
k-colourable precisely when the graph without that node is k-colourable. Further,
a graph with only one node is trivially k-colourable for any k. Accordingly, we
can obtain an approximation of k-coloring for a graph by recursively removing
any nodes with less than k neighbours from the graph. Once we reach a graph
with only one node, we colour it with an arbitriary colour, and proceed by adding
the removed nodes back to the graph in the order that is a reversal of that in
which they have been removed. As each node is added, it has, by construction,
less than k neighbours in the partially-reconstructed graph, always leaving us
with an available colour distinct from any of its neighbours.



s2 s4 s6

s3 s1 s5

s1

s2 s3

s4

s5

(A) (B)

Fig. 2. Graphs non-colourable using the degree < k rule

Consider, for example, the code fragment in Figure 1(A), with the corre-
sponding interference graph given in Figure 1(B). Assume that our target ma-
chine has three registers available for storing variables (k = 3.) We can remove
the nodes from the graph in the order s2, s3, s1, s4. We colour the remaining
node (s6), and proceed by adding s4 through to s2 back to the graph, arriving
at the colouring in Figure 1(B).

2.2 Recovery Strategies

Of course, it is entirely possible for the above approach to arrive at a graph
in which no node has fewer than k neighbours. The graph may simply be not
k-colourable: for example, the graph in Figure 2(A) cannot be coloured for k = 3
(it requires a minimum of four registers for perfect colouring.) However, it is also
possible for the degree < k rule to fail on a k-colourable graph, such as the one
in Figure 2(B). Specifically, this happens when the graph contains a clique of k

nodes (a clique is a subgraph in which every node is pairwise adjacent.) Often,
such graphs are still k-colourable, but the colouring cannot be obtained using
the simple algorithm described in the previous section. In Figure 2(B), there are
four cliques of three nodes: {s1, s2, s5}, {s2, s3, s5}, {s3, s4, s5} and {s4, s1, s5},
but the graph is still 3-colourable. Both situations occur frequently in practice,
and therefore it is essential for a graph-coloring register allocator to deal with
them efficiently.

Surprisingly, with a simple optimistic modification, the degree < k algorithm
described earlier can recover gracefully from the above situations. When faced
with a graph in which no node has fewer than k neighbours, we simply pick
the node with fewest neighbours and remove it from the graph as normal, de-
laying the spill decisions to the second stage of the algorithm, when nodes are
added back to the graph and coloured. For example, when colouring the graph
in Figure 2(B), we would remove nodes in the order s1, s2, s3 and s4. Notice
how, after optimistic removal of s1, the remainder of the graph did not require
further optimistic decisions and was trivially 3-colourable. This is very typical
of the interference graphs encoutered in practice.



If we permit removal of nodes with k or more neighbours during the register
allocation stage of the algorithm, it is no longer true that, when the nodes
are reinserted during register assignment, they will always have fewer than k

neighbours in the partially reconstructed graph. The reinsertion step has to be
modified to account for three cases:

– If the reinserted node has fewer than k neighbours in the partially recon-
structed graph, we can always find an available colour for it, so we proceed
with the reinsertion as before.

– Otherwise, it is possible that some of the neighbours of the new node have
been assigned the same colour. If all the neighbours use less than k colours,
we can still colour the node without modifying the graph. Note that this
permits to colour some graphs that were not colourable using the simple
degree < k algorithm, provided that we’ve picked a “fortunate” colouring
for the previously-reinserted nodes (this was, for example, the case for the
graph in Figure 2(B).) Therefore, delaying spilling until the reinsertion stage
improves the ability of the algorithm to colour some graphs, but does not
always achieve optimal colouring.

