
C
LAMBDA CALCULUS

AND
COMPILER VERIFICATION

A study in Haskell of purely-functional techniques
for a formal specification of imperative programming languages

and an epistemically-sound verification of their compilers

PATRYK ZADARNOWSKI

A thesis submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy

University of New South Wales
School of Computer Science and Engineering

Sydney, January 2011

ORIGINALITY STATEMENT
I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another person,
or substantial proportions of material which have been accepted for the award of any
other degree or diploma at UNSW or any other educational institution, except where
due acknowledgement is made in the thesis. Any contribution made to the research by
others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged
in the thesis. I also declare that the intellectual content of this thesis is the product of
my own work, except to the extent that assistance from others in the project’s design
and conception or in style, presentation and linguistic expression is acknowledged.

Patryk Zadarnowski
17 January 2011

COPYRIGHT STATEMENT
I hereby grant to the University of New South Wales or its agents the right to archive
and to make available my thesis or dissertation in whole or part in the University
libraries in all forms of media, now or hereafter known, subject to the provisions of
the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also
retain the right to use in future works (such as articles or books) all or part of this
thesis or dissertation.

I also authorise University Microfilms to use the abstract of my thesis in Dissertations
Abstract International. I have either used no substantial portions of copyright material
in my thesis or I have obtained permission to use copyright material; where permission
has not been granted I have applied/will apply for a partial restriction of the digital
copy of my thesis or dissertation.

Patryk Zadarnowski
17 January 2011

AUTHENTICITY STATEMENT
I certify that the Library deposit digital copy is a direct equivalent of the final officially
approved version of my thesis. No emendation of content has occurred and if there
are any minor variations in formatting, they are the result of the conversion to digital
format.

Patryk Zadarnowski
17 January 2011

C
Lambda Calculus

& Compiler Verification

PATRYK ZADARNOWSKI

Copyright © 2011 Patryk Zadarnowski

University of New South Wales
School of Computer Science and Engineering

Sydney, January 2011

Abstract

Formal verification of a compiler is a long-standing problem in computer science and,
although recent years have seen substantial achievements in the area, most of the pro-
posed solutions do not scale very well with the complexity of modern software devel-
opment environments. In this thesis, I present a formal semantic model of the popular
C programming language described in the ANSI/ISO/IEC Standard 9899:1990, in the
form of a mapping of C programs to computable functions expressed in a suitable vari-
ant of lambda calculus. The specification is formulated in a highly readable functional
style and is accompanied by a complete Haskell implementation of the compiler, cov-
ering all aspects of the translation from a parse tree of a C program down to the actual
sequence of executable machine instructions, resolving issues of separate compilation,
allowing for optimising program transformations and providing rigorous guarantees of
the implementation’s conformance to a formal definition of the language.

In order to achieve these goals, I revisit the challenge of compiler verification
from its very philosophical foundations. Beginning with the basic epistemic notions of
knowledge, correctness and proof, I show that a fully rigorous solution of the problem
requires a constructive formulation of the correctness criteria in terms of the translation
process itself, in contrast with the more popular extensional approaches to compiler
verification, in which correctness is generally defined as commutativity of the system
with respect to a formal semantics of the source and target languages, effectively for-
malising various aspects of the compiler independently of each other and separately
from its eventual implementation. I argue that a satisfactory judgement of correctness
should always constitute a direct formal description of the job performed by the soft-
ware being judged, instead of an axiomatic definition of some abstract property such
as commutativity of the translation system, since the later approach fails to establish a
crucial causal connection between a judgement of correctness and a knowledge of it.

The primary contribution of this thesis is the new notion of linear correctness,
which strives to provide a constructive formulation of a compiler’s validity criteria by
deriving its judgement directly from a formal description of the language translation
process itself. The approach relies crucially on a denotational semantic model of the
source and target languages, in which the domains of program meanings are unified
with the actual intermediate program representation of the underlying compiler imple-
mentation. By defining the concepts of a programming language, compiler and com-
piler correctness in category theoretic terms, I show that every linearly correct compiler
is also valid in the more traditional sense of the word. Further, by presenting a complete
verified translation of the standard C programming language within this framework, I
demonstrate that linear correctness is a highly effective approach to the problem of
compiler verification and that it scales particularly well with the complexity of modern
software development environments.

Acknowledgments

My own interest in programming languages started in 1994, when I chanced to come
by a book titled Compilers—Principles, Techniques and Tools in a local library. I
join countless others in thanking Alfred Aho, Ravi Sethi and Jeffrey Ullman for their
“Dragon Book”.

My curiosity matured and developed under the guidance and support of Manuel
M.T. Chakravarty, who introduced me to Haskell, lambda calculus and, in his role
as my PhD supervisor, eventually instilled in me a passion for theoretical computer
science. I am also indebted to Gabriele Keller for her invaluable support during my
research and an initiation into the craft of formal reasoning, Philip Wadler, who in one
short conversation managed to finally confer on me the elusive understanding of Curry-
Howard isomorphism, my wife Sifa, who contributed countless hours to the thankless
task of proof-reading the final manuscript, and the three anonymous reviewers who
were charged with the mammoth undertaking of scrutinising the finished product and
who have provided me with invaluable feedback on both the substance of my project
and its execution.

Further, I would like to thank the School of Computer Science and Engineering
at the University of New South Wales for providing a wonderful research environment
and the much-needed funding during the first year of my PhD candidature, as well as
Gernot Heiser for arranging a scholarship to support the subsequent two years of my
research and Hewlett-Packard for providing the actual funds.

Last but not least, I would like to thank my father for five years of nagging and the
much needed motivation, without which this work would have never been possible.

To my parents and my wife,
the three people without whom this work,

as this life, would not be possible.

Preface

In the beginning there was FORTRAN. Well, not really; first, there were a bunch
of mathematicians, hackers and college students punching their programs bit by bit
onto pieces of cardboard, patiently, a hole at a time, reminiscent of our ancestors
who, gathered around a bonfire, tried to weave their first set of pants out of a pile
of loose seaweed.

Then came FORTRAN. In a valiant effort to teach a machine a little English,
John Backus, together with a group of his colleagues at IBM, created the FORmulae
TRANslator and the first compiled high-level programming language (or a rapid coding
system as it was called in the IBM literature) was born in the winter months of 1953.

FORTRAN was perhaps the biggest blunder in the history of computer science.
Even though it came into being only a few years after the era of von Neumann machine
was launched in the vaults of EDSAC labs at Cambridge, it already displayed all the
characteristic traits of modern compilers: it was big, slow, complex, buggy, with an
ad hoc design and a poor specification. Backus himself was later to say that they “did
not know what they were doing” and commenced work on improving specification of
programming languages even while he was still completing the original compiler im-
plementation for IBM. In 1958, only a year after the first FORTRAN system was deliv-
ered, he introduced what is arguably the single most important invention in the history
of programming languages: the Backus-Naur Form of context-free grammars. Soon
after, Backus followed with another ground-breaking attempt at improving compiler
design, recognising that the von Neumann programming style of FORTRAN offers a
poor abstraction of the underlying hardware and introducing the world to declarative
programming in 1978.

Yet FORTRAN and the plethora of other imperative languages that followed in its
footsteps were here to stay. The world entered a rat race in which language designers
continue adding insult to the injury by inventing new languages, new tastes and flavours
and new language features, as if forgetting that the whole essence of abstraction is to
reduce the number of distinct entities in the system, thus reducing the overall system
complexity.

A wise man once said that it is futile to argue about taste and computer engineers
definitely seem to have a sweet tooth for imperative programming. As early as 1965,
Peter J. Landin noted that the then quintessential imperative language ALGOL is noth-
ing more than a sugaring on top of Church’s lambda calculus, a beautiful, minimal
declarative system of programming based on the notion of a function abstraction. In
this work, I continue in Landin’s tradition by investigating the use of lambda calculus
for compilation and verification of mainstream imperative languages, in particular the
C programming language prevailing in the modern software industry.

TABLE OF
CONTENTS

Chapter 1 Introduction 14

1.1 History of the Problem 16
1.2 Contributions 23
1.3 Rules of the Game 24
1.4 Roadmap 26

Chapter 2 Easier by Design 30

2.1 Defining Correctness 35
2.2 Accounting for Optimisations 36
2.3 Correctness as a Category 38
2.4 Linear Correctness 40
2.5 Designing a Linear Compiler 46

Chapter 3 Haskell as a Notation 50

3.1 Presenting Algorithms 52
3.2 Type Signatures 54
3.3 Language Syntax 54
3.4 Curry-Howard Isomorphism 56
3.5 Coverage and Termination 57
3.6 Reasoning About Programs 58
3.7 Inductive Proofs 64
3.8 Implementation 65

Chapter 4 Lambda Calculus 68

4.1 Lambda Calculus 70
4.2 Extending the Calculus 78
4.3 A Language with a Distinction 80
4.4 Atoms and Their Formats 82
4.5 State of the Matter 96
4.6 Terms of the Game 103
4.7 Modules and Programs 113

TABLE OF CONTENTS 13

Chapter 5 The C Programming Language 118

5.1 Overview 120
5.2 Notation and Lexical Syntax 122
5.3 Identifiers and Variables 124
5.4 Types 125
5.5 Name Spaces and Scopes 144
5.6 Constants 149
5.7 Expressions 150
5.8 Declarations 190
5.9 Statements 221

5.10 External Definitions 235
5.11 Extended Example 244

Chapter 6 Generating Code 256

6.1 The MMIX Architecture 258
6.2 Semantics of MMIX 262
6.3 Etude on MMIX 268
6.4 Code Generation 297
6.5 Example Translation 318

Chapter 7 Conclusion 324

Appendix A Assumed Notation 334

A.1 Standard Types 334
A.2 Type Combinators 335
A.3 Logical Operations 336
A.4 Relational Operations 337
A.5 Arithmetic Operations 338
A.6 Function Combinators 340
A.7 List Operations 340
A.8 Finite Sets 341
A.9 Finite Maps 343

Appendix B Bibliography 346

Appendix C Implementation of C Compilers 356

Appendix D Definition Index 364

1

INTRODUCTION

CHAPTER 1: INTRODUCTION 15

There’s no sense being exact about something
if you don’t even know what you’re talking about.

— John von Neumann

The idea of using English words to program a computer is due to Grace Hopper. In
1952, Hopper developed FLOW-MATIC [Hopper 57], a system for “automatic pro-
gramming of business applications”, which was later used as a basis for her design of
COBOL, the first programming language standardised by the American National Stan-
dards Institute [ANSI 68]. However, it was not until after IBM released the first optimis-
ing FORTRAN compiler written by John Backus et al. [Backus 54] that the idea gained
a broader public acceptance. The difficulties posed by specification of a fully-featured
programming language were noted early and, in 1959, Backus introduced what is ar-
guably the single most important invention in the history of programming languages:
the Backus-Naur Form of context-free grammars [Backus 59]. Soon, a plethora of
new languages and even more numerous compilers for them followed in Hopper’s and
Backus’s footsteps.

Today, the issues involved in crafting an industrial-strength compiler are well un-
derstood and have been the subject of countless books and research papers. Never-
theless, modern compilers remain some of the most complex pieces of software in
existence. The GNU C compiler suit consists of a mind-boggling 2.1 million lines of
C code. The Open Watcom C/C++ compiler is even more formidable: its depository
contains over 317,000 lines of assembly source on top of almost 2.5 million lines of
C and nearly 2 million lines in auxiliary files. GHC, being written in a much higher
level language, fares better, but still approaches almost 260,000 lines of Haskell with
an additional 120,000 lines of C in its runtime library. Given these figures, it is perhaps
unsurprising that programming errors are commonplace among virtually all compilers
routinely deployed in the industry. Detailed statistics are hard to come by, but some data
is available in the form of bug databases for the GNU C, Borland Pascal and Sun Java
compilers. The GNU C bug database contains over 2800 entries as of May 2007. The
commercial compilers from Borland and Sun are much more respectable at 50 and 90
entries each, although their apparent success is probably influenced more by the lower
number of users reporting faults than the actual reliability of the software.

Of course, most of the programming errors found in commercially deployed com-
pilers pertain to corner cases of their behaviour that are unlikely to be encountered in
practical applications. Nevertheless, they pose a serious issue for designers of safety-
critical systems such as those found in avionics and medical equipment, given that,

16 CHAPTER 1: INTRODUCTION

when correctness is paramount, every tool employed in the course of program construc-
tion must be shown to be sound before reliability of the final product can be ascertained.
Since its original identification in the 1950s, the problem of compiler correctness has
attracted a lot of attention in both the academic and industrial communities and, to this
day, it remains one of the busiest areas of research in the history of computer science.

1.1 History of the Problem
It is perhaps appropriate that the problem of validating a compiler was raised for the
first time by Grace Hopper, the very same person who reported the famous “origi-
nal bug” in 1947 while working on the Mach II computer at Harvard University. In
1952, Hopper published a design of FLOW-MATIC, arguably the first high level pro-
gramming language ever developed [Hopper 57]. When, seven years later, her ideas
were finally adopted in the form of a specification for the COBOL programming lan-
guage [ANSI 68], Hopper instigated and led development of validation procedures for
the newly created compiler, which remained the primary focus of her research through-
out Hopper’s long and successful career.

However, the first actual attempt at a formal verification of a compiler is due to John
McCarthy and James Painter [McCarthy 67]. In their 1967 paper, McCarthy and Painter
analyse a small translator for a language of arithmetic expressions that targets a simple
von Neumann machine with a single accumulator register. They define an abstract
dynamic semantics for their language and present a complete correctness proof for its
compiler. Unfortunately, their approach proved resilient to all attempts at extending
it to any of the more complete software development environments of the time. In
1973, Morris published a seminal paper on compiler correctness [Morris 73] in which
he proposes to capture the essence of the problem in well-defined mathematical terms
by describing a compiler as a function from source programs to their counterparts in
the target language, reducing the proof of its correctness to the proof of commutativity
for the following diagram:

Source Language
L

Target Language
T

Source Meaning
M

Target Meaning
U

compile
γ

decode

δ

φ ψ

source
semantics

target
semantics

FIGURE 1-1 Schematic View of Compiler Correctness

Some authors suggest that the decode arrow should be reversed and labelled encode to
reflect the fact that, ultimately, it is a semantics of the target language that govern the

1.1 HISTORY OF THE PROBLEM 17

actual behaviour of the final executable programs produced by the compiler [Orejas 81].
The choice of that arrow’s direction is a subject of a somewhat vacuous philosophical
argument and, in this work, I chose Morris’s original version of the diagram merely for
its visual similarity to my own design described later in Chapter 2.

This view of compiler correctness, sometimes called the Morris Diagram, prevails
throughout most of the subsequent research in the area of compiler verification. It is,
to a large extent, based on the algebraic treatment of programs and their proofs by
Burstall and Landin [Burstall 69]. Morris argues that the corners of his diagram should
be defined as heterogeneous universal algebras connected through homomorphisms,
effectively introducing the compiler verification community to Scott’s denotational se-
mantics [Scott 71, Scott 82]. A number of follow-up articles have been published
to Morris’s paper, including works by Thatcher [Thatcher 80], Broy et al. [Broy 80],
Cleaveland [Cleaveland 80] and the already-mentioned critique by Orejas [Orejas 81],
all advocating similar approaches to compiler verification. In particular, the later three
works argue for representation of source programs as data structures within the com-
piler, which is further refined by Broy et al. [Broy 87] to formulate denotational seman-
tics of a programming language as a translation into a metalanguage with an established
semantic model.

The approach of Morris et al. exemplifies a very direct extensional treatment of the
problem, in which a compiler implementation and a semantics of the source and target
languages are constructed independently of each other. Armed with these models, the
commutativity proof is then established as a posterior fact about the system’s correct-
ness, often making little or no attempt to mould the compiler’s design to the needs of
formal reasoning. In this work, I call such program specifications extensional, in order
to contrast them with my own constructive or intentional approach to compiler verifica-
tion, under which the judgement of correctness is derived from the actual or expected
behaviour of the system. The term is in no way intended to be derogatory, since exten-
sional specifications tend to possess a kind of mathematical elegance that no intentional
description could ever hope to achieve. Nevertheless, in Chapter 2, I demonstrate that
constructive program specifications resolve certain philosophical problems left unan-
swered by extensional techniques and, accordingly, that intentional definitions should
be preferred in the specific case of compiler construction.

Although, ultimately, no complete compiler for a high level programming lan-
guage in common use has been ever verified purely through an application of exten-
sional techniques, the approach of Morris has had some successes. Among the most
notable achievements are Polak’s work on verification of a compiler for a subset of
Pascal [Polak 81], Despeyroux’s publication of a correctness proof for a translation
of an ML subset [Despeyroux 86] and Chirica and Martin’s systematic treatment of
correctness for language parsers [Chirica 86]. In 1990, Simpson simplified the ap-
proach of Despeyroux, developing a specification in natural semantics of a compiler
from a subset of ML to the SECD machine [Simpson 90]. The method is also stud-

18 CHAPTER 1: INTRODUCTION

ied in detail by da Silva [da Silva 92] who analyses the general issues involved in
proving homomorphisms of translations between source and target languages. More
recently, Börger, Ðurd̄anović and Rosenzweig published a series of papers [Börger 94,
Börger 95a, Börger 95b, Börger 96] in which they describe strict mathematical models
for compilation of Occam and Prolog to the Transputer architecture. Although remark-
ably successful, their work was hugely simplified by the natural characteristics of the
chosen source and target languages and was never applied to a more pragmatic system.

It was realised early that the complexity of compiler correctness proofs would ren-
der the problem unmanageable without at least some degree of automation. The first at-
tempt at an application of automated proof checking to the question of compiler correct-
ness is due to Milner and Weyhauch [Milner 72b] and was carried out as part of some
of the earliest work with the LCF theorem prover [Milner 72a, Milner 73]. The LCF
approach is also scrutinised by Cohn [Cohn 78]. In 1989, Moore presented a detailed
machine-verified system for compiling a high level assembly language Piton on the
FM8502 microprocessor [Moore 89]. Moore’s approach is grounded in a direct com-
mutativity proof of the Morris Diagram using a theorem prover developed specifically
for the purpose. A similar strategy was followed independently by Young, who presents
a fully-verified compiler for a subset of a Pascal-like language Gypsy in Gypsy’s own
framework for combined program development and verification [Young 89]. In 1991,
Curzon described an even more complete treatment of a mechanically-verified trans-
lation from another structured assembly language Vista to the instruction set of the
formally-defined Viper microprocessor [Curzon 91] using a semantic model of Viper
developed by Cohn [Cohn 88, Cohn 89] and the HOL proof assistant designed by Gor-
don [Gordon 88]. In 1992, Hannan and Pfenning applied Morris’s approach directly in
the LF logical framework [Harper 87, Twelf 98], presenting a machine-checked correct-
ness proof for an idealised compiler of a small functional language [Hannan 93]. Most
recently, 2004 saw Blech’s portrayal of a machine-verifiable code generator from the
static single assignment form [Blech 04, Cytron 91] formulated in the Isabelle/HOL
system [Paulson 90, Paulson 05]. Tool support for mechanical verification of com-
piler correctness and scalability of the associated techniques is treated exhaustively in
Stringer-Calvert’s 1998 PhD thesis [Stringer-Calvert 98].

The advent of automated proof checking techniques increased pressures on the
question of model fidelity, or a degree of accuracy with which a model describes
the behaviour of an actual implementation. It is generally accepted that even a most
stringently-verified proof has little practical value if no equally-strict correspondence
can been established between the formal model used in its formulation and that model’s
rendition within an actual compiler implementation. A most immediate solution to this
problem can be obtained by deriving an executable representation of the language trans-
lator mechanically from its abstract specification, a technique that was first explored at
the IBM Research Laboratories in Vienna during 1960s and 1970s as exemplified by
the Vienna Development Method and the associated Vienna Definition Language [Weg-

1.1 HISTORY OF THE PROBLEM 19

ner 72]. The primary goal of the Vienna Project was a complete formal specification
of the PL/1 programming language and an implementation of a corresponding verified
compiler [Bekic 74]. After over 30 years of research, the project was ultimately pro-
nounced a failure, although IBM continues work on verification of a subset of PL/1 to
this day. During an unpublished talk given at the 2003 ETAPS SE-WMT workshop,
Cliff Jones quoted the sheer size of PL/1’s semantic state as the primary reason for
the project’s failure [Jones 03]; Jones’s talk provided a central motivation for my own
research in the area, ultimately leading to the present work.

Notwithstanding the numerous obstacles encountered by the Vienna Project, com-
pilation by program refinement remains a busy area of research. The most ambitious
effort has been undertaken as part of the EU-funded ProCoS project, which deliv-
ered a number of remarkable results [Langmaack 89, Sampaio 90, Langmaack 90]
although ultimately fell short of producing a fully-verified optimising compiler for a
practical high level language. More recently, Okuma and Minamide [Okuma 03] and
independently Berghofer and Strecker [Berghofer 03] presented complete derivations
of an executable compiler from its abstract specification using the Isabelle proof as-
sistant [Paulson 90, Paulson 05]. The later work handles a simplified version of the
popular Java language, thus making an important step towards a practical applica-
tion of the technique. The work on program refinement is summarised by Denney
in his 1998 PhD thesis [Denney 98].

Independently of the primary compiler verification effort, a lot of attention has been
given to the issue of a formal specification of the behaviour of programs itself. While
this problem has far-reaching implications throughout theoretical computer science, it
is particularly pressing in the context of compiler verification, which rests fundamen-
tally on the question of semantic equivalence between two or more syntactically-distinct
renditions of the same computation. The earliest attempt at assigning meanings to pro-
grams is due to Floyd, who proposed the now ubiquitous flowchart notation [Floyd 67].
An axiomatic approach to the problem, in which the system’s behaviour is specified
as a set of pre- and post-conditions, was formulated by Hoare [Hoare 69] and re-
fined by Dijkstra [Dijkstra 76]. Hoare’s approach was subsequently extended into a
fully-featured software development environment in the form of the already-mentioned
Vienna Definition Language (VDL). Typical VDL specifications of a software sys-
tem describe the dynamic behaviours of programs in terms of an appropriate finite
state machine, an approach that is now known under the term of transitional seman-
tics [Clemmensen 84]. An alternative algebraic treatment of the problem was proposed
by Burstall and Landin [Burstall 69] and refined into the notion of denotational se-
mantics by Scott [Scott 71, Scott 82]. Scott depicts the meanings of programs as a set
of mappings between individual language constructs and abstract mathematical objects
with well-defined algebraic properties. This technique was introduced into the context
of compiler verification by the original paper by Morris [Morris 73], who explicitly
rejected earlier transitional treatments of language semantics.

20 CHAPTER 1: INTRODUCTION

Denotational semantics remained the predominant focus of research on the mean-
ings of computational structures throughout the 1970s. The trend was reversed in the
1980s, which saw a revival of more direct models of program execution under a com-
mon brand of operational semantics. Compared with denotational treatments, opera-
tional semantics, which strive to describe the actual evaluation of a given syntactic en-
tity, offer an immediate and highly intuitive correspondence between the formal mean-
ing of a program and its actual behaviour on some computational system. Unfortu-
nately, it turns out that the sparsity of clean algebraic properties in a typical operational
model of a programming language often hinders reasoning about concrete properties
of individual programs, although a neat solution to this problem has been proposed by
Plotkin in the form of structural or small-step operational semantics [Plotkin 81]. By
masquerading the evaluation function as a set of logical judgements about the struc-
ture of the underlying computation, this style of semantics alleviates most of the issues
faced by earlier operational treatments and, in his 1996 PhD thesis, Diehl describes
successfully the use of structural operational models in provably-correct code genera-
tion [Diehl 96]. A compromise between the denotational and structural treatments has
also been proposed by Despeyroux in the form of big-step or natural semantics [De-
speyroux 86] and was accompanied by a correctness proof for a translation of a small
ML subset in the same work. However, the denotational approach is still pursued ac-
tively for its mathematical merits. In 1992, Palsberg published a study into the use of
a denotational semantics in the context of compilation of imperative languages on the
SPARC and HP-PA instruction set architectures [Palsberg 92]. It is also central to my
own work on compiler verification.

All of the above formulations of program semantics share to a varying degree the
problem of a lack of modularity. Since the whole language is formalised in a system
of mutually dependant rules, small changes to its specification often require a complete
rewrite of the entire semantic model. This issue was first addressed successfully by
Moggi, who proposed a categorical approach to denotational semantics based on the
concept of a monad [Moggi 89]. Moggi’s work has been popularised in the functional
language community by Wadler [Wadler 92] and remains the predominant solution
to the problem regardless of the precise style employed in the course of language
formalisation.