– Finally, if there is no colour available for the reinserted node, we must some-
how modify the interference graph of the procedure before we can colour it.
There are a number of options available. Most of these attempt to undo the
effects of those optimizing transformations performed previously which are
likely to have increased the register pressure of the code. Some possibilities,
in the increasing order of runtime overhead [22], are:

1. We can attempt to move some instructions closer to their use (thus
undoing loop invariant code motion.) This has the effect of shrinking the
lifespan of some variables, thus decreasing the likelihood of it interfering
with another variable.

2. We can clone a calculation to avoid keeping its result in a register (un-
doing common subexpression elimination.) Since many subexpressions
recognized by the CSE transformations are trivial to recalculate, it is
usually more efficient to recompute the value than store at several places
in the program than store it in a temporary register at an expense of
causing a spill (and therefore a memory access) elsewhere in the program.

3. We can collapsing unrolled loops. Each iteration of a loop that has been
unrolled usually requires additional registers so this technique can have a
dramatic effect on the interference graph, but it is difficult to implement
in practice and therefore none of the register allocators described in
literature implement it.

4. Finally, if all other approaches fail, the allocator is left with the recourse
to spilling of some variables into memory as described in Section 2.3
below.

Undoing optimizing transformations becomes critical to effective register al-
location on modern super-scalar architectures, as these optimizations con-
tinue to be designed to extract more and more instruction-level parallelism



out of the programs, dramatically increasing register pressure in the process.
However, most registers allocators still implement only the final alternative,
with the notable exception of Johnson’s VSDG approach [22] which is dis-
cussed in Section 4 below.

2.3 Variable Spilling

Spilling refers to the process of moving a variable into memory for some dura-
tion of its lifetime, effectively splitting it into two separate unconnected nodes
in the interference graph. This requires storing the variable in memory (usu-
ally on the stack frame of the corresponding procedure) after its definition and
loading the value back before its use. Typically, register allocation algorithms
insert the spilling instructions indiscremenantly, relying on subsequent peephole
optimizations to move the store instructions to the most efficient position in
the instruction stream, and remove redundant load instructions after register
assignment has been completed. [29] While spilling is usually the easiest recovery
option for graphs that cannot be coloured otherwise, it can have a dramatic neg-
ative effect on performance by increasing memory traffic. [20] For that reason,
it is advisable for a register allocator to minimize the number of spills in the
program.

When using the graph coloring algorithm describe above, only interference
graph nodes optimistically removed from the graph during register allocation
may require spilling decisions to be made when reinserted into the graph during
register assignment. Therefore, register allocators typically estimate the spilling
costs for every variable in the program, before attempting register allocation, and
use these spill costs to guide optimistic removal of nodes from the interference
graph. When faced with the need to remove a node optimistically, the node
with the minimal spill cost is removed first. This ensures that, during register
assignment, that node will be considered for spilling first, hopefully rendering
the reminder of the graph colourable and therefore avoiding further spills of more
expensive nodes.

The estimate of spill costs for a single variable should take into account:

1. A spill performed in an inner loops of the program will be executed more
often at runtime, and is therefore exponentially more expensive than that
performed in an outer loop.

2. If a variable may be recomputed more efficiently than reloaded from memory,
the cost of recomputing should be used instead.

3. Spilling the source or target of a copy instruction makes that instruction
redundant, so these are the preferred candidates for spilling. Other instruc-
tions may behave similarly on certain architectures, so the spill costs should
be weighted by instruction type.

4. If a spilled value is used several times in the same basic block it does not
have to be loaded more than once in that block.



Accordingly, the cost of spilling a variable defined by the set of instructions D,
used by the set of instructions U and copied by the set of instructions C can be
estimated by the following equation:

∑

i∈D

wi10di +
∑

i∈U

wi10di −
∑

i∈C

wi10di

where di represents the nesting depth of the instruction i within the loop struc-
ture of the procedure, and wi represents the weighting assigned to its instruction
type. The algorithm for computing the cost of spilling each variable is described
by Chaitin.[9, 8] Other techniques for minimizing register spills on super-scalar
architectures by tailoring the instruction sequence generated by the compiler are
presented by Govindarajan. [18]

2.4 Optimal Graph Coloring

The graph coloring algorithm described above is only an approximation of the
exact coloring, and may fail to colour some colourable graphs. Nevertheless, it
works surprisingly well in practice, which suggests that interference graphs have
some special properties that simplify their colouring.

After an investigation of 27,921 real-life interference graphs, Andersson [6]
found that all interference graphs produced by a compiler belong to the class
of 1-perfect graphs. A graph G is said to be 1-perfect if its chromatic number

χ(G) (the smallest k for which G is k-colourable) is equal to its clique number

ω(G), the number of nodes in the largest clique in the graph (a clique is a
subgraph in which all nodes are pairwise adjacent.) Note that, while, for general
graphs, the differene between the chromatic number χ(G) and the clique number
ω(G) is large, Andersson was unable to construct an interference graph that was
not 1-perfect, despite numerous attempts, which suggests that non-1-perfect
interference graphs do not occur in practice. One possible explanation of this
remarkable fact is the uneven density of interference graphs, which tend to be
sparse in general with a small number of localised dense regions.

Andersson proposed to utilize these properties to design an efficient optimal
graph coloring algorithm for interference graphs. The algorithm begins by search-
ing the graph for the largest clique and colouring this clique with ω(G) colours,
obtaining a partial colouring of the interference graph, which covers its “most
difficult” portion. The algorithm then proceeds with the search for the optimal
colouring by enumerating all possible colourings. Although this is exponential
in the in the number of nodes in the graph, the search can be aborted when
it finds a colouring using ω(G) colours. For 1-perfect graphs, once the largest
clique has been coloured, the remainder of the graph is trivially colourable and
the algorithm completes the search in linear time.

Andersson has found that his algorithm is, in practice faster than the approx-
imate heuristics-based algorithm designed by Appel and George for use in their
compiler for Standard ML of New Jersey. [17] However, Andersson’s algorithm
does not, as yet, perform actual register allocation, as it finds the smallest k for



1) y ← . . .

2) x← . . .
3) y ← . . .

4) x← . . .
5) print y

6) print x
7) print y

8) print x
9) x← . . .

10) print x

Fig. 3. Identifying Allocatable Objects

which the interference graph is colourable, without modifying the interference
graph in situations when k is larger than the number of available registers.

3 Preparatory Transformations

A number of issues must be considered before we can attempt register alloca-
tion on the input program. First of all, we must decide what constitutes objects
that we are trying to allocate: in compilers for imperative languages such as C,
this choice is far from trivial. Typically, once the allocatable objects have been
identified and the interference graph constructed for the program, compilers per-
form a simple but powerful register coalescing transformation to simplify several
stages of the compiler design while significantly improving efficiency of the gen-
erated code. [7] In this section, we briefly discuss each of these issues, as they
will impact the designs of intermediate representations discussed in Section 4.

3.1 Identifying Allocatable Objects

Although it is convinient to talk about variables in the context of register allo-
cation, it is not, in general, a good idea to use source variables as input objects
to the register allocator. In most programming communities, it is a common
practice to use certain variable names such as i or x for predefined purposes,
resulting in these source variables being used frequently throughout the program
usually in unrelated context. For example, in C programs i is commonly chosen
as the name of the index variable in loops and, as a result, is one of the most
commonly-occuring identifier in a typical C program. [3] An interference graph
constructed with a node for each source variable would contain many more edges
than one in which, for example, every loop index was treated as a separate node.

These false interferences are a common problem, and therefore most mod-
ern intermediate program representations such as the static single assignment



(SSA) form [5, 14] discussed in Section 4.2 or the value state depandance graphs
(VSDG) [22] from Section 4.3 are designed to assign a unique name to each
definition point (assignment) in the program. However, using definition points
as allocatable objects has its drawbacks, too, since two variables defined on sep-
arate control-flow paths may have a common use once the merge of the paths.
For example, if, in the code:

if . . . then

x← . . .

else

x← . . .

print x

the two definitions of x are assigned to different registers, than we would have to
introduce copy instructions to move them to the location expected by the print
statement.