The number of different strategies developed for the task of defining a program-
ming language leads naturally to yet another challenge in the area, namely that of es-
tablishing equivalence of computations whose meanings have been expressed using two
or more distinct semantic styles. The issue is, to a large extent, innate in the nature of
compiler verification, especially when a denotational model is applied in the course
of language specification and an operational semantics is deployed to give the system
a degree of computational relevance. Even the most rigorous proponents of the de-
notational paradigm agree that a more concrete axiomatic or operational definition is
generally required to ground the end-product in a computational reality. Conversely,

1.1 HISTORY OF THE PROBLEM 21

even the most devoted advocates of operational semantics are usually bound to apply
some sort of an abstract denotational, axiomatic or algebraic model somewhere in the
course of compiler verification. In both cases, it is critical that an equivalence of the
two formulations is established formally. The issue is usually expressed as the prob-
lem of full abstraction, which was first studied by Milner and Plotkin in the context
of PCF [Milner 77, Plotkin 77] and is treated exhaustively by Mulmuley in his 1985
PhD thesis [Mulmuley 85]. A completely-satisfactory solution to the problem eluded
the research community for almost thirty years and was one of the primary motiva-
tions for a departure from denotational models in the 1980s. In the 1990s, rediscovery
of Lorenzen’s game semantics by Abramsky, Jagadeesan and Melliès lead eventually
to a complete solution of the full abstraction problem [Lorenzen 61, Abramsky 94,
Abramsky 99] and, as a result of that work, denotational treatments are now enjoying
a wave of renewed popularity. Recent advancements in the area of definability and full
abstraction are summarised concisely by Curien [Curien 07].

The task of specifying a formal semantics for a fully-featured programming lan-
guage is itself surprisingly difficult. Most of the publications mentioned above deal
only with idealised languages or small subsets of existing languages. With the notable
exceptions of Standard ML [Milner 90, Milner 91] and Scheme [IEEE 91, Kelsey 98],
no other practical software development system has ever been supplied with a pre-
cise semantic model as part of its official definition. However, as a result of an ex-
tensive research in the area, many other languages have been retrofitted with a for-
mal specification, including Pascal [Hoare 73, Bjørner 82b], Ada [Pedersen 80], AL-
GOL 60 [Bjørner 82a], Smalltalk [Wolczko 87, Blakley 92], Modula-2 [Gurevich 88,
Morris 88], Occam [Gurevich 90, Börger 94, Börger 96], Eiffel [Attali 93], C++ [Wal-
lace 93, Wallace 95], Cobol [Vale 93], Prolog [Börger 95a], Oberon [Kutter 96, Kut-
ter 97], C [Gurevich 93, Cook 94b, Cook 94a, Black 96, Norrish 97, Papaspyrou 98]
and Java [Wallace 97]. To the best of my knowledge, none of that work has been applied
successfully in actual implementation of a complete language translator.

An entirely different approach to compiler verification known as program checking
was pioneered by Blum and Kannan [Blum 89, Blum 95, Wasserman 97]. Rather than
verifying an implementation of a translation system directly, program checking treats
the compiler as a code-generating “black box”, striving instead to establish correctness
of it final product through a machine-guided verification of the actual executable in-
structions produced by the compiler with respect to the supplied specification of the
user’s program. The approach is actively pursued as part of the EU-funded Verifix
project, showing some encouraging results [Goerigk 96, Zimmermann 97, Dold 98,
Gaul 99, Goos 99, Goos 00]. Most recently, Glesner applied program checking to the
problem of verified code generation for embedded systems [Glesner 02, Glesner 03].
The technique exhibits some promising pragmatic properties, although it remains a sub-
ject of a somewhat delicate philosophical debate. In particular, since program checking
validates a specific instance of a compiler’s output rather than the actual translation

22 CHAPTER 1: INTRODUCTION

process, the resulting correctness proofs cannot be generalised to arbitrary compilation
tasks and, accordingly, cannot serve as a witness to a correctness of the underlying
development environment itself.

An interesting and powerful mixture of program checking with the classic strategy
of Morris has been also studied by Blazy, Dargaye and Leroy [Blazy 06]. Under this ap-
proach, a compiler is structured into a number of phases whose individual verification
is either performed directly using standard extensional techniques, or else postponed
until an ensuing phase of compilation, in which case the phase’s output is annotated
automatically with an appropriate witness to its conformance to a specification that is
also produced mechanically by an earlier phase of compilation using the proof carrying
code technique invented by Necula [Necula 97]. A consistency of these annotations is
then verified systematically by a later stage of translation, ensuring that the eventual ex-
ecutable program derived by the compiler remains correct irrespective of any unverified
phases incorporated into its implementation. This approach proves particularly attrac-
tive for handling many popular optimisation algorithms, which often include various
corner cases that are seldom encountered during real-life applications of the compiler,
but still pose a serious hurdle to a formulation of its correctness proof. Blazy, Dargaye
and Leroy successfully apply their mixed verification strategy to a lightly optimising
compiler for a subset of C that generates PowerPC assembly code and is implemented
entirely in the Coq proof assistant [Blazy 06, INRIA 02].

Last but not least, no work on compiler verification would be complete without a
mention of the approach pioneered by Morrisett and Tarditi [Morrisett 95, Tarditi 96,
Morrisett 99, Crary 03]. Forfeiting ambitions of total correctness, this pragmatic tech-
nique strives to obtain a very reliable compiler by utilising a strongly typed intermedi-
ate program representation to render many common implementation errors inexpress-
ible within the system. Originally deployed in the context of ML [Tarditi 96], type-
preserving compilation has since been applied in construction of the highly optimising
GHC compiler for Haskell [Peyton Jones 96, Peyton Jones 98]. Although the technique
stops short of establishing total correctness, it promises to play an important rôle in an
ultimate solution to the compiler verification problem, particularly as the guarantees
provided by the intermediate representation’s type system are also likely to simplify
formulation of proper correctness proofs. However, given that a successful treatment of
a weakly typed language such as C would require a sophisticated dependant type sys-
tem with at least partially automated type inference algorithm that is difficult to foresee
at the present time, I explicitly restrict this work to an untyped program representation,
hoping that it will provide sufficient motivation for future research in the area. In par-
ticular, I envisage that many semantic constraints on the concrete syntax of languages
such as C could be formalised directly through their translation into a calculus with
a suitably expressive dependant type system, effectively expanding the methodology
described in this work from compiler verification to the compiler-based verification of
programs proposed by Hoare [Hoare 03].

1.2 CONTRIBUTIONS 23

1.2 Contributions
The central contribution of this work is a novel approach to software verification de-
scribed in Chapter 2. It exposes a number of philosophical limitations inherent in the
traditional extensional treatments of program correctness and proposes to resolve them
through a tighter epistemic integration of a system’s formal specification with its con-
crete implementation as an executable computer program. In the particular case at hand,
the solution proposed in Chapter 2 describes a new, category-theoretic definition of a
programming language, compiler and its correctness judgement, together with an inno-
vative criteria of linear correctness which, as I prove in that chapter, constitutes a simple
yet sufficient condition that alone guarantees a total correctness of the entire translation
system with respect to a semantic model of the source and target languages embedded
within the compiler’s implementation itself. To the best of my knowledge, neither the
philosophical limitations nor the linear correctness solution to the problem of a verified
compiler design have been investigated prior to the publication of this work.

Besides its philosophical advantages, the main practical benefit of my approach
is the relatively small number of proof obligations required for a satisfactory formal
verification of the entire system. In order to demonstrate effectiveness of linear cor-
rectness, I apply the technique directly to the task of specifying and implementing a
linearly-verified compiler for the C programming language as defined informally in the
ANSI/ISO/IEC Standard 9899:1990 [ANSI 89]. A detailed description of that compiler
occupies Chapters 4, 5 and 6 of this work and constitutes its secondary contribution,
namely a new rigorous specification of that popular programming language, available
as an alternative to prior research on the topic [Gurevich 93, Cook 94b, Cook 94a,
Black 96, Norrish 97, Papaspyrou 98]. Unlike all existing semantic models of C, the
one proposed in this work provides a clear and direct mechanism for the model’s rat-
ification within a practical compiler implementation, as demonstrated by the fact that
the set of formal definitions depicted within Chapters 4 and 5 serves simultaneously
as a partial implementation of such a compiler, which, in Chapter 6 is completed to
provide a comprehensive translation of C programs to the executable instructions of
Knuth’s MMIX architecture [Knuth 05]. Due to space limitations, certain engineer-
ing aspects of the system which have already received extensive treatment in literature
(namely lexical analysis, preprocessing, parsing and optimisations) are omitted from
this work, since their satisfactory treatment would provide an undue distraction from
the more novel aspects of my approach. Notwithstanding these limitations, however, I
believe my project to represent the most complete attempt at a verified translation of C
programs to date.

A final minor contribution of this work is contained in Chapter 3, whereby I demon-
strate how the Haskell programming language could be extended and deployed as a uni-
fied framework for an implementation and formal specification of programs. Although
this approach borrows heavily from the existing proof development environments such
as Coq, Twelf and Ott [INRIA 02, Twelf 98, Sewell 07], it differs from all of these tools

24 CHAPTER 1: INTRODUCTION

in that it focuses development of provably-correct programs around their implementa-
tion rather than the specification effort, by which I hope to make theorem proving more
accessible to the general programming community.

1.3 Rules of the Game
Given the enormity of the task at hand, it is advisable to commence the project with a
clear statement of its goals. In particular, in this work I propose to present a formal spec-
ification of the static and dynamic semantics attributed to the parse trees of translation
units derived in accordance with the BNF grammar published by the ANSI/ISO/IEC
Standard 9899:1990 [ANSI 89], together with a minimal complete translation of such
entities into their relocatable binary representations executable under the MMIX in-
struction set architecture [Knuth 05] and a detailed informal proof of that translation’s
correctness with respect to the included semantic model of the language. The means by
which such parse trees are to be obtained from a concrete textual representation of the
program is explicitly excluded, as are any issues of their operational efficiency, formal-
isation of the underlying system environment, the address space layout, module linking
algorithm and a machine-verifiable rendition of the presented proofs.

The first and most conspicuous of these exclusions, namely my decision to omit
the laborious but generally routine tasks of tokenising, preprocessing and parsing of a
textual program representation, was made purely in order to reduce the length of this
already-voluminous manuscript, since their precise formalisation would require a sig-
nificant expenditure of effort, yet consist predominantly of techniques that are already
well understood and studied extensively in existing literature. Instead, the presented
implementation of a C compiler accepts, as its input, an algebraic data structure iso-
morphic to the program’s parse tree obtained in accordance with the precise syntactic
rules of the BNF grammar prescribed by the C Standard. In Section 5.11, I analyse
an extended example of the compiler’s behaviour using a parse tree that was obtained
by a painstaking manual process before feeding the resulting structure to the actual
Haskell implementation of the translator. Similarly, my compiler also abstracts from
the precise binary representation of the constructed executable programs by rendering
its output as an algebraic data structure, roughly equivalent to a parse tree of a symbolic
relocatable object file produced by a more conventional compiler implementation. The
actual algorithm by which such object files are to be combined or linked into a mono-
lithic executable program image is left unspecified, since it is traditionally considered
to constitute a part of the underlying operating system implementation which is not the
subject of my project. In the same vein, I make no attempt to formalise any of the
standard C libraries defined in the ANSI specification of the language, although all of
its elements, including the cumbersome “va_list”, “setjmp” and “longjmp” constructs,
can be implemented easily within the proposed framework.

In all other respects, the Haskell specification of C presented in this work consti-
tutes a complete compiler for the language, although the algorithm defined in Chapter 6

1.3 RULES OF THE GAME 25

represents a fairly naïve code generator that, in the interest of exposition, makes ab-
solutely no attempt to ensure that the constructed instruction stream represents an
operationally-efficient rendition of the underlying computation. Having said that, the
design naturally admits incorporation of almost arbitrary optimisation algorithms, so
that, in general, future improvements to the compiler should not require reformulation
of the underlying formal model. In similar vein, my specification of the translation pro-
cess admits, without further reification, realisation of meticulous diagnostic messages
within the system, although, in its current form, only the minimal requirements of the
C Standard have been incorporated into the implementation.

On the other hand, to ensure accuracy of the presented specification of C, I pay par-
ticular attention to the careful distinction between well-defined, undefined, unspecified
and implementation-defined aspects of the language in its proposed semantic model. In
order to achieve this stratification, however, it was necessary to compromise reusability
of the code generation algorithm from Chapter 6 between implementations of the com-
piler on different target architectures. Specifically, despite its focus on portability, the
conceptual framework described in this work assumes a significant amount of knowl-
edge about the underlying hardware protocols, rendering it unsuitable for realisation of
a universal program representation in the tradition of UNCOL [Conway 58]. Chapter
7 contains a more detailed discussion of this limitation and an outline of a possible
resolution to the problem.

Following the established mathematical tradition, in this work I assume the view
that the specific task of program verification is, in principle, distinct from a further val-
idation of the underlying proofs in an automated logical framework such as LCF, PVS,
Isabelle/HOL, ACL2, Twelf or Coq [Milner 73, Owre 92, Paulson 05, Kaufmann 00,
Twelf 98, INRIA 02]. Accordingly, while all formal properties of the presented trans-
lation are expressed carefully as symbolic theorems within the logical framework de-
scribed in Chapter 3, the actual proofs of these theorems are generally described in a
detailed, but ultimately informal regime of a natural language akin to the traditional
“pen and paper” ratiocination common in mathematics. Repetitive reasoning is often
summarised in an example of its most important or difficult cases and omitting vari-
ous routine aspects of the underlying justification process whenever such details can be
reasonably assumed to be derivable by a sufficiently sophisticated automated theorem
proving tool. Although I fully recognise the need for a mechanical validation of proofs
and, in Chapter 3, expend some effort on showing how, in principle, it could be achieved
within my logical framework, given the already-overwhelming scope of the project, I
consider it to be of a secondary importance. I leave all further details of such valida-
tion for a future time, trusting that the framework’s grounding on the well-understood
Martin-Löf’s constructive type theory provides sufficient soundness guarantees for the
present purpose and a solid foundation for a future work in this area.

Finally, it should be emphasised that, in this work, I concern myself solely with
verification of the translation process itself and remain oblivious to any particular set

26 CHAPTER 1: INTRODUCTION

of behaviours expected of the constructed executable programs by their authors. Nev-
ertheless, as suggested in Chapter 7, it could be speculated that the proposed language
implementation framework can be naturally extended to promote creation of verifying
compilers that accommodate such reasoning about various dynamic properties of their
output if the underlying intermediate program representation was to be supplemented
with a sufficiently expressive dependant type system.

1.4 Roadmap
In this work, I assume that the reader is already familiar with the C programming
language and, further, possesses a working knowledge of Haskell or a similar non-
strict functional software development environment. An elementary understanding of
the basic principles of theorem proving in a constructive type theory is advantageous
but not necessary. Finally, the definitions and proofs in Section 2.3 rely on some basic
ideas from category theory, although readers without a background in this branch of
mathematics may safely skip that section without impacting on their understanding of
the remaining material.

The entire thesis is structured into seven chapters, together with four appendixes
that contain various auxiliary information intended to be cross-referenced frequently
whenever need arises for clarification of a given topic. In particular, Appendix A out-
lines the list of all Haskell entities that are utilised in this work without a formal def-
inition, most of which are taken directly from the standard libraries of the language.
Appendix B contains a detailed bibliography of the prior publications relevant to the
discussion, while Appendix C captures the implementation-defined behaviour of C pro-
grams on the specific instruction set architecture targeted by their translation in Chapter
6. Finally, Appendix D encompasses an exhaustive index of all Haskell types, data con-
structors, functions and theorems defined within the included compiler implementation.

The actual core of my thesis is organised in such a way as to ensure that every
section relies only on ideas presented earlier in the discussion, so that the following
six chapters should generally be perused in succession, although the reader is free to
vary the degree of attention paid to the three portions of the compiler’s implementation
described in Chapters 4, 5 and 6.

First of all, Chapter 2 examines the epistemic roots of program verification and its
principal notions of knowledge, correctness and proof, exposing the core issues with
the prior approaches to compiler design that are addressed in my work. By reviewing
the standard treatment of compiler validity as a commutativity of the translation sys-
tem [Morris 73], I gradually develop the principle of linear correctness on which my
project is fundamentally based. The final two sections of Chapter 2 analyse the critical
formal properties of this approach with its underlying linear correctness criteria, prove
that criteria’s sufficiency with respect to a category-theoretic definition of compiler cor-
rectness and, finally, outline the practical requirements imposed by the technique on the
design and implementation of a concrete language translation system.

1.4 ROADMAP 27

Before applying the principle of linear correctness in an actual compiler implemen-
tation, I devote Chapter 3 to a detailed overview of the notation and formatting rules
exerted on all Haskell definitions included in this work. These rules are of most interest
to readers already accustomed to Haskell programming, since, in the interest of exposi-
tion, I heavily mould the actual source code of my implementation into a presentation
that is much closer to a traditional notation of mathematical logic than to an ordinary
syntax of the language. In the second half of Chapter 3, I describe a set of semantic
extensions to standard Haskell which enable its use as a representation of rigorous pro-
gram specifications and proofs. Although these extensions are fundamentally based on
a constructive type theory similar to that of the Coq proof assistant [INRIA 02], they
differ substantially from all past attempts at incorporating a dependant type system into
the language and, accordingly, all readers should ensure that they familiarise them-
selves with the proposed logical framework before proceeding to any of the subsequent
material in this thesis.

The next two and a half chapters of this work are devoted entirely to a meticulous
specification of the C programming language and an intermediate representation of C
programs within my compiler. It should be observed that, until this task is completed,
very few statements can be made about formal properties of the presented translation
system, so that Chapters 4 and 5 are, by far and large, preoccupied solely with the def-
initional aspects of the project. Readers interested in the actual compiler correctness
proofs are advised to seek them later in Chapter 6, once the entire formal model and
implementation of the system has been presented. This conspicuous absence of formal
justifications from the bulk of my work should not be taken as a flaw, since it illustrates
one of the most important features of my verification methodology, which explicitly
proposes to shift emphasis from proofs to specification in order to focus the devel-
opment effort on those portions of the entire system which are of a most immediate
consequence to its ultimate users.

Since my approach to compiler design and verification rests crucially on finding an
intermediate program representation that meets the requirements of both the language
specification and the translation process itself, in Chapter 4, I commence the actual
compiler implementation effort with an introduction of the precise variant of lambda
calculus employed in the remainder of this work. After a brief review of the central
ideas behind the pure lambda calculus of Church [Church 40], I define the complete
syntax and an architecturally neutral portion of an algebraic semantics for a purely
functional monadic language Etude that is suitable for use as the intermediate program
representation within a linearly correct C compiler. Without committing to a particular
set of computational facilities supported by a given combination of the instruction set
and hardware designs, Etude provides for a description of programs with a sufficient
degree of detail as to capture precisely the portable fragment of the C programming
language. A thorough familiarity with the syntax and algebraic semantics of Etude is
crucial for comprehension of almost all of the material included in the subsequent two

28 CHAPTER 1: INTRODUCTION

chapters, since the language constitutes the precise formalism in which the meanings
of both C and assembly programs are described within the presented system. However,
the actual operational semantics of Etude and a detailed proof of their conformance
to the generic algebraic specification are only discussed later in Chapter 6, after all
operational details of the language have been assigned a resolution appropriate for the
chosen target architecture.

The core translation of C programs into Etude is the topic of Chapter 5. In or-
der to preserve the distinction between portable and implementation-defined aspects
of the language, all specifications pertaining to the later topic are defined separately
in Appendix C. As already mentioned, Chapter 5 and Appendix C define the precise
semantics of a single translation unit of a C program through its mapping to an ap-
propriate Etude representation of the same computation and include all diagnostics of
inadmissible syntactic entities mandated by the C Standard.

Finally, in Chapter 6, I present both the final translation stage of the resulting Etude
programs into an actual sequence of executable machine instructions and a formal
proof of the linear correctness principle for the compiler, which, as shown earlier
in Chapter 2, is sufficient to establish validity of the entire translation system. The
chapter begins with a brief outline of Knuth’s MMIX architecture [Knuth 05], chosen
as the target of my implementation for its elegance and simplicity of form that goes
a long way to enhance and consolidate presentation of the following material. In
Section 6.2, the meanings of all MMIX instructions are defined by their mapping onto
analogous Etude constructs. Next, Section 6.3 describes the precise incarnation of
Etude on that architecture, complete with its detailed semantic model and a proof of
that model’s conformance to the earlier algebraic specification of the same language in
Chapter 4. Finally, Section 6.4 contains both the actual translation of Etude functions
to MMIX instruction sequences and a proof of the linear correctness principle for the
entire system, formulated as reversibility of that mapping with respect to the translation
semantics of MMIX programs defined in Section 6.2. With that, the goal of developing
a provably correct compiler for the standard C language is finally attained.

Last but not least, Chapter 7 contains some concluding remarks, discussing a
number of benefits and pitfalls inherent in the linear approach to compiler correctness
as applied in my compiler. I also outline future work envisaged in the area and its
possible impact on the more conventional approaches to the problem of a verified
program translation.

2

EASIER BY
DESIGN

CHAPTER 2: EASIER BY DESIGN 31

There are two ways of constructing software.
One way is to make it so simple that there are

obviously no deficiencies. The other is to make it so
complicated that there are no obvious deficiencies.

— C.A.R. Hoare

Before we can attempt to verify a compiler, it is useful to consider precisely what is
meant by the term “verification.” Fundamentally, verification of a program intends to
demonstrate, establish or otherwise expose its correctness. It does not purpose to make
a program correct (since, by definition, no incorrect program can be verified!) but rather
to convince ourselves of its suitability for a particular job. That is, once we have veri-
fied a program, we know that it behaves as expected. In short, software verification is
an epistemic task. It would be entirely bogus for us to ignore this philosophical aspect
of the problem, since, unlike other areas of logic and applied mathematics, it proposes
to bridge the gulf between the realms of physical entities and abstract thought in a way
that no other application of logic has ever attempted before. The subject of verification
is an actual tactile entity, the physical behaviour of some computer hardware, while the
tools available for gaining knowledge about that behaviour are fundamentally abstract
in nature. When building a bridge, an engineer performs some experiments to establish
the mathematical principles underlying behaviours of the physical objects he or she is
dealing with, such as the properties of steel and the laws of gravity. He or she uses
these principles to devise an abstract model of the bridge being constructed in a form
of a sequence of mathematical symbols and, from then on, the remainder of the verifi-
cation process is performed entirely within that mathematical framework. In contrast,
computer software is a sequence of symbols and it is the symbols themselves that man-
ifest concrete physical behaviour through the magic of digital hardware. Somehow, in
the task of program verification, we must connect that physical behaviour with the rules
of logic governing the symbols from which the program has been constructed.

Since the times of Aristotle, epistemologists have defined knowledge as a justified
true belief. The truth aspect of knowledge can be hardly debated, so it is the problems
of justification and belief that must be resolved in the course of program verification.
This is also where the gulf between the physical and the abstract emerges in the con-
text of computer science. To the users of a program, the statement of belief is simple:
they want to know that their system is correct, in that the response they anticipate from
the machine matches its actual behaviour exhibited during the program’s execution.
Justification materialises as some evidence that supports this belief. However, to a logi-
cian, belief takes a rather different form, namely that of a statement which models the

32 CHAPTER 2: EASIER BY DESIGN

system’s behaviour, a logical judgement in Martin-Löf’s terminology, whose justifica-
tion is represented by a proof showing the judgement to hold [Martin-Löf 96]. There
are, therefore, two kinds of knowledge involved in program verification: on one hand,
knowledge of correctness (i.e., knowledge that the expected and actual behaviours of
the program are in some sense equivalent) and, on the other, that the judgement of
this behaviour is provable. These two notions are fundamentally different and must be
reconciled somewhere in the course of verification.

Perhaps the best way to explain this difference is to paraphrase the standard philo-
sophical puzzle originally proposed by Gettier [Gettier 63]. Suppose you are driving
through a beautiful Scottish countryside. You see a sheep in the field and exclaim “Oh,
now I know that there are sheep in Scotland!”. However, imagine that, unknown to you,
two further facts hold: (1) the animal you saw was actually a dog dressed up as a sheep
by a cunning farmer intent to fool your senses and (2), a flock of sheep is grazing hap-
pily on a neighbouring paddock behind a hill, ignorant of your philosophical torment.
Do you really know that there are sheep in Scotland? Your belief in the existence of
Scottish sheep is certainly true. It is also justified by strong sensory evidence (you saw
one!) and also proven by the unseen sheep behind the hill. But, somehow, your be-
lief misses a crucial causal connection with that proof and, indeed, most people would
agree that you do not possess knowledge of the fact in question.

This problem has revitalised epistemology of the twentieth century, but it is, by no
means, restricted to sensory evidence. In 1637, Pierre de Fermat wrote his now-famous
note on the margin of Arithmetica, claiming to have discovered a “truly marvellous
proof” of what is now known as “Fermat’s Last Theorem”. Today, we are almost
certain that Fermat’s proof was incorrect, although, eventually, a correct one has been
discovered by Taylor and Wiles in 1994 [Aczel 96]. Accordingly, Fermat could not have
known his theorem, despite holding a firm belief in it, which was both true, justified by
the knowledge available to him and proven 358 years later.

Suppose that your customer, one Mr. Smith, has only ever had an experience with
a perverted computer in which all available memory is utilised for the buffer of a sound
hardware. One day Mr. Smith goes to collage and learns about the C programming
language, firmly believing that all assignment operations make an audible noise. His
evidence for this (false) belief is Smith’s past experience with computers. Although
the evidence is unsound, it is precisely of the kind on which typical unskilled users
of a computer program rely when forming their often exasperating expectations and
understanding of a computer system. One day, Mr. Smith comes to you, a consultant,
charging you with the task of formally verifying the following program “Ding”:

int main () {
volatile int *x = (int *)0xC00157AF;
*x = 440;

}

Smith asks you to prove the proposition that “Ding makes noise”, which he believes

CHAPTER 2: EASIER BY DESIGN 33

to be true by the virtue of his mistaken understanding of the C assignment operation,
regardless of the specific behaviour of Ding itself. Nevertheless, this statement is in
fact true since, by sheer coincidence, the memory location C00157AF16 happens to
represent an appropriate register of the system’s sound card. Indeed, after months of
sweat-raising toil, you develop a rigorous Coq model of the computer system, its sound
hardware and arrive at a machine-verifiable proof that Ding does, in fact, play a sound
of precisely 440Hz. But, given that Mr. Smith is not trained to read Coq models, does
he really know the statement to be true? Somehow, his justification misses an essential
connection with the reasons for the statement’s validity. Every educator of computer
science is painfully aware of the grief that such misconceptions about the nature of
computers can bring into their lives.

Accordingly, when verifying a computer program, we are faced with three separate
tasks: stating the judgement of correctness (known as program specification), stating
the evidence (known as proof) and, finally, establishing a correspondence between the
proof of a judgement and the knowledge of correctness. It is only after all three of these
objectives have been accomplished that we can claim real knowledge of the correctness
of the program under scrutiny.

Epistemologically, we can assume one of two general approaches to justification,
known as externalism and internalism, respectively. Under externalist approaches, jus-
tification is obtained through a reference to some external, usually empirical evidence
which, in the context of computer science, implies measurements, testing and, in gen-
eral, some form of an observation of the program’s behaviour. Since we are seeking
absolute certainty rather than degrees of confidence, it is doubtful whether observation
alone will ever deliver a fully satisfactory justification of the belief in the correctness of
a program. On the other hand, internalism seeks to formulate precisely that justification
which constitutes the very reason for correctness. This is exactly the notion of proof
as understood in constructive mathematics and, as such, it is that approach that I single
out for investigation in the present work.

But how can we reconcile internalism with the user’s informal expectations of the
program’s behaviour? Epistemology gives three competing answers to this question:
contextualism, which essentially states that some doubts are not real doubts (for exam-
ple, doubts about the meaning of the C assignment operator should not even be raised),
foundationalism, which claims that beliefs such as the notion of assignment don’t need
justification and, finally, coherentism, which simply requires the complete system in-
clusive of both the belief and its justification to be coherent, in the loose understanding
of the term as “collectively making sense.” Both contextualism and foundationalism
are somewhat unsatisfactory in the context of program verification, since contextual-
ism requires an unlikely consensus on the scope of intuition and even the unchallenged
concepts of foundationalism must be defined formally and connected to reality. It is
therefore the general path of coherentism that I pursue from now on.

In a way, coherentism merges the notions of belief and judgement, since both must

34 CHAPTER 2: EASIER BY DESIGN

form a part of a single coherent system of knowledge. Let us assume an existence of
a cognitive framework in which all of specification, implementation and verification of
the program are performed. In this context, the notion of a framework is somewhat
broader than the standard application of the term in mathematical logic: it goes beyond
the mere concept of a notation used to express judgements and proofs, to also include
some degree of a mathematical intuition about the meaning and purpose behind these
judgements. For example, under the typical approach to compiler design, different
phases of a compiler verification process are described in different notations such as
BNF grammars in parsing, some programming language in implementation and some
expression of a constructive logic in a formulation of its correctness proofs. Neverthe-
less, all of these notations can happily coexist in the mind of the reader and, in that,
they can be viewed as a single coherent system of knowledge.

In order to verify a computer program in a coherentist way, one must not only
devise a formal specification of its properties, prove these properties to hold and com-
municate both the specification and the proofs to the user, but also somehow ensure
that, in the user’s mind, the specification remains coherent with his or her expectations
regarding the program’s behaviour. This is by far the most difficult task in formal verifi-
cation, in light of which the challenges of proofs pale in comparison. For example, if a
user believes a C assignment to make an audible sound, then even a most stringent spec-
ification of the system will leave him or her unsatisfied with the actual behaviour, since
his or her interpretation of symbols differs fundamentally from that of their author. To
counter this, a coherentist approach to software verification must strive not only for a
constructive proof, but also a constructive judgement of the correctness criteria itself.
Such judgement must specify not only the core properties required for the correctness
of a program, but also establish a causal connection between these properties and the
program’s actual behaviour. Somehow, it must inject into the consciousness of the user
the very reasons for a validity of the program.

Perhaps the only viable way of achieving this is goal is to redefine the correctness
criteria itself in terms of the system’s operational behaviour instead of its core algebraic
properties. In other words, rather than proclaiming the program to have properties P,
Q and R or to produce output X, Y and Z, the correctness criteria should state that,
if one requires A, B and C, then the program will do the job. This is no easy feat,
but, as I hope to show in this work, it can be achieved in the context of a compiler
design and ensure that the user’s understanding of the program’s behaviour is derived
constructively from the correctness criteria and its proof. In a sense, I propose to treat
the three tasks of specification, implementation and proof as inseparable, so that the
compiler implementation is not only the program, but also its specification and the very
reason for the system’s validity. Only by fusing the three phases of the design can a
usable verified compiler be delivered. I hope to show that the resulting single phase
is not only more useful than the sum of three individual efforts, but also simpler in its
execution. In effect, I purpose to make compiler verification easier by design.

2.1 DEFINING CORRECTNESS 35

2.1 Defining Correctness
Consider again the schematic view of compiler correctness proposed by Morris and
depicted again in Figure 2-1 [Morris 73]. It describes a verified compiler as a com-
position of four structures that represent the source and target languages together with
their corresponding “meanings”. The structures are connected using four transforma-
tion functions, whose collective commutativity represents the correctness criteria of the
entire system:

Source Language
L

Target Language
T

Source Meaning
M

Target Meaning
U

compile
γ

decode

δ

φ ψ

source
semantics

target
semantics

FIGURE 2-1 Morris Diagram

Observe that something important happened here: whereas an implementer of a com-
piler is chiefly concerned with the task of translating every input program into its tar-
get representation, Morris chose a static view of the system in which the notion of an
individual program itself is not even mentioned. In fact, the program being compiled
remains the same throughout the translation process and only its representation changes
as the compiler’s job progresses.

What sort of structures are, then, placed in the corners of a Morris diagram? Morris
himself suggests them to be universal algebras, but, generally, they are simply some
formalisms (logics, if you like) for manipulating symbols. In the top row we place two
concrete programming languages such as C and the MMIX instruction set. These are
languages in the formal sense of the word: each describes a set of words or sentences,
defined, typically very precisely, using formalisms such as BNF grammars. Every
element of such a set is simply a finite sequence of discrete symbols such as characters,
lexical tokens or bit values. While, in the context of a compiler, most sentences are
intended to somehow represent computable functions, this fact is, for now, incidental
to the discussion. In particular, the two top-row algebras from Figure 2-1 do not assign
any deeper meaning to the individual sentences (or programs) of their corresponding
languages. Such meanings can be only obtained through the mappings φ and ψ ,
which provide a pairing of these programs with their respective semantic interpretations
described by the algebras M and U from the bottom row of the diagram. Accordingly,
under an alternative interpretation of the compiler structure proposed by Morris, it is the
columns rather than the corners of his diagrams that form the algebras of the system, so

36 CHAPTER 2: EASIER BY DESIGN

that each of the translation and verification components in a compiler design constitutes
one single, rather than two individual homomorphisms.

The correctness criteria depicted in Figure 2-1 can be paraphrased into a definition
of a valid compiler as one that, for every sentence s in the input language L, produces
some sentence t in the target language T , such that there exist translations φ , ψ and
δ for which φ(s) and ψ(δ (t)) are equivalent. Observe that the equivalence relation
is formulated outside of the described system and belongs to some larger meta-logical
framework that is itself not scrutinised by the diagram. More so, the correctness criteria
does not specify what t itself is supposed to look like. I call such definitions of correct-
ness extensional, in order to contrast them with intentional or constructive definitions
that are formulated in terms of the actual behaviour of the software being verified. In
the case at hand, this means that a constructive judgement of a compiler’s correctness
should itself describe the relation between the input and output of the program, pre-
sumably by defining the actual operational process of translating an arbitrary source
sentence s into a specific target sentence t. The properties of a system and its output
should be derived from the judgement of its correctness instead of being merely scru-
tinised by that judgement. On the contrary, under a typical extensional approach, the
relation between a program’s input and output is a subject, rather than the object of
correctness, which is itself formulated as an abstract property of the translation system
instead of its operational behaviour or intended purpose. Necessarily, such extensional
definitions resort to auxiliary concepts akin to the φ , ψ and δ transitions in the Morris
diagram, whose only purpose is to provide means of formalising some set of desired
system properties. In general, these auxiliary definitions are of little consequence to the
actual user of the program, resulting in a notion of correctness that is chronically prone
to epistemic paradoxes akin to the Gettier problem mentioned earlier in this chapter.

I will now describe three successive refinements to the above conventional view of
compiler correctness, arriving, by the end of this chapter, at a constructive notion of
linear correctness, which yields particularly well to the coherentist understanding of
knowledge and its justification.

2.2 Accounting for Optimisations
Let us now consider the structure of a typical industrial-strength compiler. Rather than
performing the translation of a source program into the target language directly as sug-
gested by the Morris Diagram from Figure 2-1, most compilers first transform their
input into an intermediate representation or, more often, a series of intermediate rep-
resentations tailored to the needs of the individual optimising program transformation
algorithms. By superimposing the structure of such a compiler onto the Morris Dia-
gram, we obtain the schematic view of compiler correctness portrayed in Figure 2-2.

The two double arrows in that figure are intended to represent the multitude of in-
termediate representations and optimising transformations present in a typical compiler.
As in the original approach of Morris, compiler correctness rests on commutativity of

2.2 ACCOUNTING FOR OPTIMISATIONS 37

source
semantics

Source
Language

L

Intermediate
Languages

I
translate

τ

Target
Language

T
compile

γ

Source
Meaning

M

Intermediate
Meanings

N
decode source

σ

Target
Meaning

U
decode target

δ

optimising
transformations

ω

φ ψ

target
semantics

intermediate
semantics

ρ

FIGURE 2-2 Schematic View of Correctness of an Optimising Compiler

the seven transitions in the diagram. Although the ρ transitions in the middle of the
diagram are not, strictly speaking, necessary, they are included for modularity and the
pleasant symmetry that they introduce into the view. In particular, one desirable prop-
erty of this design is its clean separation of the compiler’s structure into the front-end,
concerned solely with translation of the source language L, and the back-end, charged
with the task of generating the actual target representation of the program. Such sep-
aration is common in the industry and making it explicit in the very definition of cor-
rectness seems to be a positive step towards improving the user’s understanding of the
system’s behaviour.

Observe that establishment of the program equivalence relations σ and δ in the
bottom row of Figure 2-2 is performed independently and in parallel to the actual com-
pilation processes τ and γ . Further, note that the semantic translations φ , ρ and ψ

are orthogonal to σ , δ , τ and γ . Nevertheless, all of these translations are clearly in-
terrelated and, accordingly, the approach exhibits a significant amount of redundancy,
whose primary purpose is to preserve an independence of definition of the three pro-
gram representations involved. However, in view of the fact that, in real life, few prac-
tical programming languages and hardware architectures are given a formal semantics
as part of their definition, this separation of meanings is largely spurious and could be
eliminated altogether without disturbing the basic principles of the system, by folding
the semantic languages M, N and U into a single formalism. Schematically, this results
in a simplified view of compiler correctness presented in Figure 2-3.

This folded compiler design significantly reduces the effort required for a formal
verification of the system by eliminating the need for establishing an equivalence be-
tween the three distinct formulations of the program’s meaning. Yet it is unquestionably
as sound as the original view of Morris. One could still interpret the three semantic

38 CHAPTER 2: EASIER BY DESIGN

source
semantics

Source
Language

L

Intermediate
Languages

I
translate

τ

Target
Language

T
compile

γ

Program
Meaning

M

optimising
transformations

ω

φ ψ

target
semantics

intermediate
semantics

ρ

FIGURE 2-3 Correctness for a Compiler with a Unified Representation of Meaning

translations independently, with an equivalence of their meanings following directly
from reflexivity of all equivalence relations. The simplification does not, however,
come without a cost, which we are to pay in a reduced flexibility of a formulation of
the semantic translations. The lack of “transformation buffers” between the meanings
of the three languages requires that all semantic translations in the system produce
structurally-identical meanings for the program irrespective of its actual representa-
tion. Effectively, the folded view of correctness requires all semantic translations to be
strongly-normalising, which, in practice, can make it difficult to apply the approach to
concurrent and otherwise non-deterministic systems. This issue is treated in some detail
in Chapter 7, although, in general, this work assumes such limitations to be acceptable
and does not attempt to alleviate them at the present time.

2.3 Correctness as a Category

Every design considered so far has been essentially extensional, in that it examines
some crucial property of the translation system instead of defining the actual means by
which that property is to be attained in an implementation. In particular, it describes the
compiler’s structure without a reference to those aspects of the system which are of the
most immediate interest to its users, namely the properties of programs manipulated
by the compiler. To alleviate this problem, let us reformulate the notion of compiler
correctness in the language of category theory. In the following discussion, I reserve
the term function exclusively for total (or injective) relations between objects. I use the
notation “f :X Û Y” to represent a morphism from X to Y , “id” for the identity func-
tion, “idX” for the identity morphism of X, “�” for the standard function composition
combinator and “�” to depict the more general case of morphism composition.

2.3 CORRECTNESS AS A CATEGORY 39

First, let us formalise the notion of a programming language as a category whose
morphisms assign meanings to the sentences of some formal language:

DEFINITION: (Programming Language) Let M be the set of meanings and properties
assigned to programs and let A be the set of all well-formed sentences in some formal
language under consideration. Let µ be a function from A to M and idX be the identity
over an arbitrary set X. A programming language is a triple written as LhA, M, µi,
which forms a category consisting of every morphism of the form µa :a Û µ(a), where
a 2 A, together with the required identities ida :a Û a and idµ(a) :µ(a) Û µ(a). For
every a 2 A, the set of objects of the category includes the sentence object a and the
meaning object of the form µ(a). When the choice of M and µ is clear from the context,
the programming language LhA, M, µi will be written simply as LA.

We can now use this category-theoretical notion of a programming language to
formalise the meaning of a compiler as a morphism between a pair of such categories:

DEFINITION: (Compiler) Let LhA, M, µi and LhB, N, νi be two programming lan-
guages. Let τ be a function from A to B and η be a function from M to N. Then a com-
piler is a functor C hτ , ηi :LA Û LB, such that, for every a 2 A, C hτ , ηi(a) = τ(a),
C hτ , ηi(µ(a)) = η(µ(a)) and C hτ , ηi(µa : a Û µ(a)) = ντ(a) :τ(a) Û η(µ(a)).
When the choice of τ and η are clear, the compiler C hτ , ηi from the source language
A to its target B will be written simply as C AB.

DEFINITION: (Compiler Correctness) Let C AB :LA Û LB be a compiler. Let LC be
some subcategory of LB. Then C AB is correct if and only if it establishes an equivalence
between the categories LA and LC.

In other words, a compiler is deemed correct if and only if it maps every source pro-
gram to some target representation and, further, establishes a corresponding mapping
between these programs’ respective meanings. In this, the above definition provides
a category theoretic description of a picture similar to the original Morris diagram,
which should not come as a surprise given the essentially homomorphic nature of func-
tors. The main difference between the two notions of correctness is the fact that my
proposal relies on a semantic encoding in the style of Orejas [Orejas 81] rather than
the usual decoding of target meanings into their source counterparts. This results in a
very broad notion of correctness, which admits many trivial cases of valid compilers
that are not particularly useful to anyone. For example, it can be easily shown that a
compiler Cb which translates all programs in A to a single program b in B is considered
correct by the above criterion. However, while admitting such illogical and potentially-
harmful constructions, the above definition also provides a clear means of their identifi-
cation. In particular, an equivalence between categories is itself a structure represented
by a functor (in this case, the compiler itself), so that a categorically-defined compiler
correctness describes the precise manner in which a pair of programming languages
are rendered equivalent, rather than merely asserting that equivalence without further
scrutiny. Accordingly, while Cb may be in some sense correct, it is deemed correct only

40 CHAPTER 2: EASIER BY DESIGN

in a way that should, in practice, be so obviously illogical as to readily emphasise its
inadequacy to all potential users of the system. At the very least, any users actually
interested in a formal analysis of programs should be able to identify such pathologi-
cal compilers while applying the underlying semantic framework to the verification of
their own programs translated within the system. This is precisely the kind of an inten-
tional formulation of the correctness criteria that is necessary for a coherentist view of
program correctness, and its topical confusion of internal consistency for correctness
seems to be the necessary price extracted for the many benefits discussed earlier.

2.4 Linear Correctness
Finally, let us consider how the above notion of correctness can be utilised in a prag-
matic task of constructing a verified compiler. First, we need to introduce the notion of
a linear compiler, which is visualised in Figure 2-4 and captured formally as follows:

DEFINITION: (Linear Compiler) Let L, I and T be three formal languages (intuitively,
these represent the source, intermediate and target languages of the compiler, respec-
tively.) Let φ be a function from L to I, ψ be a function from I to T and ψ̂ be a function
from T to I. Let M be the set of meanings and ρ be the operational semantics of I defined
as a function from I to M. Let L I be the programming language LhI, M, ρi. Further,
let LL and LT be the programming languages LhL, M, ρ � φi and LhT , M, ρ � ψ̂i, re-
spectively. Then, a linear compiler is a functor of the form C hψ � φ , idi :LL Û LT .

In other words, a linear compiler is formed from a triple of the programming lan-
guages LL, L I and LT which share the common set of meanings M and whose semantics
µ are connected through the functions ρ � φ , ρ and ρ � ψ̂ , respectively. Figure 2-4 por-
trays the design of such a compiler visually in terms of transitions between the various
program representations in the system. Observe that this diagram can be derived from
Figure 2-3 by merging the semantic language M with an appropriately chosen interme-
diate representation I. In other words, the denotational semantics of both the source and
target languages are defined in terms of a single semantic language, which is also used
as an intermediate representation in the compiler. Accordingly, the semantic trans-
lations φ and ψ are folded with the program translations τ and γ , respectively. The
combined ψ–γ arrow becomes double-headed; taken in the forward direction, it rep-
resents the compilation process, while in the reverse direction it defines a denotational
semantics of the target language.

Since this approach essentially projects the multi-dimensional transitions of the
original Morris Diagram onto a single axis of translation, I call the correctness criteria
mandated by this design linear correctness. Formally:

DEFINITION: (Linear Correctness or L.C.) Given the three languages LhL, M, ρ � φi,
LhI, M, ρi and LhT , M, ρ � ψ̂i, a linear compiler represented by a functor of the
form C hψ � φ , idi :LhL, M, ρ � φiÛ LhT , M, ρ � ψ̂i) is said to be linearly correct
whenever ρ � ψ̂ �ψ = ρ .

2.4 LINEAR CORRECTNESS 41

Source
Language

L

Intermediate
Languages

I
source semantics

φ

Target
Language

T
target semantics

ψ/ψ

Program
Meaning

M

optimising
transformations

ω

operational
semantics

ρ

ˆ

FIGURE 2-4 Schematic View of Linear Compiler Correctness

Intuitively, linear correctness requires that the result of translating every program
i 2 I into T and back again delivers a new program with the same operational semantics
as i. It turns out that linear correctness alone is sufficient to establish an absolute
correctness of a linear compiler, which gives it a central rôle in the effective formulation
of the correctness criteria for the compiler design described in this work.

THEOREM 2-1: (Linearly-Correct Compiler) If a functor C hψ � φ , idi :LL Û LT is
linearly correct, then it also represents a correct compiler.
Without getting unduly distracted by the nature of category equivalence, recall that,
in order to establish a functor F :A Û B as an equivalence between the categories A
and B, it is sufficient to show that F is full, faithful and essentially surjective. By
definition, a functor F is said to be full if, for every morphism g :b1 Û b2 2 B, there
exists a morphism f :a1 Û a2 2 A, such that F(a1) = b1, F(a2) = b2 and F(f) = g.
Further, a functor F :A Û B is deemed faithful if, for every f :a1 Û a2 2 A, the mor-
phism F(f) :F(a1) Û F(a2) 2 B. A functor F :A Û B is essentially surjective if, for ev-
ery b 2 B, there exists a 2 A, such that b and F(a) are isomorphic. Finally, two objects
x, y 2 C are isomorphic if there exist morphisms f :x Û y and g :y Û x in C, such that
f � g = idy and g � f = idx.

Before we attempt to prove theorem 2-1, let us summarise the facts we know so far
about the source language LL, the target language LU and the compiler functor C LU:

1 The objects of LhL, M, ρ � φi consist of sentences ` and meanings (ρ � φ)(`), for
all ` 2 L. By definition of function composition “�”, every such meaning can be
also expressed in the form ρ(φ(`)).

2 The morphisms of LhL, M, ρ � φi consists of identities and morphisms of the form
µ` :`Û (ρ � φ)(`), for every ` 2 L, which we can also write as µ` :`Û ρ(φ(`)).

42 CHAPTER 2: EASIER BY DESIGN

3 The objects of LhU, M, ρ � ψ̂i consist of the sentences ψ(φ(`)) and all meanings
(ρ � ψ̂)(ψ(φ(`))), for every ` 2 L. By definition of function composition, every
such meaning can be also expressed in the form ρ(ψ̂(ψ(φ(`)))).

4 The morphisms of LhU, M, ρ � ψ̂i consist of identities and morphisms of the
form νu :u Û (ρ � ψ̂)(u), for every sentence u 2 U. Given that u must have the
form ψ(φ(`)) for some ` 2 L, these can be rephrased as morphisms of the form
νψ(φ(`)) :ψ(φ(`)) Û (ρ � ψ̂)(ψ(φ(`))) or νψ(φ(`)) :ψ(φ(`)) Û ρ(ψ̂(ψ(φ(`)))).

5 The functor C hψ � φ , idi induces the following mapping for every ` 2 L:
C LU(`) = (ψ � φ)(`) = ψ(φ(`))
C LU((ρ � φ)(`)) = id((ρ � φ)(`)) = ρ(φ(`))
C LU(µ` :`Û (ρ � φ)(`)) = ν (ψ � φ)(`) :(ψ � φ)(`) Û id((ρ � φ)(a))

= νψ(φ(`)) :ψ(φ(`)) Û ρ(φ(`))

6 Finally, by the linear correctness criteria, we have ρ � ψ̂ �ψ = ρ .

The above facts are obtained directly from the earlier definitions of a programming
language and a compiler. We can now prove theorem 2-1 by showing that a linearly
correct compiler forms a full, faithful and essentially surjective functor between the
source language and some subcategory of the target language, namely, the language
LhU, M, ρ � ψ̂i, where U is a subset of T formed by restricting the sentences of T to
the range of ψ � φ , i.e., to the sentences of the form ψ(φ(`)) for every ` 2 L. Intuitively,
U contains precisely those sentence forms which the compiler can actually generate.

LEMMA 2-2: (Fullness) Let C LU be a linearly correct compiler. Then, for ev-
ery morphism g :b1 Û b2 2 LU, there exists a morphism f :a1 Û a2 2 LL, such that
C LU(a1) = b1, C LU(a2) = b2 and C LU(f) = g.

PROOF: By definition of LU, every morphism g :b1 Û b2 must have the following form:
g = νψ(φ(`)) :ψ(φ(`)) Û ρ(ψ̂(ψ(φ(`))))

so that:
b1 = ψ(φ(`))
b2 = ρ(ψ̂(ψ(φ(`))))

for some ` 2 L. Take a1 = `, a2 = (ρ � φ)(`) and f = µ` :`Û (ρ � φ)(`), all of which,
by definition, exist in LL. Then:

C LU(a1) = C LU(`)
= ψ(φ(`))
= b1

C LU(a2) = C LU((ρ � φ)(`))
= ρ(φ(`))
= (ρ � ψ̂ � ψ)(φ(`)) (by L.C.)
= ρ(ψ̂(ψ(φ(`))))
= b2

C LU(f) = C LU(µ` :`Û (ρ � φ)(`))
= νψ(φ(`)) :ψ(φ(`)) Û ρ(φ(`))

= νψ(φ(`)) :ψ(φ(`)) Û ρ(ψ̂(ψ(φ(`))))) (by L.C.)
= g

2.4 LINEAR CORRECTNESS 43

LEMMA 2-3: (Faithfulness) Let C LU be a linearly correct compiler. Then, for every
f :a1 Û a2 2 LL, there exists a morphism g :b1 Û b2 2 LU, such that C LU(a1) = b1,
C LU(a2) = b2 and C LU(f) = g.