To solve these problems, register allocators operate on webs of values instead
of simple definition point, when a web is defined as a maximal union of all def-use
chains that have a use in common. For example, in the code in Figure 3 there
are four webs consisting of the following instructions: {1, 5}, {2, 4, 6, 8}, {3, 7}
and {9, 10}.

An important benefit of using webs for nodes in the interference graph is that
it forces the register allocation to allocate results of computations performed in
different branches of the control flow graph in the locations where they are
expected by all subsequent uses of that value, including the cases when these
registers are passed as parameters to function calls. This eliminates the need
for copying parameter values to the registers allocated for parameters by the
function call protocol of the target instruction set architecture. [25]

3.2 Register Coalescing

Most register allocators perform a simple, but powerful optimization called regis-

ter coalescing or subsumption before attempting register allocation proper. Reg-
ister coalescing is a specialized form of copy propagation which eliminates as-
signments of the form x ← y when x and y do not interfere, by replacing all
occurances of x with y. Note that this only requires the information stored in
the variable interference graph, making this optimization an ideal candidate for
integration into a graph coloring register allocator.

As pointed out by Chaitin [9, 8], register coalescing is a powerful transfor-
mation that simplifies many aspects of compiler design, allowing the compiler
to capture complex requirements on register selection using simple redundant
copy instructions inserted during earlier transformations and eliminated by the
register allocation through register coalescing.

For example, removal of SSA φ nodes during conversion from the Static Single
Assignment form discussed in Section 4.2 to the final machine code representa-
tion of the program can be implemented by converting φ nodes into redundant
copy instructions to be eliminated by the register coalescing pass whenever fea-
sible. [7]



Further, many instruction set architectures require that parameters to certain
instructions are passed in a specific register, and most systems impose similar
restrictions on calls to library functions through standardised function calling
conventions. These restrictions are typically implemented through a redundant
copy of the value into a temporary variable, and an introduction of additional
interference edges into the variable interference graphs for the temporary vari-
able. Register coalescing will eliminate the temporary variable and effectively
propagate the corresponding interference information to all definition points of
the correspoinding parameter. [25]

In its simplest form, register coalescing works by checking each copy instruc-
tion of the form x ← y with the information stored in the interference graph.
If x and y do not interfere, it replaces any instructions that wrote to y and
modifies them to put their result in x instead. After register coalescing has been
completed, a dead code elimination pass will remove the now-redundant assign-
ments.

Note that the interference graph can be updated incrementally during the
transformation simply by merging the interference graph nodes for x and y

whenever register coalescing is performed on an assignment x← y.

4 Bringing It All Together

While graph coloring gives with a systematic approach to register allocation, it
does not, in itself, help to structure the compiler when combined with ad hoc web
calculation and spilling algorithms. The choice of the intermediate representation
for the program is still crucial to the overall structure of the compiler. In this
section, we review the four most important alternatives available to the compiler
designers.

4.1 Control Flow Graphs

Control flow graphs (CFG) are the oldest, and still most widely used program
representation for use by optimizing compilers. [3, 29] Their orgins can be traced
to Floyd’s original flowchart semantics. [16] In this form, the instruction sequence
is divided into segments called basic blocks, where each basic block begins with
a label and ends with a control transfer instruction such as a jump or return,
with no other control transfer instructions within the block. Each instruction
closely resembles assembly instructions, in that it operates on and stores the
result in symbolic variables. Control flow graphs are imperative programs in
that variables can be redefined (updated), but, unlike the final assembler, the
compiler assumes availability of an infinite number of registers for storage of
values during execution.