PROOF: Intuitively, faithfulness of C LU follows trivially from its fulness and the fact
there there is at most one morphism between any given pair of objects in LL. In
particular, by definition of LL, f , a1 and a2 must have the following forms:

f = µ` :`Û ρ(φ(`))
a1 = `
a2 = ρ(φ(`))

for some ` 2 L. Take b1 = ψ(φ(`)), b2 = ρ(φ(`)) and g = νψ(φ(`)) :b1 Û b2. Observe
that b1 exists in LU by definition. Further, observe that b2 = ρ(ψ̂(ψ(φ(`)))), since, by
L.C., ρ � ψ̂ �ψ = ρ . Accordingly, b2 and g also exist in LU.

LEMMA 2-4: (Essential Surjectivity of Sentences) For every sentence u 2 U, there
exists ` 2 L, such that u0 = C LU(`) 2 U and such that there exist morphisms f :u Û u0

and g :u0 Û u in LU, such that f � g = idu0 and g � f = idu.

PROOF: By definition of LU, every u has the form ψ(φ(`0)), for some `0 2 L. Take
` = `0, so that:

u0 = C LU(`0)
= ψ(φ(`0))
= ψ(φ(`))
= u

Since u and u0 represent the same object, an isomorphism between them can be estab-
lished trivially by the identity morphism f = g = idu.

LEMMA 2-5: (Essential Surjectivity of Meanings) For every meaning n 2 LU, there
exists a meaning m 2 LL, such that n0 = C LU(m) 2 LU and such that there exist mor-
phisms f :n Û n0 and g :n0 Û n in LU, such that f � g = idn0 and g � f = idn.

PROOF: By definition of LU, every meaning n 2 LU has the form ρ(ψ̂(ψ(φ(`)))), for
some ` 2 L. Take m = (ρ � φ)(`), which exists in LL by definition. Then:

n0 = C LU((ρ � φ)(`))
= ρ(φ(`))
= ρ(ψ̂(ψ(φ(`)))) (by L.C.)
= n

Once again, the isomorphism of n and n0 can then be established trivially using the
identity morphisms f = g = idu.

The remaining cases pertain to the identity morphisms of LL and LU, which are
trivially surjective and injective by definition of the identity function “id”. Accordingly,
the four Lemmas 2-2, 2-3, 2-4 and 2-5 establish the sufficient criteria for the correctness
of a linearly correct compiler.

The reader will doubtless notice the embarrassing simplicity of the above proofs:
all three lemmas follow directly from our earlier assumptions about the natures of the

44 CHAPTER 2: EASIER BY DESIGN

two languages LL and LU, together with the all-important linear correctness criteria,
which is used solely to ensure a consistent mapping of meaning assignments (or mor-
phisms) across the two program representations. In particular, it is perhaps remarkable
that the compiler functor plays essentially no part in the proof of its own correctness: in
effect, the entire translation system is inferred from the various pieces of the underlying
language definitions. All of the relevant properties of the functor are instead embed-
ded within the structure of the underlying programming language categories, so that a
correctness of the entire system can be secured simply by ensuring that the particular
source and target languages adhere to that structure. By emphasising scrutiny of the ac-
tual language definitions over that of their compiler’s implementation details, I hope to
improve relevance of the resulting correctness proof to the ultimate users of the system.

Observe that the correctness of a linear compiler does not rely on commutativity of
every transition in the system. The only criteria required of such a design is the identity
ρ � ψ̂ �ψ = ρ , which alone suffices to guarantee sensibility of the entire translation
process. In this, linear correctness proves to be a very powerful tool for tackling
compiler verification, since the vast majority of proofs called for by more traditional
approaches are completely incidental in the above design. However, since it relies on a
definition of the correctness judgement as a category equivalence, every such compiler
must be accompanied by some form of a formal description that captures the structure
of its correctness. In this work, that structure is depicted by the actual implementation
of the three functions φ , ψ̂ and ρ , all of which constitute a part of the compiler’s
specification, although the reader should observe that there is no need to expose the
more elaborate implementation details of the ψ and ω translations to the user.

In a linearly correct compiler, both the source and target languages are defined
through translations into a common universal algebra of computable functions, formed
from the intermediate representation I and its semantics ρ . Each of these translations
is depicted by a total function from sentences of the formal language L or T to the
sentences of I and is formulated in a suitable declarative programming language such
as Haskell, so that an actual compiler implementation can be extracted directly from
its specification simply by executing the actual declarative representations of these two
functions (or, if you prefer, a formal specification may be extracted from the implemen-
tation through a suitable typesetting of the compiler’s source code as done in this work.)
Critically to the design, no other formal interpretation of LL and LT is admitted into
the system, rendering the two translations φ and ψ correct by definition. Observe that
the intermediate representation I must not only satisfy the specific requirements of all
possible optimisation algorithms ω , but also constitute a formal calculus of computable
functions. Most importantly for a coherentist view of knowledge, this calculus must be
well known and commonly accepted as an authoritative description of computation, so
that the semantics of any language presented via a translation into that calculus can be
communicated without a danger of linguistic ambiguity. In other words, the calculus I
must satisfy not only the mathematical requirements of a universal algebra, but also the

2.4 LINEAR CORRECTNESS 45

philosophical requirements of a language in the Wittgensteinian sense of the word.
The algebraic properties of I are defined through the semantics ρ that, intuitively,

ground the entire system in an external definition of the program’s meaning M. In or-
der to reduce the axiomatic base of the compiler to a bare minimum, it is advisable
to define these semantics in operational terms since, as argued by Abramsky [Abram-
sky 93], it is precisely such an operational interpretation that renders an algebra into
a programming language. In practice, it is also wise to equip I with an alternative al-
gebraic formulation of its meaning, given that such formulations are often invaluable
to the commutativity proofs of any optimising transformations ω incorporated into the
system. However, to avoid the gruesome complexities of a full abstraction proof, we
can easily restrict the scope of these algebraic semantics to an appropriate subset of I,
as is done, for example, in Chapter 4, where the algebraic formulation is utilised to cap-
ture the portable fragment of Etude, while the full operational specification is reserved
for the representation’s rendition on a particular instruction set architecture.

Observe that, save for the optimising transformations ω , the three translations of
a linearly correct compiler form a tree rather than a cyclic graph. This eliminates the
need for administrative commutativity proofs traditionally assigned a central rôle in
compiler verification. What, then, makes a linearly correct compiler correct? The
simple answer is, for better or worse: itself. A compiler does not implement a language,
but rather defines one. This notion is not, by itself, new, since it has often been
stated that a compiler provides the ultimate semantics of a language. However, in a
traditional compiler design such implementation semantics are obscured by a plethora
of details stemming from the idiosyncrasies of a particular implementation environment
and no compiler, up to now, could provide an effective definition of the translation
process. The central contribution of this work is its utilisation of a suitable intermediate
representation to eliminate such idiosyncrasies to the point where the implementation is
arguably as readable as any other formal specification of a programming language can
ever hope to be. The following three chapters contain a complete design and execution
of such a linearly correct compiler for the standard C language, thus providing a solid
empirical evidence for a scalability and practically of the technique.

It should also be noted that linear correctness does not guard against every conceiv-
able programming error. In particular, a systematic specification error such as a con-
fusion of the addition and subtraction instructions may not only pass the correctness
criteria, but, more seriously, establish itself within the implementation itself. Unfor-
tunately, errors of this nature cannot be eliminated completely under any approach to
software verification, as long as no formal specification exists for the underlying com-
putational hardware. Fortunately, the constructive nature of linear correctness ensures
that every such error is readily exposed in the formal description of the system and
therefore less likely to remain unnoticed. Nevertheless, in the most stringent applica-
tion of the linear correctness principle, it is essential that the hardware implementation
be verified within the same coherent system of knowledge as a compiler that targets its

46 CHAPTER 2: EASIER BY DESIGN

instruction set architecture. Although the thorny issue of hardware validity is beyond
the scope of the present work, it should be observed that the translations ψ̂ and ρ pro-
vide a natural means of expressing and justifying the appropriate correctness criteria
in the same cognitive framework as that utilised in the remainder of a linearly correct
compiler design.

It is perhaps natural to ask if further simplifications to a compiler verification
methodology can be applied beyond those already enacted in Figure 2-4. Readers
proposing to do so are forewarned that all prior attempts to merge the intermediate rep-
resentation I with either of the source or target languages have proven unfeasible in the
past. Due to common syntactic restrictions, most source languages are not rich enough
to express the output of many common transformation algorithms. Conversely, past
researchers have had only limited success in applying such program optimisations di-
rectly to realistic target languages. Accordingly, a distinction between the program rep-
resentations L, I and T seems to be intrinsic to a design of a practical optimising com-
piler. Further, as already discussed, a separation of the concrete representation I from
its meaning M seems to be necessary, lest the price for the simplification extracted by
Gödel’s incompleteness theorem in terms of consistency proves prohibitive [Gödel 31,
Gödel 40]. Finally, it should be clear from the formal outline of the design presented in
this chapter, that a division of the compiler into a front and back end simplifies not only
its implementation but also a formal verification of that implementation, since it elim-
inates most proof obligations that pertain to the input representation of programs and
effectively detaches the task of verifying a translation system from a detailed semantic
study of its source language.

2.5 Designing a Linear Compiler
In order to obtain an efficient implementation of a practical linearly correct compiler,
its design should generally proceed in a number of discrete steps as follows:

1 First, the syntax I and the operational semantics ρ are defined for an intermediate
program representation utilised by the compiler. In Chapter 4, I present a purely
functional monadic language Etude that is suitable for this purpose and, in Chapter
6, I complete Etude’s specification with a presentation of its operational semantics
ρ , defined as a reduction of its terms into their various beta normal forms, which
are taken to represent the meanings of programs M in the system.

2 A mapping φ of all well-defined sentences in the source language L to the sentences
of I is established. This definition is taken as the authoritative source of informa-
tion about the programming language LL accepted by the compiler and users are
expected to utilise it directly in any verification efforts of programs developed in
LL, ensuring that both the correctness criteria and the user’s understanding of the
compiler’s behaviour are derived constructively from the actual implementation of
the translation system. In Chapter 5, I present such a mapping for the standard C

2.5 DESIGNING A LINEAR COMPILER 47

programming language [ANSI 89], which is translated into the calculus from Chap-
ter 4. A totality and termination properties of this mapping is a direct consequence
of its inductive formulation over the structure of C programs.

3 A correspondence between the implementation and the formal translation φ is
established. In Chapter 5, this is achieved by formulating the translation itself in
the Haskell programming language, so that the required correspondence is derived
implicitly by the Haskell compiler.

4 Optionally, if another well known semantic interpretation of L exists (such as the
standard operational semantics of ML), then full abstraction may be established
between the denotational semantics defined through the above mapping and that
auxiliary semantic interpretation. However, since no formal semantics of C have
been accepted as an authoritative definition of the language, this step is not required
for a verification of the C compiler presented in this work.

5 For every optimising program transformation ω implemented by the compiler,
commutativity of that transformation with respect to the operational semantics ρ

is established. Observe that the transformations themselves need not be included
in the compiler’s definition and, due to space and time constraints, the present work
refrains from divulging details of any such optimisation algorithms.

6 A total mapping ψ of all well-defined sentences in the target language T to the
sentences of I is formulated and made available to the user as an authoritative
specification of the computational system targeted by the compiler. In Section 6.2,
I present such a mapping between the machine instructions of Knuth’s MMIX
architecture [Knuth 05] and the corresponding Etude functions from Chapter 4.

7 A mapping ψ̂ of every well-defined sentence in the intermediate representation
I to an appropriate target language construct from T is implemented as part of
the compiler’s back end. A complete example of a typical execution of such
a mapping is given in Section 6.4 for a translation of Etude programs into their
MMIX counterparts.

8 Finally, the linear correctness criteria must be established for the ρ , ψ and ψ̂

functions. In Section 6.4, this is achieved directly within my logical framework
described in Chapter 3. Once again, a totality of ψ follows immediately from its
inductive formulation over the structure of input programs.

The most striking feature of the linear correctness approach to compiler verification
is the relatively low number of proof obligations required for establishment of the
implementation’s correctness. After perusing the following four chapters, the reader
will doubtless notice that the bulk of this work consists of definitions instead of a formal
reasoning about these definitions’ properties. This feature of linear correctness is innate
to the design and constitutes one of its main achievements. The weight of the formal
work is shifted from proof obligations to a precise specification of the system, since it
is that specification rather than the proofs that are examined by the product’s eventual

48 CHAPTER 2: EASIER BY DESIGN

users. Only a limited number of crucial properties must be established to guarantee
correctness and every one of these properties is carefully scrutinised in the remainder
of this work. Accordingly, the translation of C programs into their MMIX counterparts
defined in the following chapters constitutes a fully-verified compiler for the complete
C programming language, whose correctness is formulated not in terms of some critical
property of the translation system such as its commutativity with respect to a set of
auxiliary translations, but, rather, as an expression of the fact that the implementation
is consistent with the formal mapping of the source and target languages to the Etude
representation of computable functions defined in Chapter 4. As long as the users
are satisfied that this mapping represents the desired processing intended for their C
program, they can rest assured that the compiler will perform the required job with an
absolute precision, a belief that is not only provable, but also justifiable by the users’
own expectations of the program’s behaviour. Neither the Gettier problem nor any other
issues of model fidelity can ever arise within this cognitive framework, demonstrating
conclusively that the linear correctness approach provides a compelling constructive
statement of the system’s correctness.

3

HASKELL
AS A NOTATION

CHAPTER 3: HASKELL AS A NOTATION 51

The most essential gift for a good writer
is a built-in, shock-proof, shit detector. This is

the writer’s radar and all great writers have had it.

— Ernest Hemingway

Philosophy and mathematics have been always interlocked in a tight love-and-hate
relationship, but never more so than in the fall of the eighteenth century, when Frege
proposed to ground all of mathematics in a strict formalism of Cantor’s set theory.
After Russell’s discovery of the famous paradox in Frege’s work, the two philosophers
entered into a long and never quite resolved metaphysical debate on the nature of
mathematics, that culminated in Russell’s publication of Principia Mathematica and
eventually caused Frege to abandon his own involvement with the project. However,
despite their stated differences, both men shared the same fundamental desire to furnish
mathematical reasoning with an absolute rigour and certainty.

These ideas were perhaps best expressed by Hilbert, who believed that the only
completely satisfactory way of achieving Frege’s and Russell’s objectives is to base
mathematics on manipulation of such entities that have no meanings in themselves and
therefore do not require a further scrutiny. For Hilbert, these entities were represented
by symbols: marks on paper whose only significance is derived from their visually dis-
tinguishable features. Of course, Gödel has since demonstrated that Hilbert’s objective
is not achievable in its full generality. In 1930, he published the fabled proof of the
incompleteness theorem [Gödel 31, Gödel 40], which, however, did not prevent others
from electing the very incompleteness of mathematics as a subject of logical scrutiny
on its own, eventually giving rise to the new discipline of meta-mathematics.

In the age of powerful digital computers, meta-mathematics has been given a breath
of new life in the form of capable theorem specification and proof development environ-
ments such as LCF, PVS, Isabelle/HOL, ACL2, Twelf and Coq [Milner 73, Owre 92,
Paulson 05, Kaufmann 00, Twelf 98, INRIA 02]. Most recently, Sewell et al. designed
the Ott system tailored explicitly towards specification of programming languages and
their semantics [Sewell 07]. Nevertheless, in this work I chose to present all formal
definitions directly in Haskell [Peyton Jones 03], in order to focus the discussion on
a compiler’s implementation rather than a specification of its source language. Since
Haskell, by itself, is incapable of expressing any but the simplest forms of logical rea-
soning, most formal properties described in this work are depicted in a set of language
extensions described in Section 3.6 below.

52 CHAPTER 3: HASKELL AS A NOTATION

3.1 Presenting Algorithms
Much of the formal specification of C defined in this work is expressed in the form
of a concrete compiler for the language, executed in some seven thousand lines of lit-
erate Haskell source code and formatted into the current presentation using Knuth’s
TEX typesetting system [Peyton Jones 03, Knuth 86]. Nevertheless, since the resulting
model is likely to be of most interest to C, rather than Haskell programmers, detailed
familiarity with Haskell should not be a prerequisite for its thorough understanding.
To this end, an elaborate typesetting has been applied to the exposition of all Haskell
definitions appearing in this work, relying on a highly sophisticated lambdaTEX macro
package written by myself and available from http://www.jantar.org/lambdaTeX/. The
primary purpose of lambdaTEX is to detach the abstract semantic content of these defi-
nitions from their concrete rendition in a syntax of a chosen implementation language,
so that they may be absorbed by any reader possessing an adequate understanding of
the relevant mathematical ideas, with only a minimal exposition to the practice of func-
tional programming per se. Nevertheless, in the following section, I also attempt to
accommodate those readers who are already accustomed to the Haskell school of ex-
pression, by describing the precise relation between the actual source code and its often-
opaque rendition in my work.

Since the present document has been constructed directly from a set of literate
Haskell source files, processed in TeX without recourse to any external typesetting
tools or code generators, it already constitutes a well-typed source code of an actual C
compiler, which may be itself assembled into an executable program under any stan-
dard Haskell development environment. The implementation relies solely on the plain
Haskell 98 language [Peyton Jones 03] amended only with a few common extensions
and a handful of popular set manipulation libraries, whose precise usage is described
exhaustively in Appendix A. The lambdaTEX package achieves the elaborate formatting
of all programs presented in this work by applying a small number of carefully designed
typesetting rules to the stream of Haskell tokens from their literate source files.

In particular, an appearance of all Haskell names is detached from their source
representation by allowing individual Haskell lexemes to be typeset as arbitrary visual
symbols, usually chosen to resemble common mathematical notation as closely as
possible within the constraints of the language. For example, the Haskell operators “+”,
“�”, “==”, “/=” and “\” are presented as “+”, “�”, “=”, “6=” and “λ”, respectively. The
typesetting can be also applied to infix uses of a variable or a constructor. For example,
“`compositeType`” appears as “t” in the presentation. Some symbols may be even
typeset as a white space. For example, following the standard mathematical practice,
the multiplication operator “�” is often omitted when computing the product of two
visually-atomic entities, so that the Haskell expression “4 � x” may appear in this work
as “4x”, avoiding any possible confusion by ensuring that the intended meaning is clear
from the context of such a construct. Usually, symbols used to represent entities with
discrete Haskell names are chosen to be visually distinctive; however, this requirement

http://www.jantar.org/lambdaTeX/

3.1 PRESENTING ALGORITHMS 53

is sometimes relaxed whenever the context in which the entity is applied renders any
uncertainty of meaning unlikely.

Most Haskell variables are given short descriptive names that are typeset in an
italic font such as in “x”, “var” or “α”, while Haskell keywords and names of functions
are presented in the standard text font such as “log” or “max”. An italic font is also
used to describe types corresponding to the non-terminal elements of programming
language grammars, in line with the conventions adopted by the C Standard [ANSI 89].
For example, the “AbstractDeclaratorT” data type defined in Chapter 5 is typeset as
“abstract-declarator”. Terminal elements of the C grammar are presented in bold
monospaced font such as that used in “while” and “*=”. Terminal elements of the
Etude syntax defined in Chapter 4 are typeset in a sans-serif font to distinguish them
visually from similarly named elements of the Haskell and C grammars; for example
the “LET” term constructor of Etude is presented uniformly as “LET”.

For conciseness, variables are often assigned short names indicative of their type.
For example, variables representing Etude terms have names derived from the Greek
letter “τ”, such as “τ”, “τ 0” or “τ7”, while C expressions are most often represented
by variables such as “e”, “e0” or “e1”. The names of list and set-valued variables are
either represented by a single italicised upper-case letter such as “A”, or else decorated
with the macron accent, so that a variable bound to a list or set of Etude terms would
be generally written as “τ̄”. Similarly, variables that represent functions of the Haskell
type “a ! a” are decorated with a ring, so that a function from Etude terms to other
term structures would be generally bound to a name such as “τ̊”.

Following the time-honoured mathematical tradition, certain Haskell operators
such as “^” and “^^” can be also typeset by modifying an appearance of their operands.
In particular, the Haskell expressions “a^n” and “a^^n” are always presented using the
familiar mathematical notation “an”, while “ceiling x” and “listToSet [1, 2, 3]” materi-
alise as “dxe” and “f1, 2, 3g”, respectively. This facility of lambdaTEX proves partic-
ularly useful for exposition of parse trees. For example, in the actual Haskell source
code, a C statement of the form “if (e) s1 else s2” appears simply as the construct
“IfElseStatement e s1 s2”.

A feature of Haskell’s Hindley-Milner type system that has traditionally hindered
its applications as a mathematical notation is the lack of support for untagged union
types, which frequently results in a significant visual clutter throughout typical Haskell
renditions of a formal algorithm. For example, the fact that the set of postfix expres-
sions in C includes all primary expressions and that the set of primary expressions
also incorporates all constants is captured in Chapter 5 by a data type “PostfixExpres-
sionT” with a constructor “PrimaryExpression PrimaryExpressionT” and a data type
“PrimaryExpressionT” with a constructor “Constant ConstantT”. In order to use a
given constant c in the context of a postfix expression, it is necessary to wrap it in a pair
of constructors “PrimaryExpression (Constant c)”. Such deeply nested terms are com-
mon and can easily obscure the often-simple idea behind the program. For example,

54 CHAPTER 3: HASKELL AS A NOTATION

at one point in Chapter 5, a Haskell program contains the term “ConstantExpression
(LogicalOrExpression (LogicalAndExpression (InclusiveOrExpression (ExclusiveOr-
Expression (AndExpression (EqualityExpression (RelationalExpression (ShiftExpres-
sion (AdditiveExpression (MultiplicativeExpression (CastExpression (UnaryExpres-
sion (PostfixExpression (PrimaryExpression (Constant (IntegerConstant integer_con-
stant1))))))))))))))))”, which simply depicts a pattern used to match an arbitrary C ex-
pression against an integer constant. In the presentation, typesetting of such coercion
constructors is always suppressed together with the following pair of parentheses, re-
sulting in the above expression being formatted simply as “integer-constant1”. Care has
been taken to ensure that such suppression does not introduce visual ambiguities into
the work. In particular, the reader should observe that every Haskell variable whose
name is formatted identically to that of some data type defined earlier (possibly dec-
orated with various subscripts and diacritical marks) or is written as a single letter
such as e or τ that was explicitly proclaimed to range over a particular type earlier in
the discussion, always represents a value of that type. Accordingly, whenever such
name is applied in any other context, it should be assumed that an appropriate hid-
den coercion constructor has been inserted into the actual Haskell program, so that
“integer-constant1” is always bound to a value of type “IntegerConstantT”, while ek

and τk can be safely assumed to depict, respectively, C expressions and Etude terms
regardless of the apparent context in which they appear.

3.2 Type Signatures
For the benefit of readers already fluent in Haskell, every function declaration presented
in this work is always accompanied by its precise type signature, intended as an addi-
tional clarification of the construct’s intuitive purpose. In order to accommodate the
visual formatting of functions such as “^”, their declarations are given a special treat-
ment by lambdaTEX, whereby the placement of each argument within a fully-saturated
application of a Haskell function is marked in its type signature by the symbol “.”. For
example, the declaration of the “^” operator is presented as:

[[.]][[.]] :: (num T)) T ! integer ! T

Observe that the cardinality of the function is equal to the number of “.” symbols in its
signature and that each of these symbols corresponds to one type in the list to the right
of the “::” sign, with the final entry in that list representing the type of the function’s
fully-saturated application. In all cases, the “.” symbols are introduced implicitly into
the presentation by the lambdaTEX macro package and do not require any extensions to
the standard Haskell grammar.

3.3 Language Syntax
The concrete syntax of all programming languages presented in this work is defined
using an appropriate collection of Haskell data types. For example, the hypothetical

3.3 LANGUAGE SYNTAX 55

BNF grammar fragment “expr ::= expr + atom expr � atom” would be represented in
Haskell as the data type “data ExprT = ExprT `Plus̀ AtomT | ExprT `Minus̀ AtomT”
and typeset in the following manner:

expr :
expr + atom
expr � atom

Observe that the “data” keyword and the “|” operator are suppressed in such definitions,
while the “=” symbol materialises simply as “:”. Similarly, the “type” and “newtype”
keywords are always suppressed to reduce the amount of incidental implementation de-
tail in the presentation. Although the parse trees formed from such data constructors
are represented by ordinary Haskell expressions, for the sake of exposition their occur-
rences within general Haskell terms are usually surrounded by the semantic brackets
“[[]]”. Further, in order to establish a visual separation between the syntactic and se-
mantic aspects of a given linguistic construct, every appearance of a non-trivial Haskell
expression within a parse tree is itself surrounded by the same semantic brackets, as
in “[[if (e) [[f s1]] else s2]]”, wherein the subexpression “f s1” constitutes a single
operand of the “IfElseStatement” data constructor mentioned earlier. The “[[]]” brack-
ets have no operational significance beyond their grouping effect and, in the actual
Haskell implementation, materialise simply as a pair of ordinary parentheses symbols
“()”. Whenever a given syntactic entity has a context-sensitive interpretation, a suit-
able formal representation of that context is also inserted into the semantic brackets,
separating it from the entity by the “.” symbol as in “DV[[Σ . e1 * e2]]”.