Because of these similarities between symbolic variables and physical regis-
ters, the same CFG representation can accomodate both symbolic and register-
allocated code, with the only difference between the two forms being the number
and naming of variables referenced in the program.



x← arg

r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

x← arg

r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

(CFG) (DU chains)

Fig. 4. Control Flow Graphs and Def-Use Chains

CFG representations place the emphasis on the control flow information
rather than data flow. [19] This is effective when used for control flow-based
optimizations such as loop invariant code motion [12, 15, 24], but introduces
problems when used for algorithms that rely heavily on data flow. Computa-
tion of webs for register allocation belongs to the later class of algorithms.

The explicit ordering of instructions imposed by CFGs introduces artificial
dependencies. For example, in the following code:

a← x + 1
b← y + 2
c← a + 3
return b + c

all three variables interfere with each other. However, if the code was rearranged
as follows:

a← x + 1
c← a + 3
b← y + 2
return b + c

the interference between a and b is removed, improving the ability of the register
allocator to colour the program. Normally, register allocators based on CFG
representations do not attempt to address this problem.

Further, web calculations require detailed data flow information, which, in
control flow graphs, are described by maintaining so-called def-use chains, rep-
resenting the sequence of uses of each definition in the program. Def-use chains,
represented by arrows in Figure 4, are a dense representation of the deta flow
which is expensive to compute and represent. Mainly for those reasons, control



x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

proc fac(x) {

goto L1

L1: {

r0 ← φ(start:1, L1:r1)

x0 ← φ(start:x, L1:x1)

if x0 then goto L1 else ret r0

L2: r1 ← mul(r0, x0)

x1 ← sub(x0, 1)

goto L1

}

}

. . .

(From CFG to SSA) (Factorial Function)

Fig. 5. Static Single Assignment Form

flow graphs are being progressively replaced by other intermediate representa-
tions, the most notable one being the Static Single Assignment Form discussed
in the next section, although they have recently been revisited for use as a rep-
resentation language in discrete event simulation. [13]

4.2 Static Single Assignment Form

The static single assignment (SSA) form [5, 14] is an imperative representation of
programs which encodes data flow information explicitly by requiring that there
be exactly one assignment for every variable. Figure 5 presents the factorial
function in SSA form. Except for the two φ-functions, the program resembles
standard three-address code: fac consists of three basic blocks connected by
jumps, with the third (labelled L2) constituting the main loop of the program.

The values of the variables x and r are updated in three places in fac. To
achieve the single assignment property, we create a new variable for each update,
splitting x into x, x0 and x1, and similarly for r. Since, the block L1 can be
reached either from the start block or from L2, at the beginning of L1 we must
merge the two sources of values for x and r using the so-called φ-function, which
selects a value based on the source block of the jump. Note that, in SSA, the
single-assignment property is purely syntactic, since, in the loop L1, variables
are still updated at runtime on every iteration.

A procedure can be put in the SSA form by arranging the basic blocks into
a dominator tree, where the parent of each node dominates its children. An
assignment dominates an expression if every path to the expression from the start
of the procedure includes that assignment. The SSA form has been popularised
by Cytron et al. [14], who describe an algorithm for computing the dominance



s1 ← arg1

s2 ← arg2

s3 ← s1 + s2

s4 ← s1 + s3

s5 ← s1 ∗ 1
s6 ← s4 ∗ 2
ret(s5, s6)

arg1 arg2

+

1 + 2

+ ∗

ret1 ret2

s5 s6

s1

s4

s1

s3

s1 s2

(CFG) (VSDG)

Fig. 6. Value State Dependance Graphs

information in linear time and demonstrate how SSA increases the power of
many optimisations which require data-flow analysis.

Since an SSA variable uniquely defines the source of the corresponding value,
the SSA form effectively annotates the program with an efficient sparse repre-
sentation of the data flow information. Further, split variables tend to improve
accuracy of data flow analysis by providing finer-grained notion of a variable.

The SSA form is the most popular representation used in compiles today.
However, as for CFG representations, execessive control flow restrictions on in-
struction ordering remain in the way of register allocators (among other op-
timizations), and the φ nodes introduce new problems for register coalescing.
Specifically, they translate to additional (and usually redundant) copy instruc-
tions when the program is translated to the final machine representation. Nor-
mally, these instructions would be removed during register coalescing, but, in
the presence of φ nodes the computation of live ranges for variables (and, con-
sequently, the variable interference graph) register coalescing is a difficult and
relatively expensive operation, since the life-time of the variable which spans
multiple blocks is obscured by the control flow information encoded in the φ

nodes. Budimlić et al. [7] addresses most of the problems introduced by φ nodes
by presenting an efficient register coalescing algorithm for removal of φ nodes
during translation from an SSA form to a CFG representation.

4.3 Value State Dependence Graphs

To circumvent the major problem of artificial control flow restrictions imposed
by both CFG and SSA forms when used for register allocation, Johnson [22] pro-



posed a new intermediate representation loosely based on the Gated Static Sin-
gle Assignment form [32, 33], called the Value State Dependance Graph (VSDG.)
When using the VSDG representation, register allocation is performed “in re-
verse”: first, the program is restructed to make it colourable, and only then reg-
ister allocation and assignment are performed on the program using standard
graph coloring techniques.

In the VSDG form, a procedure is represented by a graph 〈N, Ev, Es, N0, N∞〉
where:

– N is a set of nodes
– Ev is a set of value dependence edges
– Es is a set of state dependence edges
– N0 is a unique entry node
– N∞ is a unique exit node

The nodes in the graph can represent instructions (definitions) or the spe-
cial structural nodes γ(C, T, F ) (lazy conditionals) and θ(C, I, R, L, X) (natural
loops.) An example VSDG is presented in Figure 6. Except for the θ nodes,
VSDG is an acyclic graph, representing all necessary data and state dependen-
cies explicitly. Like the SSA form, it provides an efficient sparse representation
of data flow, and, further, avoids imposing restrictions on instruction ordering
except when required by program semantics. Further, as discussed by Johnson,
VSDG have a fairly strong normalizing effect on programs, making them ideal
for a number of optimizations such as common subexpression elimination. This
is particularly useful if we want to perform common expression elimination dur-
ing register allocation, thus avoiding the increase in register pressure commonly
associated with that optimization.

The register allocation algorithm proceeds as follows:

1. First, we calculate the maximal distance from N0 (DFR) for each node in
the graph.

2. Next, we partition the graph into “cuts”: sets of nodes with the same DFR.
3. Then, we calculate the set of live nodes for each cut: S>d ∩ predv(S≤d)
4. Finally, we apply a forward snow-plough graph reshaping algorithm ensuring

the size of each set is less than k. The plough proceeds from the bottom of
the graph (the two ret nodes in Figure 6) up towards the N0, ensuring that
each cut contains no more nodes than the number of available registers, and
inserting additional control dependence edges (representing register spills)
to split large cuts. Details of the snow-plough algorithm are outlined in [22].

VSDG have been designed to represent both symbolic and register allocated
code without loss of expressiveness. When using the VSDG representation, regis-
ter allocation is the final compilation stage before code generation. All optimiza-
tions, including both portable and architecture-specific ones, are performed on
the VSDG. Once the program has been optimized, redundant control-dependence
edges are inserted into the VSDG thus converting the program into a standard
CFG representation suitable for code generation.



4.4 Type-Theoretic Approaches

In order to formalize the role of register allocation in the compilation process, a
number of people investigated application of type theory to register allocation.
These can be classified into two broad categories: use of types as annotations ex-
pressing register requirements of expressions, and, more recently, proof-theoretic
approaches which account for the entire process of register allocation and as-
signment, from liveness analysis to register assignment.