In many ways, the lambdaTEX approach shares many features with Ott [Sewell 07],
which also strives to provide a holistic environment for development of language se-
mantics. However, unlike Ott, it is more lightweight and therefore applicable to a
broader class of problems beyond compiler design. Most importantly, it allows us to
focus the discussion on a system’s implementation instead of its specification, which,
as argued in Chapter 2, is essential for the compiler verification methodology applied
in this work.

I consider the above approach to the typesetting of programs a minor but very
effective contribution in the area of formal program verification, since it facilitates a
clear and precise definition of formal concepts without obscuring their essential math-
ematical meaning with idiosyncrasies of a given software development environment,
while retaining an ability to verify many aspects of the presentation mechanically us-
ing standard type checking tools. In particular, the GHC Haskell compiler has proven
invaluable during writing of this thesis, by eliminating many embarrassing errors that
have frequently crept into the work in the course of its development. To the best of
my knowledge, this level of clarity in presentation of executable programs has been
never attempted in the past, not even in the major feats of literate programming such as
Donald Knuth’s Computers and Typesetting series [Knuth 84].

56 CHAPTER 3: HASKELL AS A NOTATION

3.4 Curry-Howard Isomorphism
As many readers may be already aware, a strongly typed language such as Haskell
represents more than just a convenient program development environment. Its type
system provides a powerful means for a precise expression of many program properties
that are statically verified as part of the compilation process. In effect, such languages
incorporate a restricted form of theorem proving capabilities.

The correspondence between type systems and proofs has been recognised since
the 1950s and is generally known as the Curry-Haward isomorphism [Howard 69]. Un-
der this isomorphism, every type can be viewed variously as a theorem, proposition or
logical judgement, whose proof is always represented by a term of that type. For ex-
ample, in Haskell (whose type system implements a second-order propositional logic)
the following type declarations introduce a pair of two new theorems into the program:

data FACT1 = PROOF1

data FACT2 = PROOF2

Formally, the data types FACT1 and FACT2 represent judgements in Martin-Löf’s con-
structive type theory [Martin-Löf 71, Martin-Löf 83]. Intuitively, it is convenient to
think of such propositions as claims of an existence of a program that exhibits the prop-
erty being named. Accordingly, the data constructors PROOF1 and PROOF2 constitute
proofs in the sense of providing examples of a program for which the corresponding
properties FACT1 and FACT2 hold.

Although such primitive judgements are rarely of any significant interest, under
the Curry-Howard isomorphism more complex reasoning can be encoded within the
type system and proven by an example of a program exhibiting the property being
judged. For example, a conjunction of n theorems is depicted by a product type or a
polymorphic n-ary type constructor, so that the proposition “P ^ Q” can be captured
by the following type definition:

data FACT3 P Q = PROOF3 P Q

where PROOF3 corresponds directly the the ^-introduction rule of classical logic. For
example, the judgement “FACT1 ^ FACT2” is justified by the following program:

THEOREM1 :: FACT3 FACT1 FACT2

THEOREM1 = PROOF3 PROOF1 PROOF2

Similarly, a disjunction “P _ Q” can be described by the following Haskell type:

data FACT4 = PROOF4A A PROOF4B B

and the judgement of “FACT1 _ FACT2” is supported by either of the two proof expres-
sions “PROOF4A PROOF1” or “PROOF4B PROOF2”.

Perhaps the most interesting aspect of the Curry-Howard isomorphism pertains to
its representation of logical implications, which correspond precisely to the notion of a
function type. For example, the proposition “if FACT1 then FACT4” may be expressed as

3.5 COVERAGE AND TERMINATION 57

the Haskell type “FACT1 ! FACT4”. To prove such conditional proposition, it is merely
necessary to construct a function that, given an arbitrary FACT1, delivers a FACT4:

THEOREM2 :: FACT1 ! FACT4

THEOREM2 p = PROOF4A p

in which the operand p may be viewed as a hypothetical proof of the antecedent FACT1.
These three primitive judgement forms can be used to capture and justify many

interesting theorems of the first-order propositional logic. For example, transitivity of
implication can be expressed as the following theorem:

THEOREM3 :: (P ! Q) ! (Q ! R) ! (P ! R)

which we can read as “if P implies Q and Q implies R, then P implies R”. This theorem
can be easily established in Haskell using the following definition:

THEOREM3 p1 p2 p3 = p2 (p1 p3)

Observe that THEOREM3 is parameterised on two operands p1 and p2 which represent
proofs of the respective assumptions “P implies Q” and “Q implies R”. It is not difficult
to convince oneself that the resulting function does, indeed, have the required type and
every Haskell compiler will happily vouch for the fact. An astute reader will also notice
that the resulting proof term describes the standard function composition operator “�”
defined in the Haskell prelude.

3.5 Coverage and Termination
In standard Haskell, every type is always populated with at least one value “?”, gen-
erally introduced into the program using a non-terminating function, a non-exhaustive
pattern match or an explicit “error” construct. For example, the existing type checker
makes it easy to prove an arbitrary judgement P using the following recursive construct:

PARADOX :: P
PARADOX = PARADOX

Since such proofs make it impossible to distinguish between proper theorems and fal-
lacies, they are said to be inconsistent and are commonly considered to be meaningless
as far as their logical interpretation is concerned. Accordingly, all Haskell functions
used as proofs of judgements must be total and provably terminating. Unfortunately,
these requirements are generally unenforceable within the constraints of the standard
Haskell language and, to this end, I propose to extend its type system with a new kind
of property types, such that every expression of a property type always represents a
total and provably-terminating function. In the actual source code, this kind may be
rendered as the symbol “��”, although, for aesthetic reasons, it is typeset as “V” in this
presentation, in order to distinguish it from the usual kind of ordinary Haskell types “]”.
Although the scope of the current project does not permit me to develop the complete
theory of the resulting logical framework, in the remainder of this chapter I describe its
syntax and semantics with sufficient detail as to facilitate the usage of property types in

58 CHAPTER 3: HASKELL AS A NOTATION

a convenient “pen and paper” notation for definition of all formal theorems and proofs
appearing throughout the balance of this work. In particular, I do not concern myself
with the precise means by which the totality and termination of proofs (or property-
valued expressions) is to be established by the Haskell compiler. In practice, every the-
orem included in this work is justified by a simple inductive argument over the structure
of the corresponding Haskell definitions, so that its termination follows directly from
the underlying structural induction principle and its totality can be ascertained with the
well-known coverage checking techniques of Coq and Twelf [Shürmann 03], raising a
very real possibility of a future Haskell implementation that would permit a mechanical
verification of these proofs.

Under the proposed language extension, new properties are introduced into the
program using the syntax of generalised abstract data types akin to those described by
Peyton-Jones et al. [Peyton Jones 06]. In general, all such definitions must be accompa-
nied by a complete type signature in order to aid the unfortunate type checker charged
with their verification. For example, before accepting the PROOF1, PROOF2, PROOF3,
PROOF4A and PROOF4B data constructors as sound proofs of their corresponding theo-
rems, we should rewrite the earlier definitions of FACT1, FACT2, FACT3 and FACT4 as
follows:

data FACT1 :: V where
PROOF1 :: FACT1

data FACT2 :: V where
PROOF2 :: FACT2

data FACT3 :: V ! V ! V where
PROOF3 :: P ! Q ! FACT3 P Q

data FACT4 :: V ! V ! V where
PROOF4A :: P ! FACT4 P Q
PROOF4B :: Q ! FACT4 P Q

By the end of this chapter, it should be obvious that property types can be modelled
naturally within the well-known calculus of co-inductive constructions [Coquand 86]
and therefore enjoy the soundness and strong confluence perquisites of that established
logical framework.

3.6 Reasoning About Programs
While the above examples go a long way towards exposing the deeply-rooted logical
interpretation of the Hindley-Milner type system, at the end of the day, it is the dynamic
properties of algorithms rendered as Haskell functions that are of a most immediate in-
terest in our program verification project. Although, in principle, it should be possible
to encode many such properties using various established extensions to the Haskell lan-
guage such as functional dependencies and associated types [Jones 00, Chakravarty 03],
the syntax of these extensions is rather arcane and not particularly well suited for speci-

3.6 REASONING ABOUT PROGRAMS 59

fication of complex theorems such as those that we are likely to encounter during formal
verification of our compiler.

The main challenge faced by all polymorphic type systems (whether dependant or
not) is the unification of types with syntactically-distinct structures. While good solu-
tions to this problem have been developed for the standard Hindley-Milner design and
even for the more complex dependently-typed calculi of Coq and Twelf [Milner 77,
Coquand 86, Harper 87], all of these algorithms break down when faced with types pa-
rameterised on diverging expressions, since they rely crucially on structural comparison
of certain normal term forms that may fail to exist in the presence of infinite reduction
sequences. Traditionally, term comparisons are formulated as an implicit notion of def-
initional equality, which is typically integrated directly into the system’s type checking
mechanism. However, in principle, it should be possible to expose this definitional
equality to the programmer as a specialised property of the “V” kind, whose individual
axioms (or property constructors) are provided by the plethora of function declarations
included in the program. For example, the well-known definition of the boolean “||”
operator (typeset in this work as “_”) is given in the standard Haskell prelude as:

[[.]] _ [[.]] :: bool ! bool ! bool

[[true]] _ [[b]] = true
[[false]] _ [[b]] = b
[[?]] _ [[b]] = ? (pseudo-code for exposition only)

observing that the final “? _ b” case in this definition is completely determined by
the semantics of the earlier two cases and is made explicit above only as an aid to the
following discussion. In particular, the declaration of “_” can be seen as introducing
three definitional equality rules of the form “[[true _ b = true]]”, “[[false _ b = b]]” and
“[[? _ b = ?]]”. If we admit all such terms as property types, together with a set of suit-
able substitution-like primitives for their manipulation, then the programmer should, in
principle, be able to describe arbitrarily-complex unification proofs explicitly within a
program’s source code, relieving the type checker from asserting equality between any
but the simplest structurally-aligned dependant type parameters.

Under the proposed extension to the Haskell type system, definitional equality is
taken to epitomise a polymorphic property type of the kind “8 T ::]) T ! T ! V”
depicted by the same equality sign “=” as that used within ordinary Haskell function
declarations, so that the syntax “[[x = y]]” represents the definitional equality property
of the two appropriately-typed Haskell terms x and y. A reader should observe that
this treatment requires support for dependant property types that are parameterised on
arbitrary Haskell expressions, with a pair of such properties considered to be equivalent
whenever these expressions have identical structures after suitable renaming of their
bound variables. For convenience, some limited amount of restricted term reduction
may be admitted into the system, provided that only provably-terminating evaluation
sequences are ever considered by the type checker.

60 CHAPTER 3: HASKELL AS A NOTATION

The primitive constructors of the definitional equality property are provided by
the declaration cases present in the actual Haskell program and, within other property
proofs, are represented simply by the keyword “DEFN”. If the constructor’s precise
type is not clear from its context within the proof, the keyword can be accompanied by
a suitable expression type signature as in “DEFN :: [[length(x:xs) = 1 + length(xs)]]”.
Although I leave the detailed type checking of “DEFN” proofs open for future research,
in principle we can think of these constructs as means of saying to the compiler: “go
on, reduce both sides of the “=” sign and compare their normal forms for equivalence
modulo alpha conversions, I can assure you that you won’t run into any nonsense such
as non-terminating expressions.”

Since every use of the “DEFN” keyword represents a property constructor, it is
possible (and generally essential) to permit application of this keyword in the context of
a Haskell pattern, so that a proof of some property possessed by a Haskell function may
be devised by scrutiny of the individual cases in its declaration. Such pattern matching
may be applied either directly using an appropriate “case” expression or indirectly in a
theorem’s argument list, relying on the standard Haskell translation of such constructs
into their corresponding “case” form. As an example, consider a hypothetical theorem
with the following type signature:

THEOREM4 :: 8 a, b, c :: bool) [[a _ b = c]]

whose proof would generally follow the following pattern:

THEOREM4 [[DEFN :: [[true _ b = true]]]] = ... where b :: bool
THEOREM4 [[DEFN :: [[false _ b = b]]]] = ... where b :: bool
THEOREM4 [[DEFN :: [[? _ b = ?]]]] = ... where b :: bool

In the type declaration of THEOREM4, the “8” symbol (written as “forall” in the actual
Haskell source code) represents a dependant product binder from the calculus of con-
structions and the double arrow “)” is used to mark the preceding term as an inferred
argument whose value must be derived internally by the type system for every occur-
rence of the corresponding function within the program. In particular, binders of both
the “8 a1, a2 ... an :: T) U” and “8 a1, a2 ... an :: T ! U” forms introduce a set of n
free variables into the definition, all of which have the type of T . If the the “!” form
of “8” is used, then values of these variables must be supplied explicitly by the user,
whereas, under the “)” form, these values are always reconstructed implicitly by the
type inference algorithm. Incidentally, in the above example, T and U need not repre-
sent a Haskell type; they may equally well depict a property or even a kind, with the
later case allowing explicit formulation of polymorphic theorems in the system.

The reader should observe that, since the type annotations on the “DEFN” keyword
include arbitrary Haskell terms, we also require some means of distinguishing between
free and bound occurrences of any variables within such parameters. To this end, I
always assume that every Haskell identifier appearing within a parameter of a depen-
dant refers to an entity bound in the surrounding scope, unless the associated “where”

3.6 REASONING ABOUT PROGRAMS 61

clause declares the identifier’s type without a corresponding value, so that the signa-
ture “b :: bool” in the above example marks the variable b as free within THEOREM4.
Although, strictly speaking, such binding signatures violate the standard scoping rules
of Haskell, they are essential to an effective application of my type system extensions
and, in all cases, the reader should assume that any Haskell variables introduced into a
property-typed declaration by bindings within its “where” clause must be either defined
somewhere within that declaration’s scope, or else their values must be reconstructable
by the type inference algorithm from the term’s remaining parameters.

Since the definitional equality property “=” depicts an equivalence relation, we
must also furnish it with the expected reflexivity, symmetry and transitivity axioms. In
our hypothetical extended Haskell prelude, these axioms can be depicted as follows:

REFL [[.]] :: 8 T ::], τ :: T) T ! [[τ = τ]]
SYMM [[.]] :: 8 T ::], τ1, τ2 :: T) [[τ1 = τ2]] ! [[τ2 = τ1]]
TRANS [[.]] [[.]] :: 8 T ::], τ1, τ2, τ3 :: T) [[τ1 = τ2]] ! [[τ2 = τ3]] ! [[τ1 = τ3]]

Given an arbitrary well-typed Haskell expression τ , “REFL τ ” proves the trivial defini-
tional equality [[τ = τ]]. Further, given a proof P of [[τ1 = τ2]], “SYMM P” constructs the
proof of [[τ2 = τ1]]. Finally, given a proof P of [[τ1 = τ2]] and a proof Q of [[τ2 = τ3]],
“TRANS P Q” constructs the proof of [[τ1 = τ3]].

By themselves, the above “DEFN” proofs are insufficient to capture many useful
cases of reasoning about practical Haskell programs. For these, one additional proof
schema of the form “SUBST P :: [[τ1 = τ2]] IN x ! τ ” allows us to assert definitional
equality between two variants of the same term τ in which all free occurrences of the
variable x have been replaced with the respective terms τ1 and τ2, provided that the
definitional equality between τ1 and τ2 can be guaranteed by some explicitly-specified
proof P. In literature, this final axiom of definitional equality goes variously by the
name of referential transparency or compatibility of Haskell terms, which, intuitively,
dictates that two equal entities should behave identically in every context permitted by
its type, so that a pair of such terms can be always interchanged freely within a larger
Haskell program or proof term.

As an example of the above rules in action, let us attempt to prove the following
simple theorem, which states that, for every pair of boolean values a and b, “a _ b” is
greater than or equal to a:

THEOREM5 :: 8 a, b :: bool ! [[(a _ b) � a = true]]

The theorem assumes the following well-known ordering of the two boolean construc-
tors “false” and “true”, which, in the Haskell prelude, is introduced by the “ord” class
instance derived implicitly for the standard “bool” type as follows:

[[.]] � [[.]] :: bool ! bool ! bool

[[false]] � [[false]] = true
[[false]] � [[true]] = false
[[true]] � [[b]] = true
[[?]] � [[b]] = ?

62 CHAPTER 3: HASKELL AS A NOTATION

First, we consider the case in which the left operand of THEOREM5 is true. The proof
constructs four lemmas, with the final L4 having the desired type of THEOREM5:

THEOREM5 [[true]] [[b]] = L4

where L1 = DEFN :: [[true _ b = true]]
L2 = SUBST L1 IN x ! x � true :: [[(true _ b) � true = true � true]]
L3 = DEFN :: [[true � true = true]]
L4 = TRANS L2 L3 :: [[(true _ b) � true]]

In the next two cases, the first operand is false and the proof proceeds as follows:

THEOREM5 [[false]] [[true]] = TRANS (SUBST L1 IN x ! x � false) L2

where L1 = DEFN :: [[false _ true = true]]
L2 = DEFN :: [[true � false = true]]

THEOREM5 [[false]] [[false]] = TRANS (SUBST L1 IN x ! x � false) L2

where L1 = DEFN :: [[false _ false = false]]
L2 = DEFN :: [[false � false = true]]

Since these terms do not contain any free variables or recursive reductions, we could
also rewrite them into the following concise form:

THEOREM5 [[false]] [[true]] = DEFN :: [[(false _ true) � false = true]]
THEOREM5 [[false]] [[false]] = DEFN :: [[(false _ false) � false = true]]

At this point, readers proficient in Haskell will rightly observe that we are still missing
the final [[(? _ b) � ?]] proof case in the definition of “�”, which, as luck has it,
evaluates to “?” rather than the desired “true”, so that the theorem fails miserably
when applied to diverging argument values. Fortunately, we can easily reformulate
THEOREM5 in such a way that it will only ever concern itself with terminating operands.
First, we must capture the precise termination criteria for boolean expressions, which
can be easily achieved, for example, using the following property type:

data WF[[.]] :: bool ! V where
WFTRUE :: WF[[true]]
WFFALSE :: WF[[false]]

A boolean Haskell expression τ for which the property WF(τ) can be established is said
to be well-formed or valid. Armed with this property definition, we can easily restrict
THEOREM5 to hold only for well-formed boolean terms as follows:

THEOREM5
0 :: 8 a, b :: bool) WF(a) ! WF(b) ! [[(a _ b) � a = true]]

If we repeat the earlier proof of THEOREM4 for THEOREM4
0 , then the compiler’s cover-

age inspection algorithm can comfortably validate the theorem as well-formed, since no
diverging expression will ever come into play during its type checking. Observe that,
in the above definition, both a and b represent inferred parameters, since their values
can be easily reconstructed from the structures of WF(a) and WF(b), respectively. In
fact, the system should have no trouble inferring their types, either, so that we can also
rewrite the above theorem without explicit type annotations as follows:

THEOREM5
0 :: 8 a, b) WF(a) ! WF(b) ! [[(a _ b) � a = true]]

3.6 REASONING ABOUT PROGRAMS 63

Properties such as “WF” are commonplace and it would be rather cumbersome to
construct them manually for every Haskell data type introduced into the program.
Fortunately, it is generally possible to infer them automatically for arbitrary data types
in a manner similar to the mechanical derivation of the “eq”, “ord” and “show” class
instances in the standard Haskell 98 compiler. In particular, in this work I assume that
the compiler always supplies an implicit definition of “WF” for every Haskell data type
T for which no such property has been specified directly in the source code. Such
implicit definitions always include an appropriate axiom or property constructor “WFC”
for every data constructor C appearing in the definition of T . For example, given a type
T with the following structure:

data T = C1 T11 T12 ... T1i

C2 T21 T22 ... T2j
...

Cn Tn2 Tn2 ... Tnk

the derived property “WF[[.]] :: T ! V” produced implicitly by the compiler assumes
the following schematic form:

data WF[[.]] :: 8 T ::]) T ! V where
WFC1 :: 8 x1, x2 ... xi) WF(x1) ! WF(x2) ! ... ! WF(xi) ! WF[[C1 x1 x2 ... xi]]
WFC2 :: 8 x1, x2 ... xj) WF(x1) ! WF(x2) ! ... ! WF(xj) ! WF[[C2 x1 x2 ... xj]]

...
WFCn :: 8 x1, x2 ... xk) WF(x1) ! WF(x2) ! ... ! WF(xk) ! WF[[Cn x1 x2 ... xk]]

In the following presentation, I always decorate well-formedness variables with the
circumflex accent such as x̂ in order to distinguish them from the actual term being
scrutinised. With the help of this final extension, THEOREM5

0 can be rephrased correctly
as follows:

THEOREM5
00 :: 8 a, b :: bool) WF(a) ! WF(b) ! [[(a _ b) � a = true]]

THEOREM5
00 [[WF[[true]]]] [[b̂]] = L4

where b :: bool
b̂ :: WF(b)

L1 = DEFN :: [[true _ b = true]]
L2 = SUBST L1 IN x ! x � true :: [[(true _ b) � true = true � true]]
L3 = DEFN :: [[true � true = true]]
L4 = TRANS L2 L3 :: [[(true _ b) � true]]

THEOREM5
00 [[WF(false)]] [[WF(true)]] = DEFN :: [[(false _ true) � false = true]]

THEOREM5
00 [[WF(false)]] [[WF(false)]] = DEFN :: [[(false _ false) � false = true]]

in which the binding signatures “b :: bool” and “b̂ :: WF(b)” are used to scrutinise
the proof argument b̂, binding the variable b to the actual boolean value whose well-
formedness is asserted by b̂.

Occasionally, effective specification of a program’s behaviour mandates formu-
lation of well-formedness in terms of a boolean predicate or a partially-computable

64 CHAPTER 3: HASKELL AS A NOTATION

Haskell function of type “T ! bool” rather than as an inductive property of kind
“T ! V”. Fortunately, such functions can be readily reused within a theorem by
asserting their definitional equality to the constant “true”. For example, a theorem
that holds for all integers n greater than 7 can be paraphrased by the property type
“8 n) [[n > 7 = true]] ! ...”. In fact, in this work definitional equalities of the form
“[[P(x) = true]]” occur so frequently that, in most cases, I drop the “= true” portion of
these types, so that the property application [[n > 7 = true]] will be often rendered sim-
ply as [[n > 7]] whenever the context of the discussion makes any confusion of meaning
unlikely.

3.7 Inductive Proofs
It turns out that the approach described in Section 3.6 can be also used to reason about
inductive definitions. As an example, let us prove a well-known result which states that
the combined length of two finite lists is equal to the sum of their individual lengths. In
other words, we seek a proof of the following theorem:

THEOREM6 :: 8 T ::], `1, `2 :: [T])
WF(`1) ! WF(`2) ! [[length(`1 ++ `2) = length(`1) + length(`2)]]

To begin with, let us deal with the case in which the first list argument is empty:

THEOREM6 [[WF(∅)]] [[ˆ̀2]] = L8

where T ::]

`2 :: [T]
ˆ̀
2 :: WF(`2)

L1 = DEFN :: [[∅ ++ `2 = `2]]
L2 = SUBST L1 IN ` ! length(`) :: [[length(∅ ++ `2) = length(`2)]]
L3 = DEFN :: [[length(∅) = 0]]
L4 = SUBST L3 IN n ! n + length(`2) :: [[length(∅) + length(`2) = 0 + length(`2)]]
L5 = ADD ZERO [[length(`2)]] :: [[0 + length(`2) = length(`2)]]
L6 = TRANS L4 L5 :: [[length(∅) + length(`2) = length(`2)]]
L7 = REFL L6 :: [[length(`2) = length∅ + length(`2)]]
L8 = TRANS L2 L7 :: [[length(∅ ++ `2) = length∅ + length(`2)]]

in which the fifth lemma L5 invokes the following well-known axiom of integer arith-
metic:

ADD ZERO [[.]] :: 8 n :: integer ! [[0 + n = n]]

Similarly, the well-known transitivity of integer addition can be captured in the standard
Haskell prelude by the following axiom:

ADD TRANS [[.]] :: 8 n1, n2, n3 :: integer ! [[n1 + (n2 + n3) = (n1 + n2) + n3]]

Since the foundations of mathematics are not the subject of this work, in the subsequent
proofs I will generally assume that such trivial axioms are either attainable implicitly
through the theorem-proving ingenuity of our type checker, or else readily available as

3.8 IMPLEMENTATION 65

part of the standard Haskell libraries and, in both cases, represent them within more
interesting proofs using the single keyword “TRIV”.

The second case of the THEOREM6 proof deals with non-empty lists:

THEOREM6 [[WF(:)x̂ ˆ̀
1]] [[ˆ̀2]] = L11

where T ::]

x :: T
x̂ :: WF(x)
`1, `2 :: [T]
ˆ̀
1 :: WF(`1)

ˆ̀
2 :: WF(`2)

L1 = DEFN :: [[(x:`1) ++ `2 = x:(`1 ++ `2)]]
L2 = DEFN :: [[length(x:(`1 ++ `2)) = 1 + length(`1 ++ `2)]]
L3 = SUBST L1 IN ` ! length(`) :: [[length((x:`1) ++ `2) = length(x:(`1 ++ `2))]]
L4 = TRANS L3 L2 :: [[length((x:`1) ++ `2) = 1 + length(`1 ++ `2)]]

L5 = THEOREM6
ˆ̀
1

ˆ̀
2 :: [[length(`1 ++ `2) = length(`1) + length(`2)]]

L6 = SUBST L5 IN n ! 1 + n
:: [[1 + length(`1 ++ `2) = 1 + (length(`1) + length(`2))]]

L7 = TRIV :: [[1 + (length(`1) + length(`2)) = (1 + length(`1)) + length(`2)]]
L8 = DEFN :: [[length(x:`1) = 1 + length(`2)]]
L9 = REFL L8 :: [[1 + length(`2) = length(x:`1)]]
L10 = SUBST L10 in n ! n + length(`2)

:: [[(1 + length(`1)) + length(`2) = length(x:`1) + length(`2)]]
L11 = TRANS TRANS TRANS L4 L6 L7 L10

:: [[length((x:`1) ++ `2) = length(x:`1) + length(`2)]]

in which the fifth lemma L5 invokes the induction principle and the entire proof is
established from transitivity of the lemmas L4, L6, L7 and L10, while the “TRIV” proof
of L7 bears witness to the well-known transitivity axiom of integer arithmetic.

3.8 Implementation
Since automated theorem proving is not the subject of this work, Sections 3.5, 3.6
and 3.7 provide only a brief outline of the required extensions to the Haskell type
system. It is my strong belief that these extensions could be readily implemented as
a very capable proof assistant environment, although I leave such implementation for
future work, since it would provide an undue distraction from the primary topic of
this thesis. In principle, the extensions to the Haskell type system described in the
last three sections could be effected through a translation of Haskell programs into
the calculus of inductive constructions (CIC) similar to that employed in the highly-
successful proof development environment Coq [INRIA 02]. As argued by Coquand,
it is possible to admit non-termination at the term level of the calculus without loss
of soundness [Coquand 86]. However, in order to deliver such an implementation,
many details of the design which have been glossed over in the above discussion must
be worked out. For example, the precise criteria for establishment of the DEFN and
TRIV proofs must be determined, together with a satisfactory treatment of diverging

66 CHAPTER 3: HASKELL AS A NOTATION

expressions. Finally, soundness of the entire theory must be established formally,
which, as the past work on automated theorem proving has shown, is a rather non-
trivial undertaking.

This final challenge also requires development of a formal semantic model for the
entire Haskell language. So far, the glaring absence of such a model was largely com-
pensated by the language’s closeness to System F, whose own well-understood semantic
interpretation has served the community well for almost two decades [Hudak 07]. How-
ever, if an application of Haskell as a program specification and verification framework
is to be taken seriously, the entire language must be given a firm formal footing.

In the meantime, all logical deductions presented in this work should be considered
to represent “paper proofs” and accepted with a degree of caution appropriate for such
reasoning. Nevertheless, it is my hope that, one day, the extensions described above
will find their way into an actual Haskell compiler, completing the rigorous proof of
compiler correctness presented in the following chapters.

4

LAMBDA
CALCULUS

CHAPTER 4: LAMBDA CALCULUS 69

Entia non sunt multiplicanda praeter necessitatem
(Entities should not be multiplied beyond necessity)

— William Ockham

The entire feasibility of linear correctness rests on our ability to find a program rep-
resentation suitable for simultaneous use as both an intermediate depiction of compu-
tations within the compiler and also as a semantic notation in the formal specification
of its source and target languages. It is perhaps surprising that a such a construction
exists at all, let alone that it is readily available in the form of the untyped lambda
calculus [Church 36, Church 41], which, as will be demonstrated in Chapters 5 and 6,
captures successfully the meanings of typical source and target programming languages
and, further, carries the benefits of an extensive body of knowledge about its properties
accumulated over the past seventy years since its introduction.

Lambda calculus was originally studied in the context of the foundational work on
computability and the nature of mathematics. It made its debut in 1936 in a seminal
paper by Alonzo Church, in which Church uses the calculus to provide the famous neg-
ative solution to the Entscheidungsproblem [Church 36]. In an effort to ensure the sys-
tem’s consistency, Church extended the calculus with a type system in 1940 [Church 40]
and conducted an extensive study of its properties in his book on Calculi of Lambda
Conversion published in the following year [Church 41]. In 1943, Kleene demonstrated
an equivalence between lambda calculus and the Turing machine [Turing 36], a result
that is now known as the Church-Turing thesis [Kleene 43].

The calculus was first employed in a design of a practical programming language
by John McCarthy as part of his research on artificial intelligence [McCarthy 58].
Throughout the 1950’s, McCarthy gradually developed LISP [McCarthy 60]. This
effort culminated in 1959 in the famous presentation of the eval function which de-
fined the operational semantics of LISP [McCarthy 59] and, to McCarthy’s uneasy
surprise, could be implemented in LISP itself [Smith 84]. The first such complete
LISP system, executed entirely in LISP, was delivered in 1962 by Timothy Hart and
Michael Levin [McCarthy 62]. LISP was also famously used to implement the origi-
nal FORTRAN-77 compiler for UNIX [Pitman 79], which arguably constitutes the first
practical encoding of an imperative language in a declarative system. More recently, the
language has been reformulated as Scheme and standardised by the Institute of Electri-
cal and Electronics Engineers [IEEE 91]. In this new form, LISP has survived the test
of time and remains in active use to this day.

70 CHAPTER 4: LAMBDA CALCULUS

The correspondence between lambda calculus and imperative programming lan-
guages was first established in 1963 by Landin, who made the observation for AL-
GOL [Landin 63]. Unfortunately, Landin’s result remained, for the most part, unex-
plored in the research community for over thirty years. In 1991, Cytron et al. presented
a highly influential algorithm for translation of imperative programs into their static sin-
gle assignment form (SSA) [Cytron 91], which was subsequently shown to be equiva-
lent to lambda calculus by Appel [Appel 98, Appel 98ML]. In 1995, Kelsey established
the formal equivalence between SSA and the continuation passing style of lambda cal-
culus through bidirectional translation between the two forms [Kelsey 95]. In our own
prior work on the subject, we have presented a translation from SSA to the administra-
tive normal form of lambda calculus and argued for the use of purely-functional repre-
sentations in optimising compilers for imperative languages [Chakravarty 03]. Moggi’s
work on monadic semantics of programming languages [Moggi 91] and Danvy’s re-
search on the monadic normal form of programs [Hatcliff 94, Danvy 03] also contain
material related to the subject. However, a direct transformation of a complete impera-
tive programming language in common use into lambda calculus has not been attempted
before and is a new contribution of the present work.

4.1 Lambda Calculus
In its simplest form, lambda calculus consists of only three syntactic constructs: vari-
ables, applications and lambda abstractions. This form of the calculus, known as the
pure lambda calculus, can be described using the following BNF grammar:

pure-term:
pure-variable (variables)
pure-term pure-term (application expressions)
λ pure-variable . pure-term (lambda abstractions)

As discussed in Chapter 3, the grammar presented above is actually implemented as
a definition of the Haskell data type “PureTermT” with constructors “PureVar” and
“PureApp” whose names are suppressed from the presentation for the sake of clarity
and “PureLambda”, which is typeset simply as “λ”. The reader is advised to refer
to Chapter 3 for a further discussion of the precise rules governing typesetting of all
Haskell material in this work and Appendix D for an exhaustive list of all Haskell types,
data constructors and functions mentioned in the presentation, cross-indexed with the
page numbers of their respective definitions.

We shall refer to all expressions of this kind as lambda expressions or terms. Sim-
ple lambda expressions consisting of a single identifier are called variables. Terms of
the form “λx.τ ” are known as lambda abstractions. Intuitively, they represent a func-
tion or a procedure with a single formal parameter x and a body τ which computes the
value returned by the function and may contain references to x. Functions of multi-
ple parameters may be constructed using nested lambda abstractions. For example, the
term “λx.λy.τ ” represents a function of two variables x and y. Finally, terms of the

4.1 LAMBDA CALCULUS 71

form “τ1τ2” are known as application expressions or just applications. In such expres-
sions, the first term (which represents an actual function) is said to be applied to the
second one, which depicts the value of that function’s operand. Intuitively, an appli-
cation of the form “τ1τ2” represents a call to the function τ1 with the argument value
specified by τ2. In particular, a term of the form “(λx.τ1)τ2” is considered equivalent
to the result of replacing every occurrence of x in τ1 with the expression τ2. For the
sake of exposition, application expressions are taken to be right-associative and have a
higher precedence than lambda abstractions. In other words, “τ1τ2τ3” is always taken
to mean “(τ1τ2)τ3” rather than “τ1(τ2τ3)” and “λx.τ1τ2” is taken to mean “λx.(τ1τ2)”
rather than “(λx.τ1)τ2”.

Variables, lambda abstractions and application expressions are the only three syn-
tactic elements of the pure lambda calculus; it is a remarkable consequence of the
Church-Turing thesis [Kleene 43] that all interesting programs (and many others that
are not interesting at all) may be constructed from these three symbolic patterns alone.
The set of all computations that are expressible in lambda calculus is precisely that of
computable functions, that is, functions that may be evaluated by a physical device.

It should be observed that not every conceivable function is computable. For ex-
ample, in 1936 Church and Turing have independently shown that the halting problem,
which poses the question of whether any given function terminates, can never be solved
in its full generality [Church 36, Turing 36]. Many unsolvable problems, are, however,
partially computable, in the sense that it is possible to devise a function that either
returns the desired property or does not terminate. In the later case, it is usually pos-
sible to further categorise the argument values leading to such non-termination. For
example, it is quite possible to devise a function that, given an arbitrary lambda ex-
pression, returns “1” whenever that expression terminates and fails to terminate itself
for all non-terminating input expressions. We will often find it necessary to work with
such partially-computable functions when designing a compiler. In particular, every
attempt to express a semantics of a lambda calculus as a function that reduces its terms
to their values, is by the very nature of computability, doomed to result in a partially-
computable construction.

The minimality of lambda calculus is certainly very appealing, since, with only
three language constructs, it renders itself readily to detailed scrutiny. Although, in this
work, I will refrain from defining a complete formal semantic model of the pure calcu-
lus presented above, such semantics are readily available in literature [Barendregt 84]
and structures similar to “pure-term” continue to prevail as the authoritative representa-
tion of computability. Accordingly, a suitable variant of lambda calculus seems to be a
highly attractive choice for an intermediate program representation in a linearly-correct
compiler. In the remainder of this chapter, I first present a few examples of useful
lambda constructions, followed by two simple variants of their operational meanings.
The actual Etude program representation utilised in our compiler verification project is
then defined in Sections 4.4–4.7, complete with a formal specification of a suitable al-

72 CHAPTER 4: LAMBDA CALCULUS

gebraic semantics for the language. Although Etude represents a substantial departure
from the simplicity of its pure cousin, it is the purity and deeply-rooted minimality of
Church’s invention which makes it possible to verify an entire C compiler within the
space of a single manuscript.

4.1.1 Examples
Since, in lambda calculus, abstractions and their applications are the only building
blocks available for assembly of the plethora of common programming idioms that
occur routinely throughout computer science, every such idiom must, somehow, be
formulated as an appropriate function, whose arguments are themselves functions. This
minimality may be appealing to a mathematician but can easily prove intimidating to a
programmer accustomed to dealing with more intuitive operational constructs such as
integers, conditionals and loops.

Fortunately, all such constructs may be readily formulated in lambda calculus as
combinators, or functions that modify other functions, so that the user is not burdened
with inventing a new lambda abstraction for every programming task required in the
course of a software design project. As the first example of such combinators, let
us consider the two familiar boolean constants “true” and “false”, which, in the pure
lambda calculus, are usually defined as follows:

pure-true = λx.λy.x
pure-false = λx.λy.y

Intuitively, both “pure-true” and “pure-false” represent binary functions of two argu-
ments x and y, such that “pure-true” always returns the first argument x while “pure-
false” returns the second of its operands y. In this way, the two constants allow us to
select between two arbitrary lambda expressions, capturing the notion of choice central
to the concept of a boolean constant. Accordingly, the familiar conditional construct
“if p then x else y” may be defined in the pure lambda calculus as the following ternary
function of three arguments:

pure-if = λp.λx.λy.p x y

The expression “pure-if p f1 f2” evaluates to f1 if p is equal to “pure-true” and f2 if p is
“pure-false”, by applying its x and y operands to the condition argument p. To further
convince ourselves that “pure-true” and “pure-false” do, in fact, represent boolean
constants, let us define the three common boolean operations “:”, “^” and “_”:

pure-not = λp.λx.λy.p y x
pure-and = λp.λq.λx.λy.p (q x y) y
pure-or = λp.λq.λx.λy.p x (q x y)

An application of the “pure-not” combinator to a boolean constant (or binary func-
tion) p constructs a new binary function which applies x and y to p in reverse order,
effectively inverting its selection process. “pure-and p q” constructs a binary function
that uses q to choose between x and y and then applies p to choose between the re-
sult of q and y as the second alternative, effectively implementing the decision process

4.1 LAMBDA CALCULUS 73

“if p then (if q then x else y) else y” which, as every programmer knows, captures the
notion of a logical conjunction. Similarly, “pure-or p q” implements the decision pro-
cess “if p then x else (if q then x else y)” representing logical disjunction of p and q.

The constants “pure-true” and “pure-false” were easy to define due to the finite
nature of boolean algebra. A more interesting example of combinators is introduced by
the concept of natural numbers 0, 1, 2 and so on. Readers may be surprised that such
infinite sets can be expressed in the pure lambda calculus, well, naturally:

pure-zero = λf .λx.x
pure-one = λf .λx.f x
pure-two = λf .λx.f (f x)
pure-three = λf .λx.f (f (f x))
pure-four = λf .λx.f (f (f (f x)))

and so on, until every number required by the program has been defined. These lambda
expressions are known as Church numerals; the number of f s in the body of each
numeral encodes its numeric value. Just as the boolean constants “pure-true” and
“pure-false” captured the primitive notion of choice, every Church numeral “pure-n”
encodes the primitive notion of counting successive applications of a function to its
argument. Such chained application of the result of one function g directly to another
function f is known as function composition, commonly written as “f � g”. Because
composition can be considered as the multiplication operator of the world of lambda
abstractions, the composition “f � f ” of a function f with itself is traditionally written
as f 2, the composition “f � f � f ” as f 3 and so on. Using this notation, every Church
numeral n can be formulated as a combinator which constructs the n-fold composition
of its argument function f n. To see why Church numerals represent natural numbers,
let us try to define the common arithmetic operations on these objects:

pure-add = λm.λn.λf .λx.m f (n f x)
pure-mul = λm.λn.λf .m (n f)
pure-exp = λm.λn.n m

The lambda abstractions “pure-add”, “pure-mul” and “pure-exp” implement the arith-
metic operations m + n, m� n and mn, respectively. Notice how the composition of
Church numerals implements multiplication of the corresponding natural numbers,
making our definitions of “pure-mul” and “pure-exp” trivial. Although superficially
more complicated, the above definition of “pure-add” is also quite intuitive: we simply
concatenate the two application sequences by inserting the body of n at the end of the
chain in m.

Composite objects such as pairs are also representable as lambda combinators. For
example, the notion of a pair of lambda terms is conveniently captured as follows:

pure-pair = λx.λy.λf . f x y
pure-first = λz.z (λx.λy.x)
pure-second = λz.z (λx.λy.y)

74 CHAPTER 4: LAMBDA CALCULUS

The expression “pure-pair τ1 τ2” produces a combinator that, when, applied to a bi-
nary function f , makes the two individual components of the pair available to f as its
two operand values. The expressions “pure-first τ ” and “pure-second τ ” extract these
component from the pair τ by applying it to a binary function which returns its first or
second parameter, respectively.

Many more common and powerful combinators may be defined using the similar
approach of capturing the essence of the underlying concept. However, by now, I hope
that the reader has gained sufficient intuition for the behaviour of lambda abstractions,
so that, without further ado, we can proceed to formalising the general meaning of
lambda expressions.

4.1.2 Free Variables

A lambda abstraction of the form “λx.τ ” is said to bind all occurrences of the variable x
in τ . If a variable is not bound by any lambda abstraction within the expression in which
it appears, it is known as a free variable and the corresponding expression is said to be
an open expression. Conversely, an expression that does not contain any free variables
is said to be closed. The set of all variables appearing free in a lambda expression can
be constructed as follows:

FV[[.]] :: pure-term ! fpure-variableg

FV[[x]] = fxg
FV[[λx.τ]] = FV(τ)nfxg
FV[[τ1 τ2]] = FV(τ1) [FV(τ2)

where the notation “fpure-variableg” appearing in the signature of “FV” represents
the type of all identifier sets. The notation “fxg” constructs a singleton set consisting
of x alone, while the operators “[” and “n” return the union and difference of two
sets, respectively. All of these definitions are taken directly from the standard Haskell
libraries discussed in Appendix A and are typeset through an appropriate application of
the formatting rules described in Chapter 3.

4.1.3 Capture-Avoiding Substitution

Before turning our attention to a semantic study of the pure lambda calculus, we must
also formalise the notion of a capture-avoiding substitution. Intuitively, a substitution
of the form “τ1/fx:τ2g” systematically replaces all free occurrences of the variable x
in τ1 with the term τ2. Note that any bound occurrences of x in τ2 are not replaced,
so that the result of substituting τ for x in the expression “(λx.x)x” is “(λx.x)τ ” rather
than “(λx.τ)τ ”. Capture-avoiding substitution can be defined in Haskell as a function
with the following type signature:

[[.]] / f[[.]]g :: pure-term ! (pure-variable :pure-term) ! pure-term

Barring certain cumbersome technicalities, a typical implementation of this function

4.1 LAMBDA CALCULUS 75

assumes the following inductive form:
[[x]] / f[[x0:τ 0]]g (x = x0) = τ 0

(x 6= x0) = [[x]]
[[λx.τ]] / f[[x0:τ 0]]g (x = x0) = [[λy.τ 0]]

(x /2 FV(τ 0)) = [[λx.[[τ/fx0:τ 0g]]]]
[[τ1 τ2]] / f[[x0:τ 0]]g = [[[[τ1/fx0:τ 0g]] [[τ2/fx0:τ 0g]]]]

in which the notation “fa:bg” stands simply for a fancy typesetting of an ordinary
Haskell pair “(a, b)”. Appendix A introduces a number of such presentation forms,
whose only purpose is to improve exposition of certain important constructs such as
variable substitutions, in an attempt to bridge the gap between established mathematical
notations and their rendition in the Haskell language. In the actual source code, all of
these constructs materialise simply as pairs of ordinary parentheses symbols “()”.

A careful reader will observe that the above formulation of substitution represents
a partial function, undefined whenever the expression being substituted contains a free
occurrence of a variable bound within the expression being modified. Since the terms
being substituted into an expression are usually closed, this restriction is usually ir-
relevant in practice and the above definition of capture-avoiding substitution proves
sufficient for the purpose of the present discussion. Nevertheless, the extended Etude
calculus defined later in this chapter goes to some lengths in order to lift the restric-
tion for the actual intermediate program representation deployed in the design of our C
compiler.

4.1.4 Operational Semantics
A lambda expression of the form “(λx.τ1)τ2” is known as a beta redex. It represents
an application of the term τ2 to the function “λx.τ1”. Such expressions are equivalent
to the result of evaluating the function, formalised by the substitution of τ2 for every
free occurrence of x in τ1. This form of substitution corresponds closely to the intuitive
notion of calling a function in an imperative programming language, since it renders
an application of a function to a particular argument value equivalent to an instance of
the function’s body with all free occurrences of the formal parameter instantiated to
the supplied expression. The process of replacing a beta redex with the corresponding
substituted expression is known as beta reduction. If we apply beta reduction sys-
tematically to eliminate all redexes from an expression, we arrive at the expression’s
beta-normal form which may be viewed as a outcome of evaluating that expression.
It is a remarkable result known as the Church-Rosser property that every lambda ex-
pression has at most one beta-normal form. This theorem, proven for the pure lambda
calculus in 1936 by Church and Rosser [Rosser 36], allows us to view the beta-normal
form of an expression as its value and renders beta reduction an attractive basis for an
operational interpretation of the pure lambda calculus.

We can formulate an operational semantics of the pure lambda calculus as a func-
tion E which takes lambda expressions to their fully-evaluated beta-normal forms. Ob-
serve that multiple implementations of E are possible, corresponding to the different

76 CHAPTER 4: LAMBDA CALCULUS

viable orders in which beta redexes can be eliminated from some lambda expressions.
Perhaps the most obvious evaluation strategy, known as an applicative order evalua-
tion, is to follow the intuitive understanding of the function call mechanism, according
to which arguments are always substituted into function bodies in their fully-reduced
beta-normal forms. In Haskell, this can be specified as follows:

EA[[.]], E 0
A[[.]] :: pure-term ! pure-term

EA [[x]] = [[x]]
EA [[λx.τ]] = [[λx.[[EA(τ)]]]]
EA [[τ1 τ2]] = [[[[E 0

A(EA(τ1))]] [[EA(τ2)]]]]

where the auxiliary function E 0
A performs the actual beta reduction of an applicative

term formed from a pair of lambda expressions already reduced into their respective
normal forms:

E 0
A[[(λx.τ1) τ2]] = EA(τ1/fx:τ2g)

E 0
A[[τ1 τ2]] = [[τ1 τ2]]

It can be shown that, for all closed lambda expressions τ , if EA(τ) terminates, then
it produces a beta-normal form, although the proof of this simple theorem is rather
involved in practice, due to various technicalities mentioned in our earlier discussion
of the capture avoiding substitution operator from Section 4.1.3. Accordingly, I leave
verification of this theorem as an exercise for a keen reader.

However, it should be noted that EA cannot construct the beta-normal form of every
possible lambda expression. Consider, for example, the expression “(λx.x)(λx.x)”. No
matter how hard we try, we cannot eliminate all beta redexes from this expression,
since reducing one redex through beta conversion merely gives rise to another one in the
reduced expression. In fact, this expression remains unchanged by beta reduction! Such
lambda terms are said to be diverging and are distinguished by the equivalence of “τ1τ2”
with the expression τ1 itself for every argument value τ2. They are usually represented
collectively by the symbol “?”. It would be tempting to disregard diverging expressions
as irrelevant and forbid them from ever appearing in lambda terms, but, unfortunately,
it turns out that this cannot be done without unduly limiting the computational power of
the calculus. In particular, observe that diverging expressions may be passed safely as
arguments to some other expressions; for example, the beta-normal form of “(λx.y)τ”
is equivalent to the variable y for all lambda terms τ , including the diverging ones.
Unfortunately, EA fails to construct the beta-normal form of “(λx.y)((λx.x)(λx.x))”, by
attempting to obtain the non-existent beta-normal form of the term “(λx.x)(λx.x)”. We
say that such evaluation functions diverge when applied to diverging lambda terms.

4.1.5 Normal Order Evaluation

Fortunately, as shown by Rosser [Rosser 36], it is possible to reformulate E in such
a way that it always finds the beta-normal form of every lambda expression for which
the beta-normal form exists. Unsurprisingly, this strategy order is known as the normal

4.1 LAMBDA CALCULUS 77

order evaluation and it can be modelled in Haskell as the following definition:

EN[[.]], E 0
N[[.]] :: pure-term ! pure-term

such that:

EN [[x]] = [[x]]
EN [[λx.τ]] = [[λx.[[EN(τ)]]]]
EN [[τ1 τ2]] = [[[[E 0

N(EN(τ1))]] τ2]]

E 0
N[[(λx.τ1) τ2]] = EN(τ1/fx:τ2g)

E 0
N[[τ1 τ2]] = [[τ1 [[EN(τ2)]]]]

Intuitively, this evaluation strategy always reduces the head of an application expres-
sion before reducing the corresponding function argument. Note that, under the normal
order evaluation, the argument expressions are only evaluated if they are actually refer-
enced within the corresponding function bodies. However, normal order evaluation is
not entirely about performance. One consequence of admitting this evaluation strategy
in a formulation of an operational semantics for the pure lambda calculus is an ability
to handle some important cases of diverging expressions. Perhaps the best known of all
such constructs is the fixed point combinator, sometimes called the Y combinator fol-
lowing the nomenclature of Curry. This combinator can be defined in the pure lambda
calculus as the following expression “pure-fix”:

pure-fix = λf .(λx.f (x x)) (λx.f (x x))

The “pure-fix” function was initially discovered by Moses Schönfinkel [Schönfinkel 24,
Bauer-Mengelberg 67] and rediscovered by Haskell Curry after Schönfinkel’s work was
culled by Stalin’s imperialism and the outbreak of World War II [Curry 58, Curry 72]. It
takes a single argument f (which we assume to be a lambda abstraction) and constructs
a new function that applies f to a somewhat-unintelligible argument with a structure
similar to the diverging expression “(λx.x)(λx.x)” mentioned earlier, except that, in the
fixed point combinator, the body x is replaced with an application expression “f (xx)”.
If we try to reduce the body of the constructed function “pure-fix f ”, we will end up
with the original expression applied to f itself. In other words, “pure-fix” calls f with a
an infinite sequence of applications “f (f (f (f (...))))”, or, put differently, “pure-fix f ” is
equivalent to “f (pure-fix f)”, since adding another f to an already-infinite sequence of
f s is no different from the original infinite sequence.