The first, more common approach, has been pioneered by Agat [1, 2]. In
this approach, a standard call-by-value λ calculus is annoted with a type-effect
system describing the register requirements of each subexpression. In addition
to the location of function parameters and return values, the system maintains
the so called kill-set of each subexpression, consisting of those registers that may
be modified during evaluation of the subexpression, expressed as an effect in the
type system. As example, the expression 3+5 can be described in Agat’s system
with the following typing judgement:

⊢





let x = 3R8 in

let y = 5R6 in

addR8,R6,R2 x y



 : IntR2!{R2, R6, R8}

which indicates that the expression returns its result in register R2 and modi-
fies registers R2, R6 and R8 during evaluation. Agat’s approach is particularly
well suited for expressing flexible and adaptive function calling conventions, and
therefore aids inter-procedural and inter-modular register allocation while also
simplifying formal reasoning about correctness of the register allocation algo-
rithm and its implementation. The annotations themselves are inserted for each
procedure using standard graph coloring techniques.

Recently, Ohori [30] proposed a very different application of type theory to
register allocation based on a proof-theoretic framework that accounts for the
entire process of register allocation, designed to systematically combine all as-
pects of register allocation, from liveness analysis to register assignment, into
a single framework. Ohori’s approach is based on the judgments as types cor-
respondence [21], according to which programs may be regarded as proofs of
their types. If, following Agat’s approach, we allow the types to express register
requirements of expressions, then the process of register allocation may be for-
mulated as a type-preserving program transformation performed using standard
proof transformation techniques. This approach, unique in that it is not based on
graph coloring techniques, can be easily incorporated into a static type system of
the intermediate representation to unify pre- and post-allocation representations
into a single intermediate language.

5 Conclusions

In recognition of its critical importance to performance of the compiled pro-
gram, register allocation has progressively migrated from a minor optimizing



transformation to its current role as a central component of a modern compiler,
influencing all aspects of compiler design. Most importantly, it is a major factor
shaping modern intermediate program representations, with the predominant
design goals being unification of pre- and post-allocation program representa-
tions, effectiveness, portability of register allocators and, more recently, consid-
erations relating to formal verification of optimization algorithms and compiler
implementations.

References

1. Agat, J., “A Typed Functional Language for Expressing Register Utilisation,”
Ph.D. thesis, Chalmers University of Technology and Göteborg University (1998).

2. Agat, J., Types for register allocation, Lecture Notes in Computer Science 1467

(1998), pp. 92–111.
3. Aho, A. V., R. Sethi and J. D. Ullman, “Compilers: Principles, Techniques and

Tools,” Addison-Wesley, 1986.
4. Allen, F. and J. Cocke, A catalogue of optimizing transformations, Design and

Optimization of Compilers (1971), pp. 1–30.
5. Alpern, B., M. N. Wegman and F. K. Zadeck, Detecting equality of variables in

programs, in: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (1988), pp. 1–11.

6. Andersson, C., Register allocation by optimal graph coloring, Lecture Notes in Com-
puter Science 2622 (2003), pp. 33–45.

7. Budimlić, Z., K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg and S. W.
Reeves, Fast copy coalescing and live-range identification, in: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and imple-
mentation (2002), pp. 25–32.

8. Chaitin, G. J., Register allocation and spilling via graph coloring, in: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction (1982), pp. 98–101.

9. Chaitin, G. J., M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins and
P. W. Markstein, Register allocation via coloring, Computer Languages 6 (1981),
pp. 47–57.

10. Chow, F. C. and J. L. Hennessy, The priority-based coloring approach to register al-
location, ACM Transactions on Programming Languages and Systems (TOPLAS)
12 (1990), pp. 501–536.

11. Clack, C. and S. L. P. Jones, Strictness analysis — a practical approach, in: Pro-
ceedings of a conference on Functional programming languages and computer ar-
chitecture (1985), pp. 35–49.

12. Click, C., Global code motion/global value numbering, in: Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and implementation
(1995), pp. 246–257.