At this point, the reader may wonder why such bizarre expression could ever be
useful. We note that, since the argument of f is equivalent to “pure-fix f ”, the fixed
point operator provides a means for the body of f to refer to itself. In other words,
“pure-fix” allows us to define self-referencing or recursive lambda expressions. As
mentioned earlier, such expressions may have normal forms (or converge) if, eventually,
f is reduced to an abstraction that does not refer to its parameter. Extensive experience
with lambda calculus has shown that recursive expressions are of an immense practical
importance and that they are required by virtually every useful program ever written.

78 CHAPTER 4: LAMBDA CALCULUS

Nevertheless, for pragmatic reasons applicative order evaluation plays an impor-
tant rôle in the study of an operational semantics of the pure lambda calculus. Since
many common lambda abstractions such as “λx.(f xx)” contain multiple references to
their parameters, applying EN to such lambda terms, which substitutes an unreduced
argument into the function body, results in a separate evaluation of that argument for
its every occurrence within the lexical syntax of the program. As terms grow larger, the
amount of additional work mandated by normal order evaluation grows exponentially
with their complexity. Such operational semantics of the lambda calculus may insin-
uate that a perfectly-sensible lambda expression “λx.(f xx)” is prohibitively expensive
to apply in a real program, while in fact its actual evaluation on a real computational
system can be efficient and pleasant. In the interest of relevance, we cannot afford
for our evaluation model to disperse such misinformation and, accordingly, we should
endeavour to reflect the computational reality of the language within its specification
with a greater degree of immediacy. The reader is assured that such formulation will
be presented in Section 4.6 for the full-featured variant of the calculus deployed as the
intermediate program representation in this work.

4.2 Extending the Calculus
The pure lambda calculus described in the previous section is seldom deployed di-
rectly in executable software. Most often, the syntax of the calculus is tailored to fit
the specific conventions of a particular application area and its operational semantics
is likewise tweaked to reflect the intended use of lambda terms. In particular, in the
intermediate program representation deployed within our compiler, both the syntax
and semantics of the pure lambda calculus have been adjusted to emphasise the cor-
respondence between lambda terms and the actual computational facilities of a typical
modern hardware architecture, while, at all times, taking care to preserve the referential
transparency of the language, which dictates that every pair of lambda terms rendered
equivalent by its semantics be interchangeable anywhere within a valid program. I call
the resulting formalism “Etude” for its simplicity and elegance of form.

There are many reasons to extend the pure calculus from Section 4.1. Perhaps the
least compelling is the desire to make expressions more readable. It is not at all obvious
that the unwieldy term “(λm.λn.λf .λx.(mf (nf x)))(λf .λx.(f x))(λf .λx.x)” represents
the addition “1 + 0”, even though it has been constructed by GHCi from the Haskell
expression “pure-add pure-one pure-zero” using the definitions of “pure-add”, “pure-
one” and “pure-zero” from Section 4.1.1. However, since, in this work, lambda terms
are generally constructed and examined by a compiler rather than a human audience,
such verbosity does not, by itself, pose problems sufficient to warrant a sacrifice of its
minimality.

Nevertheless, reliance on combinators for representation of basic programming
concepts has three important disadvantages, the first of which pertains to the accu-
racy of an operational semantics of the language. By hiding the distinction between

4.2 EXTENDING THE CALCULUS 79

internal semantics of primitive objects such as integers and the external semantics of
control-flow constructs such as function applications, the approach grossly misrepre-
sents the true behaviour of programs. For example, the “pure-add” combinator from
Section 4.1.1 performs addition of two Church numerals n and m in O(n + m) individ-
ual reduction steps, while, on all modern computational hardware, the same addition
would be performed in a constant time, regardless of the values of its operands. The
second problematic aspect of the pure lambda calculus relates to the disparity between
its representation of common programming constructs and the actual facilities available
on a typical computational hardware, which renders many pure lambda terms resilient
to an effective translation into a stream of efficient machine instructions as performed
by the compiler’s back end. In particular, one aspect of pure lambda terms that hin-
ders their execution on modern computational hardware is the fact that, by definition,
combinators essentially represent means of generating new functions during program
execution, which is difficult to realise efficiently on most modern computers. Finally,
since common interactive constructs such as the “printf” function in C do not repre-
sent computable functions, they cannot be defined sensibly in the pure lambda calculus
without appropriate language extensions.

The most direct means of alleviating these problems is to extend the pure calcu-
lus with a set of various constants that capture the essence of the primitive compu-
tational facilities supported natively by typical computer architectures. For example,
Church numerals could be represented by the familiar syntax “0”, “1” and so on. To
further provision for a smooth transition from Etude into the realm of actual machine
instruction sequences described in Chapter 6, we also require every lambda abstraction
in the program to be associated by the programmer with an explicitly-specified and
globally-unique name, a technique that goes by the name of defunctionalisation in lit-
erature. Intuitively defunctionalisation translates higher-order functional program such
as those devised in the pure lambda calculus from Section 4.1 into their first-order se-
mantic equivalents [Reynolds 82, Danvy 03]. Nevertheless, it should be observed that
Etude’s approach to defunctionalisation is unusual in that it identifies functions with
numeric quantities rather than abstract values and, as we shall discover shortly, such
function names may be constructed dynamically by an Etude program using arbitrary
arithmetic expressions, which adheres closely to the operational interpretation of these
names as the functions’ locations within the program’s memory-resident image during
its execution.

Such use of syntactic extensions allows for an effortless translation of Etude pro-
grams into a target language as described in Chapter 6 and, although the resulting lan-
guage may, at the first glance, seem to bear little resemblance to the orthogonal syntax
of the pure calculus, it nevertheless constitutes a purely-functional programming lan-
guage that retains the essential referential transparency of the original calculus, which
renders subsequent manipulation of programs efficient and pleasant, brining us closer
the ultimate goal of a successful compiler verification.

80 CHAPTER 4: LAMBDA CALCULUS

Before proceeding with a detailed specification of this program representation, it
should be noted that the definition of Etude is split into two largely independent parts,
the first of which pertains to that fragment of the language which remains invariant
across all possible target architectures, while the second tailors those portable semantics
to the specific needs of a particular computational system. In Section 4.3, I outline the
general mechanism by which that separation is maintained throughout the project.

At the syntactic level, the structure of Etude is split into the level of atoms discussed
in Section 4.4, terms, which capture the monadic structure of computations whose syn-
tax and portable algebraic semantics are described in Section 4.6 and, finally, modules
from Section 4.7 that facilitate separate compilation of distinct program fragments. Fur-
ther, the general issues and semantics of stateful computations are discussed in Section
4.5, while a more concrete operational treatment of the language is postponed until later
in Chapter 6, where it is presented together with the balance of Etude’s specification
tailored to the particular needs of the targeted MMIX architecture [Knuth 05], as well
as a rigorous formal proof of the linear correctness property for the entire compiler.

4.3 A Language with a Distinction
It is generally acknowledged that the design of any intermediate program representa-
tion should pay some attention to the language’s representation of programs destined
for execution on a broad range of different computational architectures, so that a com-
piler originally designed to generate instructions for one computer system may be eas-
ily retargeted for another without the need to rewrite large portions of its front end and
optimisation algorithms. However, this issue is even more important in a compiler de-
signed under the linear correctness regime, since, in this case, the intermediate program
representation’s rôle as a semantic calculus essentially precludes tweaking of that repre-
sentation for individual target architectures. If such adjustments were to be permitted,
a source language would have a different definition and meaning on every computer
system, an effect that would certainly resonate with the user in an unpleasant fashion.
Nevertheless, while the pure lambda calculus from Section 4.1 avoids any issues of
portability through its high level of abstraction, in reality many architectural features
such as the precise layout of its memory address space cannot be hidden from programs
expressed in a typical low-level language such as C without an undue sacrifice of their
performance.

The semiformal ANSI/ISO specification of the standard C language [ANSI 89] ad-
dresses these challenges by leaving portions of the semantic model undefined, unspec-
ified or implementation-defined and, in general, open to further architecture-specific
interpretation. Intuitively, such specifications describe not a single programming lan-
guage but a whole family of languages, whose members differ in the specific choices
of behaviours assigned to these portions of their definition. A similar approach is also
pursued in this work, where the three forms of under-specification present in Standard
C are modelled as follows:

4.3 A LANGUAGE WITH A DISTINCTION 81

1 Undefined behaviour is described in the C Standard as “behaviour, upon use of
a non-portable or erroneous program construct, of erroneous data or of indeter-
minately valued object, for which this International Standard imposes no require-
ments.” A typical example of programs that invoke undefined behaviour are non-
terminating C functions without side effects or those which attempt to access the
value of a non-existent memory-resident object. In Chapter 5, the meaning of all C
constructs whose behaviour is undefined in Standard C is modelled by translation
into irreducible Etude terms, i.e., terms for which the evaluation function described
later in Section 6.3 is itself undefined.

2 Implementation-defined behaviour is specified by the ANSI/ISO committee as “be-
haviour, for a correct program construct and correct data, that depends on the char-
acteristics of the implementation and that each implementation shall document.”
Typical examples include the semantics of C bit arithmetic operators “~”, “&”, “^”
and “|”, or the range of numeric values representable exactly by a given scalar
object. Like most other work on language semantics, this project models such be-
haviour with the help of numerous language parameters, whose precise values are
explicitly excluded from the generic fragment of the specification. In particular,
the generic fragment of Etude is contained entirely in the present chapter, while the
generic fragment of C itself is defined later in Chapter 5. Every language parameter
is modelled as a specific Haskell construct whose critical algebraic properties (but
not the actual definition) are captured within its type signature and a set of theo-
rems expressed in the dependant type system described earlier in Chapter 3. For
Etude, the actual implementation-defined bindings of these parameters, appropriate
for the MMIX architecture targeted by the compiler being described are included
in Chapter 6, while, for C, a typical implementation of the most important lan-
guage parameters is specified separately in Appendix C. In both cases, language
parameters can assume the form of numeric constants, functions or even theorems
as required for a successful rendition of the corresponding linguistic properties.

3 Finally, unspecified behaviour is defined in the C Standard as “behaviour, for a
correct program construct and correct data, for which this International Standard
explicitly imposes no requirements.” A typical example includes the order in which
the side effects resulting from evaluation of individual function arguments are ef-
fected in the program. Since, like implementation-defined behaviours, unspecified
behaviours are characteristic of semantically-meaningful programs, the only differ-
ence between the two is in their documentation requirements. Although an explicit
definition of any unspecified language parameters should be generally excluded
from the compiler’s description, some of these parameters are critical to a suc-
cessful semantic treatment of the targeted MMIX architecture and, for that reason,
many of them are given concrete definitions in Chapter 6 and distinguished from
implementation-defined parameters only in the associated informal discussion.

82 CHAPTER 4: LAMBDA CALCULUS

4.4 Atoms and Their Formats
Perhaps the most pervasive of all language parameters are those which, collectively, ab-
stract over the details of a specific arithmetic model adopted by a particular instruction
set architecture. A correct level of abstraction in this model is as critical to a faithful
specification of C as it is essential for definition of Etude’s semantics itself. Accord-
ingly, I begin the description of Etude with a detailed account of the facilities provided
by the language for manipulation of numeric quantities, whose concrete implementa-
tion will be completed in Chapter 6 in a manner appropriate for the MMIX instruction
set architecture.

In the pure lambda calculus from the previous section, the structure of lambda
terms represented the only means of capturing the essence of all mathematical con-
structs. This is not so in Etude, in which all such objects are depicted by expression-
like entities known as atoms, intuitively intended to designate simple scalar object such
as variables and concrete integer values. To improve readability of the following for-
malisation of the C language, Etude atoms also admit simple algebraic operations on
these objects such as negation “�φ (α)” and multiplication “α1 �φ α2”. In particu-
lar, the abstract structure of all atoms is captured by the following set of four Haskell
data type definitions:

atom[[ν]] :
ν (variable atoms)
rational format (constant atoms)
unary-op format atomν (unary operations)
atomν binary-op format atomν (binary operations)

atoms[[ν]] : (lists of atoms)
[atomν]

unary-op: one of
� � format

binary-op: one of
+ � � � . . 4 5 5 � � = 6= < > � �

In other words, the syntax of atoms includes variables, rational numbers and a handful
of predefined arithmetic operations such as “�φ (α)” and “α1 �φ α2”, in which α , α1

and α2 represent some other arbitrary atomic expressions. The precise meanings of all
atomic operators described by the Haskell data types “unary-op” and “binary-op”, as
well as the purpose of their format operand φ are discussed later in this section.

The simplest of all atomic forms are the variable atoms, depicted by the variable’s
identifier as in “ν”. Unlike the pure lambda calculus from Section 4.1, Etude does
not prescribe a predetermined implementation of such terms, allowing us to represent
variables by values of an arbitrary Haskell type that is a member of the standard classes
“eq”, “ord” and “enum” described separately in Appendix A. Given one such type ν ,
the type of Etude atoms in which all variables are represented by well-formed values
of ν is written as “atomν”. Individual atom expressions of this type are generally

4.4 ATOMS AND THEIR FORMATS 83

depicted by the Greek letter “α” or a decorated version thereof, such as “α 0”, “αk”,
etc. Similarly, operator values of the “unary-op” and “binary-op” types are generally
represented by the variable “op”, while “format” entities are, for conciseness, depicted
by the Greek letter “φ”.

Since the syntax of atoms does not include a binding construct such as “λν .τ ”,
every variable appearing anywhere in an atom α is automatically included in its set
of free variables FV(α), which can be constructed trivially by the following induction
over the atom’s lexical structure:

FV[[.]] :: (ord ν)) atomν ! fνg

FV[[ν]] = fνg
FV[[#xφ]] = ∅

FV[[opφ (α)]] = FV(α)
FV[[α1 opφ α2]] = FV(α1) [FV(α2)

and also, for entire lists of atoms:

FV[[.]] :: (ord ν)) atomsν ! fνg

FV[[ᾱ]] =
S

[FV(αk) αk ᾱ]

The later definition uses the Haskell list comprehension notation “[f (xk) xk x̄]” in
order to apply the “FV” function to every element of the supplied atomic list ᾱ and,
subsequently, the list union operator “

S
” described in Appendix A.8 to collapse the

resulting list into a single set.
In general, variable atoms are meaningless in isolation, but may be closed by the

simple process of variable substitution defined by the following Haskell constructions:

[[.]]/[[.]] :: (ord ν)) atomν ! (ν ! atomν) ! atomν

such that “ν/S” replaces the variable ν with its binding in the finite map S whenever
such binding exists, leaving all other atoms ν 0 /2 dom(S) unchanged:

[[ν]]/[[S]] ν 2 dom(S) = S(ν)
otherwise = [[ν]]

For all other atomic forms, the substitution is simply applied recursively to every con-
stituent of the construct:

[[#xφ]] /[[S]] = [[#xφ]]
[[opφ (α)]] /[[S]] = [[opφ [[α/S]]]]
[[α1 opφ α2]]/[[S]] = [[[[α1/S]] opφ [[α2/S]]]]

In the same vein, a substitution of an entire list of atoms can be described by the
following list comprehension:

[[.]]/[[.]] :: (ord ν)) atomsν ! (ν ! atomν) ! atomsν

[[ᾱ]]/[[S]] = [αk/S αk ᾱ]

The second most common atomic form, written as “#xφ”, represents quantities with a
predefined numeric value depicted by the rational constant x. Precisely what values of x

84 CHAPTER 4: LAMBDA CALCULUS

should be permitted in a well-formed atomic construct is, unfortunately, a controversial
topic since, after over 50 years of development, designers of instruction set architectures
are yet to reach a universal agreement on the precise mapping between the infinite set of
all rational numbers known to mathematics and the finite resources available to physical
computational machines. In the generic fragment of Etude semantics, this mapping
between atomic and numeric values is known as a format, so called because, under
typical Etude implementations, it is directly related to the encoding of numeric values
into bit patterns manipulated by binary computational hardware. The reader should take
care to note that the concept of a format is vastly different from that of an expression
type in the type-theoretic sense of the term. In fact, formats do little to mitigate Etude’s
untyped nature and, under most modern instruction sets architectures, only a handful of
different representations of data is supported directly by the underlying computational
hardware (the MMIX architecture described in Chapter 6 supports only one.) The
format annotations found in atoms of the form “#xφ” are used only to guide the precise
binary encoding of the rational quantity x and those associated with all other atomic
forms serve merely as a convenient lexical means of grouping the plethora of otherwise-
distinct arithmetic operations into a small number of related categories.

Formally, every format is represented by a pair of the form “γ .ε”, in which the two
components γ and ε are known, respectively, as the format’s genre and encoding:

format :
genre . encoding

genre: one of
N Z R F O

For convenience, these two components may be extracted from a given format with the
help of the following Haskell definitions:

γ [[.]] :: format ! genre
γ [[γ .ε]] = γ

ε [[.]] :: format ! encoding
ε [[γ .ε]] = ε

Genres are used to subdivide the set of all available formats into six different fami-
lies according to their various semantic properties. In particular, the “N” genre rep-
resents a family of formats capable of representing non-negative integers or natural
numbers, while the “Z” formats interpret bit patterns as signed integers taken from a
suitable range of values as determined by the format’s associated encoding component.
Formats in these two genres are known as natural and integer formats, respectively.
The “R” genre describes a small set of rational formats that enable Etude programs to
manipulate a more general class of rational numbers represented in one of the popu-
lar floating point encodings such as the IEEE 754 Standard for Binary Floating-Point
Arithmetic [IEEE 754]. The remaining two genres “F” and “O” characterise the highly-
specialised function and object formats, collectively known as the pointer format fam-

4.4 ATOMS AND THEIR FORMATS 85

ily. Their individual rôles are discussed later in the current chapter. Collectively, for-
mats from the “N” and “Z” genres are known as integral formats and those from “N”,
“Z” or “R” genres are often referred to as arithmetic formats in this work.

The genre also determines the set of encoding values permitted in a format, al-
though, once again, most of the rules that determine the precise relationship between
genres and encodings is left unspecified in the generic fragment of the Etude language.
Accordingly, in this chapter, the well-formedness property “WF[[.]] :: format ! V” is
described only indirectly through a small set of simple constraints that, collectively,
outline the minimal algebraic properties of all well-formed Etude formats.

In particular, every Etude implementation is guaranteed to support at least one
format from every genre, whose encoding is represented by some unspecified common
value “Φ” and, further, for every well-formed integer format “Z.ε”, the corresponding
natural format “N.ε” is also guaranteed to be well-formed. Formally:

WFΦ :: 8 γ) WF(γ) ! WF[[γ .Φ]]
WFI :: 8 ε) WF[[Z.ε]] ! WF[[N.ε]]

Such distinguished encoding “Φ” is known as the standard encoding of the underlying
instruction set architecture and is represented formally by an implementation-defined
Haskell definition with the following type signature:

Φ :: encoding

Every well-formed format φ is further associated with four numeric properties known
as its size, width, greatest lower bound and least upper bound, represented by the
following Haskell constructions:

S [[.]] :: format ! integer (size)
W [[.]] :: format ! integer (width)
glb[[.]] :: format ! rational (greatest lower bound)
lub[[.]] :: format ! rational (least upper bound)

Intuitively, a format’s size S(φ) represents the amount of space (in bytes) occupied by
values encoded under that format in memory, its width W (φ) represents the number
of bits utilised in the underlying binary representation of data and the lower and up-
per bounds depict the smallest and greatest numeric quantities that are representable
precisely under that format. Formally, these properties are subject to the following
universal constraints on every Etude implementation:

SIZEφ :: 8 φ) WF(φ) ! [[S(φ) > 0]]
WIDTHφ :: 8 φ) WF(φ) ! [[0 < W (φ) � ω � S(φ)]]
GLBφ :: 8 φ) WF(φ) ! [[glb(φ) � 0]]
LUBφ :: 8 φ) WF(φ) ! [[lub(φ) > 0]]

In other words, the greatest lower bound of every Etude format must always have a
negative or zero value, while its size, width and least upper bound are guaranteed to
represent positive integer quantities, with the width no greater than the number of bytes
required for representation of that format’s value in a pure binary notation, i.e., the

86 CHAPTER 4: LAMBDA CALCULUS

product of its size with the architecture’s byte width parameter. In the remainder of this
work, the architecture’s byte width is represented universally by the Greek letter “ω”,
as stipulated by the following Haskell type signature:

ω :: integer

A further two constraints are imposed on the bounds of all well-formed natural formats
as follows:

GLBN :: 8 ε) WF[[N.ε]] ! [[glb[[N.ε]] = 0]]

LUBN :: 8 ε) WF[[N.ε]] ! [[lub[[N.ε]] = 2W [[N.ε]] � 1]]

From theorem WIDTHφ, it should be clear that the byte width must always assume
a strictly-positive integer value. Collectively, the above theorems guarantee that, on
every Etude implementation, all natural numbers are always represented using pure
binary notation as required by the ISO C Standard [ANSI 89]. On the other hand,
integer formats have a much more relaxed set of properties that are captured as follows:

SIZEZ :: 8 ε) WF[[Z.ε]] ! [[S [[Z.ε]] = S [[N.ε]]]]
GLBZ :: 8 ε) WF[[Z.ε]] ! [[glb[[Z.ε]] � �lub[[Z.ε]]]]
LUBZ :: 8 ε) WF[[Z.ε]] ! [[lub[[Z.ε]] < lub[[N.ε]]]]

The range of quantities representable under the rational arithmetic formats in the “R”
genre is somewhat more difficult to characterise. On almost all modern architectures,
these formats are associated with the numeric encodings defined by the IEEE 754 Stan-
dard for Binary Floating Point Arithmetic [IEEE 754], although other similar repre-
sentations of floating point numbers can be also found in common use. In general,
every such representation is characterised completely by four integer quantities known
as the format’s radix, precision, minimum exponent and maximum exponent, respec-
tively. Formally, these language parameters are captured for every well-formed rational
format “R.ε” by the following four Haskell functions:

r [[.]] :: format ! integer (radix)
p[[.]] :: format ! integer (precision)
Emin [[.]] :: format ! integer (minimum exponent)
Emax[[.]] :: format ! integer (maximum exponent)

In general, these four properties are only ever defined for well-formed rational formats,
whereby they are subject to the following value constraints:

RADIX :: 8 ε) WF[[R.ε]] ! [[r [[R.ε]] > 1]]
PREC :: 8 ε) WF[[R.ε]] ! [[p[[R.ε]] > 0]]
EMIN :: 8 ε) WF[[R.ε]] ! [[Emin [[R.ε]] < 0]]
EMAX :: 8 ε) WF[[R.ε]] ! [[Emax[[R.ε]] > 0]]

Intuitively, a given rational formal φ is capable of representing precisely every number
of the form (�1)s �m� r(φ)e � p(φ), where s, m and e are non-negative integers such
that 0 � s � 1, Emin(φ) � e � Emax(φ) and 0 � m < r(φ)p(φ). Formally:

GLBR :: 8 ε) WF[[R.ε]] ! [[glb[[R.ε]] = �r[[R.ε]]p[[R.ε]] � 1� r[[R.ε]]Emax[[R.ε]] � p[[R.ε]]]]
LUBR :: 8 ε) WF[[R.ε]] ! [[lub[[R.ε]] = �glb[[R.ε]]]]

4.4 ATOMS AND THEIR FORMATS 87

But back to Etude atoms. In this chapter, their meaning is represented by an algebraic
semantics formed from the usual well-formedness property “WF[[.]] :: atomν ! V” and
an atom equivalence relation “[[.]] � [[.]] :: atomν ! atomν ! V”. In Chapter 6, both
properties are defined precisely in terms of the operational behaviour of Etude atoms
and the two semantic formulations are shown to be equivalent by proving all of the
theorems outlined in the remainder of this section.

In general, well-formedness can be asserted only for closed atoms, so that variables
may never appear in operands of the “WF” and “�” properties. A constant atom of the
form “#xφ”, however, has a well-defined meaning provided that the rational number x
is equal to 0 or else it is representable precisely under the corresponding format φ :

WF0 :: 8 φ) WF(φ) ! WF[[#0φ]]

WFI :: 8 n :: integer, φ)
WF(φ) !
[[γ(φ) 2 fN, Zg ^ glb(φ) � n � lub(φ)]] !
WF[[#xφ]]

WFR :: 8 s, m, e :: integer, φ)
WF(φ) !

[[γ(φ) = [[R]] ^ 0 � s � 1 ^ 0 � m < r(φ)p(φ) ^ Emin(φ) � e � Emax(φ)]] !

WF[[#[[(�1)s � m� r(φ)e � p(φ)]]φ]]

The last of these theorems defines the minimal set of atoms guaranteed to be rep-
resentable under a rational format from the “R” genre. Intuitively, this set includes
at least the normalised floating point numbers of the form (�1)s �m� r(φ)e � p(φ),
where s, m and e are arbitrary integers such that 0 � s � 1, 0 � m < r(φ)p(φ) and
Emin(φ) � e � Emax(φ).