13. Cota, B. A., D. G. Fritz and R. G. Sargent, Control flow graphs as a representation
language, in: Proceedings of the 26th conference on Winter simulation (1994), pp.
555–559.

14. Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman and K. F. Zadeck, Efficiently
computing static single assignment form and the control dependence graph, ACM
Transactions on Programming Languages and Systems (TOPLAS) 13 (1991),
pp. 451–490.



15. Ferrante, J., K. J. Ottenstein and J. D. Warren, The program dependence graph and
its use in optimization, ACM Trans. Program. Lang. Syst. 9 (1987), pp. 319–349.

16. Floyd, R. W., Assigning meaning to programs, in: J. T. Schwartz, editor, Mathe-
matical aspects of computer science: Proceedings of a Symposium in Applied Math-
mematics of the American Mathematics Society (1967), pp. 19–31.

17. George, L. and A. W. Appel, Iterated register coalescing, ACM Transactions on
Programming Languages and Systems (TOPLAS) 18 (1996), pp. 300–324.

18. Govindarajan, R., H. Yang, J. N. Amaral, C. Zhang and G. R. Gao, Minimum
register instruction sequencing to reduce register spills in out-of-order issue super-
scalar architectures, EEE Transactions on Computers 52 (2003).

19. Hecht, M. S., “Flow Analysis of Computer Programs,” Elsevier Science, 1977.
20. Hennessy, J. L., D. Goldberg and D. A. Petterson, “Computer Architecture: a

quantitative approach,” Morgan Kaufmann Publishers, Palo Alto, 1990.
21. Howard, W., The formulae-as-types notion of construction, in: J. P. Seldin and

J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, Academic Press, New York, NY, 1980 pp. 479–490.

22. Johnson, N. and A. Mycroft, Combined code motion and register allocation using
the value state dependence graph, Lecture Notes in Computer Science 2622 (2003),
pp. 1–16.

23. Jones, S. P., “Haskell 98 Language and Libraries: The Revised Report,” Cambridge
University Press, 2003.

24. Knoop, J., O. Rüthing and B. Steffen, Lazy code motion, in: Proceedings of the ACM
SIGPLAN 1992 conference on Programming language design and implementation
(1992), pp. 224–234.

25. Kong, T. and K. D. Wilken, Precise register allocation for irregular architectures,
in: Proceedings of the 31st annual ACM/IEEE international symposium on Mi-
croarchitecture (1998), pp. 297–307.

26. Lowry, E. S. and C. W. Medlock, Object code optimization, Communications of the
ACM 12 (1969), pp. 13–22.

27. McFarling, S., Program optimization for instruction caches, in: Proceedings of the
third international conference on Architectural support for programming languages
and operating systems (1989), pp. 183–191.

28. Motwani, R., K. V. Palem, V. Sarkar and S. Reyen, Combined register alloca-
tion and instruction scheduling, Technical Report TR1995-698, Stanford University
(1995).

29. Muchnick, S. S., “Advanced Compiler Design and Implementation,” Morgan Kauf-
mann Publishers, 1997.

30. Ohori, A., Register allocation by proof transformation, Science of Computer Pro-
gramming 50 (2004), pp. 161–187.

31. Patterson, D. A., Reduced instruction set computers, Communications of the ACM
28 (1985), pp. 8–21.

32. Tu, P. and D. Padua, Efficient building and placing of gating functions, in: Pro-
ceedings of the ACM SIGPLAN 1995 conference on Programming language design
and implementation (1995), pp. 47–55.

33. Tu, P. and D. Padua, Gated ssa-based demand-driven symbolic analysis for paral-
lelizing compilers, in: Proceedings of the 9th international conference on Supercom-
puting (1995), pp. 414–423.

34. Wadler, P., Deforestation: transforming programs to eliminate trees, Theoretical
Computer Science 73 (1990), pp. 231–248.