Otherwise, in all arithmetic atoms of the form “opφ (#xφ)” or “#xφ opφ #yφ”, every
operand “#xφ” and “#yφ” must represent a well-formed atom. More so, the operations
are guaranteed to be meaningful only if their true arithmetic result falls within the
numeric bounds established by φ , or else if φ belongs to the natural genre “N”. If
op represents one of the five arithmetic operators “+φ”, “�φ”, “�φ”, “�φ” or “. .

φ”, then
these constraints are captured formally by the following five theorems:

WF: :: 8 x, φ)
WF[[#xφ]] !
[[γ(φ) = [[N]] _ (γ(φ) 2 fZ, Rg ^ glb(φ) � �x � lub(φ))]] !
WF[[�φ #xφ]]

WF+ :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) = [[N]] _ (γ(φ) 2 fZ, Rg ^ glb(φ) � x + y � lub(φ))]] !
WF[[#xφ +φ #yφ]]

WF� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) = [[N]] _ (γ(φ) 2 fZ, Rg ^ glb(φ) � x� y � lub(φ))]] !
WF[[#xφ �φ #yφ]]

88 CHAPTER 4: LAMBDA CALCULUS

WF� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) = [[N]] _ (γ(φ) 2 fZ, Rg ^ glb(φ) � x� y � lub(φ))]] !
WF[[#xφ �φ #yφ]]

WF� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Z, Rg ^ glb(φ) � x/y � lub(φ)]] !
WF[[#xφ �φ #yφ]]

More so, in a remainder operation of the form “#xφ
. .

φ #yφ”, φ must always represent
an integral format with glb(φ) � x/y � lub(φ):

WF . . :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Z, Rg ^ glb(φ) � x/y � lub(φ)]] !
WF[[#xφ

. .
φ #yφ]]

Similarly, in the bit operations “α1 4φ α2”, “α1 5φ α2”, “α1 5φ α2”, “α1 �φ α2” and
“α1 �φ α2”, φ must belong to an integral genre and both operand atoms must have
non-negative values. For the bit shift operators “�φ” and “�φ”, the value of α2 must
be smaller than the width of φ and, further, for the right bit shift “�φ”, the product of
α1 and 2α2 must also fall within the range of values representable by that format. In
Haskell:

WFBIT :: 8 x, y, φ , op)
WF[[#xφ]] ! WF[[#yφ]] !

[[x � 0 ^ y � 0 ^ op 2 f4, 5, 5g ^ γ(φ) 2 fN, Zg]] !
WF[[#xφ opφ #yφ]]

WF� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[x � 0 ^ 0 � y < W (φ) ^ (γ(φ) = [[N]] _ (γ(φ) = [[Z]] ^ x� 2y � lub(φ)))]] !
WF[[#xφ �φ #yφ]]

WF� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[x � 0 ^ 0 � y < W (φ) ^ γ(φ) 2 fN, Zg]] !
WF[[#xφ �φ #yφ]]

Finally, the remaining bit complement operator “�φ” is guaranteed to be applicable
only under natural formats from the “N” genre:

WF� :: 8 x, φ) WF[[#xφ]] ! [[γ(φ) = [[N]]]] ! WF[[�φ #xφ]]

The addition operator “+φ” may be also applied under a well-formed format from the
object genre “O”, provided that its second operand is well-formed under the standard
integer format “Z.Φ”. However, the precise construction of all such atomic forms
depends heavily on the underlying memory architecture and their generic semantics
are discussed separately in Sections 4.5 and 4.6 later in this chapter.

The two equality operators “=φ” and “6=φ” are well-formed for all pairs of mean-
ingful operand values, while the relational operators “<φ”, “>φ”, “�φ” and “�φ” are

4.4 ATOMS AND THEIR FORMATS 89

meaningful only under the arithmetic and object (but not functional) formats:

WFEQL :: 8 x, y, φ , op)
WF[[#xφ]] ! WF[[#yφ]] !
[[op 2 f=, 6=g]] !
WF[[#xφ opφ #yφ]]

WFREL :: 8 x, y, φ , op)
WF[[#xφ]] ! WF[[#yφ]] !
[[op 2 f<, >, �, �g ^ γ(φ) 6= [[F]]]] !
WF[[#xφ opφ #yφ]]

Finally, a conversion operation of the form “φ 0
φ (#xφ)” is well-formed whenever both of

the formats φ and φ 0 belong to some arithmetic genre and the numeric value of x falls
within the bounds of the target format φ 0, or else if an integral format φ is converted into
a natural format φ 0, or when the operation converts between natural, integral, function
and object representations of the constant 0. Formally:

WFCN :: 8 x, φ , φ 0)
WF[[#xφ]] !
[[γ(φ) 2 fN, Zg ^ γ(φ 0) = [[N]]]] !
WF[[φ 0φ (#xφ)]]

WFCA :: 8 x, φ , φ 0)
WF[[#xφ]] !
[[fγ(φ), γ(φ 0)g � fN, Z, Rg ^ glb(φ 0) � x � lub(φ 0)]] !
WF[[φ 0φ (#xφ)]]

WFCP :: 8 φ , φ 0)
WF(φ) ! WF(φ 0) !
[[γ(φ) /2 [[R]] ^ γ(φ) /2 [[R]]]] !
WF[[φ 0φ (#0φ)]]

No other form of atoms need be well-formed on ever Etude implementation, except
that, in order to reason about more complex inductively-defined atomic structures, one
additional theorem is required:

WF� :: 8 α1, α2) WF(α1) ! (α1 � α2) ! WF(α2)

Intuitively, this states that well-formedness of a particular atom α is always sufficient to
establish well-formedness of all other atoms α 0 belonging to the same equivalence class.
In the generic algebraic semantics of Etude, these equivalence classes are defined by
the binary Haskell property “�”, which, like, “WF”, may have various implementation-
specific aspects and, accordingly, is only characterised through a set of appropriate
constraint theorems in this chapter. For the MMIX instruction set architecture, its
complete formulation is given separately in Chapter 6.

Since “�” should represent an equivalence relation, it must always satisfy the three
equivalence laws of reflexivity, symmetry and transitivity. Formally:

REFLα :: 8 α ! (α � α)
SYMMα :: 8 α1, α2) (α1 � α2) ! (α2 � α1)
TRANSα :: 8 α1, α2, α3) (α1 � α2) ! (α2 � α3) ! (α1 � α3)

90 CHAPTER 4: LAMBDA CALCULUS

More so, applying a unary or binary arithmetic operator to pairwise-equivalent argu-
ments always produces a pair of equivalent Etude atoms as depicted by the following
two compatibility laws:

EQVα1 :: 8 α1, α2, φ , op) (α1 � α2) ! [[opφ (α1)]] � [[opφ (α2)]]
EQVα2 :: 8 α11, α21, α12, α22, φ , op)

(α11 � α12) ! (α21 � α22) ! [[α11 opφ α21]] � [[α12 opφ α22]]

The remaining theorems in this section capture the precise set of properties guaranteed
for arithmetic operations by the C Standard [ANSI 89]. First of all, every well-formed
arithmetic operation applied under a natural format “N.ε” is equivalent to an atom of
the form “#xN.ε”, where x represents the true mathematical result of the operation taken
modulo lub[[N.ε]] + 1. Formally:

EQV+N :: 8 x, y, ε)
WF[[#xN.ε]] ! WF[[#yN.ε]] !
[[#xN.ε +N.ε #yN.ε]] � [[#[[(x + y) mod (lub[[N.ε]] + 1)]]N.ε]]

EQV�N :: 8 x, y, ε)
WF[[#xN.ε]] ! WF[[#yN.ε]] !
[[#xN.ε �N.ε #yN.ε]] � [[#[[(x� y) mod (lub[[N.ε]] + 1)]]N.ε]]

EQV�N :: 8 x, y, ε)
WF[[#xN.ε]] ! WF[[#yN.ε]] !
[[#xN.ε �N.ε #yN.ε]] � [[#[[(x� y) mod (lub[[N.ε]] + 1)]]N.ε]]

EQV:N :: 8 x, ε)
WF[[#xN.ε]] !
[[�N.ε (#xN.ε)]] � [[#[[�x mod (lub[[N.ε]] + 1)]]N.ε]]

EQV�N :: 8 x, ε)
WF[[#xN.ε]] !
[[�N.ε (#xN.ε)]] � [[#[[lub[[N.ε]]� x]]N.ε]]

EQVIN :: 8 x, φ , ε)
WF[[#xφ]] ! WF[[N.ε]] ! [[γ(φ) 2 fN, Zg]] !
[[N.εφ (#xφ)]] � [[#[[x mod (lub[[N.ε]] + 1)]]N.ε]]

The last two theorems in the above list describe the meanings of bit complement and
natural conversion operations, respectively. Intuitively, a bit complement of the form
“�φ (#xφ)” inverts the binary representation of x, producing the value of “lub(φ)� x”
for all natural formats φ , while the conversion atom “φ 0

φ (#xφ)” transforms an arbitrary
signed or unsigned integer x into the natural number “x mod (lub(φ 0)� 1)”.

On the other hand, under an integer or rational format φ , these operations always
approximate their true arithmetic result x within some predetermined margin of error
ulpφ (x), provided that this result falls within the numeric bounds established by the
format. In particular, if the true arithmetic result x of such an operation is approximated
by an atom of the form “#x0φ”, then we can always be sure that x0 � x < ulpφ (x).
Formally, the upper bounds imposed on this approximation error is known as the unit
of least precision. For formats from the “Z” genre, this value is always equal to 1,
so that all arithmetic operations over integer values are always exact in Etude. Under

4.4 ATOMS AND THEIR FORMATS 91

rational formats, however, the only guarantee provided by the generic fragments of
the language is that the operation’s result differs from its true arithmetic meaning by
less than r(φ)blogr(φ) x c � p(φ) + 1 or r(φ)Emin(φ) � 1 in magnitude, whichever is greater.
Formally:

ulp[[.]][[.]] :: format ! rational ! rational

ulpφ [[x]] γ(φ) = [[Z]] = 1
γ(φ) = [[R]] ^ x < r(φ)Emin(φ) � 1 = r(φ)Emin(φ) � 1

γ(φ) = [[R]] ^ x � r(φ)Emin(φ) � 1 = r(φ)blogr(φ) x c � p(φ) + 1

Using this auxiliary definition, the meanings of all arithmetic operations over signed
integers and rational numbers can be formalised as follows:

EQV+A :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fZ, Rg ^ glb(φ) � x + y � lub(φ)]] !
[[#xφ +φ #yφ]] � [[#zφ]] !
[[z� (x + y) < ulpφ (x + y)]]

EQV�A :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fZ, Rg ^ glb(φ) � x� y � lub(φ)]] !
[[#xφ �φ #yφ]] � [[#zφ]] !
[[z� (x� y) < ulpφ (x� y)]]

EQV�A :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fZ, Rg ^ glb(φ) � x� y � lub(φ)]] !
[[#xφ �φ #yφ]] � [[#zφ]] !
[[z� (x� y) < ulpφ (x� y)]]

EQV�A :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fZ, Rg ^ y 6= 0 ^ glb(φ) � x/y � lub(φ)]] !
[[#xφ �φ #yφ]] � [[#zφ]] !
[[z� (x/y) < ulpφ (x/y)]]

EQV:A :: 8 x, z, φ)
WF[[#xφ]] !
[[γ(φ) 2 fZ, Rg ^ glb(φ) � �x � lub(φ)]] !
[[�φ (#xφ)]] � [[#zφ]] !
[[z� (�x) < ulpφ (�x)]]

When applied under an integral format, the two Etude operators “�φ” and “. .
φ” are

further constrained to produce the quotient and remainder from the division of their
operands’ values, so that, if both of the operands involved in an atom of the form
“#xφ �φ #yφ” have non-negative values, then the result is always equivalent to the
integral portion of the fraction x/y. Further, for every triple of integers x, y and z
such that “#xφ �φ #yφ � #zφ”, the corresponding remainder operation of the form
“#xφ

. .
φ #yφ” is guaranteed to be equivalent to “#x� y� zφ”, provided that this result

92 CHAPTER 4: LAMBDA CALCULUS

falls within the bounds of the underlying integral format φ . Formally:

EQV�I :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ x � 0 ^ y > 0]] !
[[#xφ �φ #yφ]] � [[#[[bx/yc]]φ]]

EQV . .I :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ y 6= 0 ^ glb(φ) � x� y� z � lub(φ)]] !
[[#xφ �φ #yφ]] � [[#zφ]] !
[[#xφ

. .
φ #yφ]] � [[#[[x� y� z]]φ]]

Besides the earlier natural conversions, Etude also supports translations between ar-
bitrary arithmetic formats, as well as conversions between an integral format and one
from the functional or object genre. In particular, if “#xφ” represents a well-formed
atom from the arithmetic genre “N”, “Z” or “R” with glb(φ 0) � x � lub(φ 0), then a con-
version operation of the form “φ 0

φ (#xφ)” is always equivalent to some other atomic
form “#z

φ
0”, in which z approximates x to within one unit of the target format’s least

precision ulp
φ

0(x). Further, if φ 0 belongs to an integral genre, then z is guaranteed to
be equal to the integral part of x as depicted by the notation “dbxec” defined separately in
Appendix A. Finally, if x is equal to 0 and both of the two formats involved belong to a
non-rational genre, then the resulting atom is simply equivalent to “#0

φ
0”. Formally:

EQVRA :: 8 x, z, φ , φ 0)
WF[[#xφ]] ! WF[[φ 0]] !
[[γ(φ) 2 fN, Z, Rg ^ γ(φ 0) = [[R]] ^ glb(φ 0) � x � lub(φ 0)]] !
[[φ 0φ (#xφ)]] � [[#z

φ
0]] !

[[z� x < ulp
φ

0(x)]]

EQVAI :: 8 x, φ , φ 0)
WF[[#xφ]] ! WF[[φ 0]] !
[[γ(φ) 2 fN, Z, Rg ^ γ(φ 0) 2 fN, Zg ^ glb(φ 0) � dbxec � lub(φ 0)]] !
[[φ 0φ (#xφ)]] � [[#[[dbxec]]

φ
0]]

EQVPP :: 8 φ , φ 0)
WF(φ) ! WF(φ 0) !
[[γ(φ) 6= [[R]] ^ γ(φ 0) 6= [[R]]]] !
[[φ 0φ (#0φ)]] � [[#0

φ
0]]

The three bitwise operators “4φ”, “5φ” and “5φ” have a universally-defined meaning
only if both of their operands have non-negative integer values. When applied to a pair
of such well-formed operands under an appropriate integral format, these operations
are equivalent to performing, respectively, the boolean operation “^”, “6=” and “_” on
the pairwise-corresponding bits in the binary representation of their two arguments. In
Haskell, these requirements can be captured rather inefficiently as follows:

EQV4 :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ x � 0 ^ y � 0]] !
[[#xφ 4φ #yφ]] � [[#[[

P
[(x(k) ^ y(k))� 2i k [0 ... W (φ)� 1]]]]φ]]

4.4 ATOMS AND THEIR FORMATS 93

EQV5 :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ x � 0 ^ y � 0]] !

[[#xφ
5

φ #yφ]] � [[#[[
P

[(x(k) 6= y(k))� 2i k [0 ... W (φ)� 1]]]]φ]]

EQV5 :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ x � 0 ^ y � 0]] !

[[#xφ
5

φ #yφ]] � [[#[[
P

[(x(k) _ y(k))� 2i k [0 ... W (φ)� 1]]]]φ]]

using the bit index notation “x(k)” and list summation operator “Σ” whose formal
definition is given in Appendix A. Observe that only the least-significant W (φ) bits of
x and y are ever manipulated by these operations and that the result always represents a
non-negative integer in the range of the respective format, provided that the same holds
for each of the two operands to the construction.

The remaining two bit operations “#xφ �φ #yφ” and “#xφ �φ #yφ” are used to
shift the bit pattern encoded in their first operand x left or right by the number of
bits designated by the second argument y, effectively multiplying or dividing x by the
integer quantity 2y and rounding the resulting quotient towards �1. Both operations
are only guaranteed to be defined if x has a non-negative value, y is both non-negative
and less than the width of φ and, for the left shift operator “�φ”, φ belongs to a
natural genre “N”. As expected for natural formats, the arithmetic is performed modulo
lub(φ) + 1, although this point is mute for the “�φ” operator, whose result dbx/2yec is
always smaller than x in magnitude. Formally, these provisions are captured by the
following pair of theorems:

EQV�N :: 8 x, y, ε)
WF[[#xN.ε]] ! WF[[#yN.ε]] !
[[0 � y < W [[N.ε]]]] !
[[#xN.ε �N.ε #yN.ε]] � [[#[[(x� 2y) mod (lub[[N.ε]] + 1)]]N.ε]]

EQV�Z :: 8 x, y, ε)
WF[[#xZ.ε]] ! WF[[#yZ.ε]] !
[[0 � x� 2y � lub(Z.ε) ^ 0 � y < W [[Z.ε]]]] !
[[#xZ.ε �Z.ε #yZ.ε]] � [[#[[x� 2y]]Z.ε]]

EQV� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fN, Zg ^ x � 0 ^ 0 � y < W (φ)]] !
[[#xφ �φ #yφ]] � [[#[[bx/2yc]]φ]]

Similarly, the operations “#xφ <φ #yφ”, “#xφ >φ #yφ”, “#xφ �φ #yφ” and “#xφ �φ #yφ”
are always equivalent to “#zZ.Φ”, where z is equal to 1 whenever the corresponding
relation holds for its two operands and 0 otherwise, provided that φ represents a well-
formed format from any genre other than “F”:

EQV< :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 6= [[F]]]] !
[[#xφ <φ #yφ]] � [[#[[x < y]]Z.Φ]]

94 CHAPTER 4: LAMBDA CALCULUS

EQV> :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 6= [[F]]]] !
[[#xφ >φ #yφ]] � [[#[[x > y]]Z.Φ]]

EQV� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 6= [[F]]]] !
[[#xφ �φ #yφ]] � [[#[[x � y]]Z.Φ]]

EQV� :: 8 x, y, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 6= [[F]]]] !
[[#xφ �φ #yφ]] � [[#[[x � y]]Z.Φ]]

Little can be said in the generic fragment of Etude semantics about the meanings of
atoms constructed under object formats from the “O” genre. Nevertheless, every imple-
mentation of the language is required to preserve the following four simple equivalence
relations:

EQV+0 :: 8 x, ε)
WF[[#xO.ε]] !
[[#xO.ε]] � [[#xO.ε +O.ε #0Z.Φ]]

EQV+O :: 8 x, m, n, ε)
WF[[#xO.ε +O.ε #mZ.Φ]] ! WF[[#mZ.Φ +Z.Φ #nZ.Φ]] !
[[(#xO.ε +O.ε #nZ.Φ) +O.ε #mZ.Φ]] � [[#xO.ε +O.ε (#mZ.Φ +Z.Φ #nZ.Φ)]]

EQV�O :: 8 x, m, n, ε)
WF[[#xO.ε +O.ε #mZ.Φ]] ! WF[[#xO.ε +O.ε #nZ.Φ]] ! WF[[#mZ.Φ �Z.Φ #nZ.Φ]] !
[[(#xO.ε +O.ε #mZ.Φ) �O.ε (#xO.ε +O.ε #nZ.Φ)]] � [[#mZ.Φ �Z.Φ #nZ.Φ]]

EQVOO :: 8 x, ε)
WF[[#xO.ε]] !
[[#xO.ε]] � [[O.ε O.Φ(O.ΦO.ε (#xO.ε))]]

Intuitively, these state that every valid atomic form “#xO.ε” can be also interpreted as
an object sum “#yO.ε +O.ε #nZ.Φ”, in which y and n are known as the atom’s base and
offset, respectively. Under this interpretation, every constant object atom “#xO.ε” has the
base x with an implicit offset of 0. Further, the sum of two object atoms with the same
base is always equivalent to an atom with the same base and the sum of the operands’
individual offsets. More so, the difference of two atoms with equal base components
is always equal to the difference of their offset values, provided that, in all cases,
every intermediate step of these computations represents a well-formed Etude entity.
Finally, every well-formed object atom retains its meaning after round-trip conversion
through the standard object format “O.Φ”. A motivation for such interpretation of these
constructs can be found in Section 4.5 later in this chapter.

Last but not least, the portable fragment of Etude’s atomic semantics always assigns
a very specific meaning to the four comparison operators “=φ”, “6=φ”, “<φ”, “>φ”,
“�φ” and “�φ”. In particular, for all well-formed values of “#xφ” and “#yφ”, the atom
“#xφ =φ #yφ” is always equivalent to “#zZ.Φ”, where z has the value of 1 if x and y have

4.4 ATOMS AND THEIR FORMATS 95

identical numeric values and 0 otherwise. Conversely, under the same circumstances,
the “6=φ” operator delivers 0 if its operands have equal values and 1 otherwise. Both
constraints can be expressed concisely by the following pair of theorems:

EQV= :: 8 x, y, φ) WF[[#xφ]] ! WF[[#yφ]] ! [[#xφ =φ #yφ]] � [[#[[x = y]]Z.Φ]]
EQV 6= :: 8 x, y, φ) WF[[#xφ]] ! WF[[#yφ]] ! [[#xφ 6=φ #yφ]] � [[#[[x 6= y]]Z.Φ]]

An astute reader will rightly observe that, in most of the above constraint theorems,
well-formed atoms of the form “#xφ ” are singled out as particularly interesting. In this
work, such atoms are said to represent immediate constants and are identified formally
by the following Haskell predicate function:

IMM[[.]] :: (ord ν)) atomν ! bool

IMM[[#xφ]] = true
IMM[[other]] = false

On all sensible Etude implementations, every well-formed atom α is always equivalent
to some immediate constant α 0 that can be viewed as the atom’s fully-reduced normal
form. In this work, this constant is represented by the notation “E(α)”, using the
evaluation function E with the following Haskell signature:

E [[.]] :: (ord ν)) atomν ! atomν

and the obvious trio of semantic properties:

WFE :: 8 α) WF(α) ! WF[[E(α)]]
IMME :: 8 α) WF(α) ! [[IMM(E(α))]]
EQVE :: 8 α1, α2) WF(α1) ! WF(α2) ! [[E(α1) = E(α2)]] ! (α1 � α2)

Intuitively, E represents the operational semantics of Etude atoms, which must be de-
fined individually by every complete Etude implementation. In Chapter 6, one such
definition is provided for the MMIX-specific incarnation of the language. In contrast,
the above constraints on the atomic well-formedness and equivalence properties consti-
tutes the algebraic semantics of the portable Etude fragment, whose consistency with
the operational formulation is asserted by appropriate proofs of these properties given
in Section 6.3.

Although the above algebraic semantics may, at first sight, appear somewhat arbi-
trary, a closer scrutiny will quickly reveal that they describe precisely the minimal set
of requirements imposed on arithmetic operations by the ISO C Standard [ANSI 89],
whose accurate formalisation is the ultimate purpose of the Etude program representa-
tion. If we were to apply the same methodology in a description of some other program-
ming language, these algebraic semantics would, in all likelihood require a substantial
reworking, so that, in its present format, the calculus remains unsuitable for a broader
deployment in other compiler verification projects.

An astute reader may also observe that the resulting arithmetic model is incomplete,
in that it readily supports a rather unhelpful implementation of Etude that places all
atoms in the same single equivalence class. However, Chapter 6 bears witness to the

96 CHAPTER 4: LAMBDA CALCULUS

fact that at least one sensible operational model consistent with the above constraints
can be formulated for the language. Since all Etude programs that aspire for complete
portability must conform to every admissible operational interpretation of their syntax,
they must, by definition, also retain their validity on MMIX. Accordingly, the generic
Etude algebra presented in this section remains sufficient for a successful depiction
of the meaning of all programs conforming to the C Standard, while its rudimentary
nature readily explains the difficulty of constructing such programs within the Spartan
framework of ANSI C.

4.5 State of the Matter
Atoms are not the only kind of primitive entities manipulate by Etude. For better or
worse, most modern computational hardware is explicitly geared towards stateful oper-
ations on mutable objects, whose individual meanings may, contrary to all sensibilities
of the pure lambda calculus, change gradually throughout execution of a program.

The simplest and most popular way of modelling the dynamic semantics of such
rogue primitives is through the notion of an execution state, an abstract object that
is implicitly received, modified and returned by every function in the program. In
Etude, the execution state consists of two distinct components known individually as
the function and object environments which, for conciseness, are generally represented
by the Greek letters Λ and ∆, or collectively as a tuple of the form “(Λ, ∆)”.

Intuitively, a function environment Λ represents an oracle that encodes a poten-
tially unbounded set of Etude functions using a finite number of distinct atomic values,
by mapping every abstraction λ that actually appears within a program’s definition to
a predetermined atom Λ(λ), so that every every first-class entity in the Etude language
is always identified with a suitable atomic value, which greatly simplifies definition of
a bijective mapping between Etude programs and executable machine instruction se-
quences exemplified later in Chapter 6. Formally, the function environment constitutes
a mapping of atoms to syntactic representations of lambda abstractions as described by
the following Haskell data types:

f-env[[ν]] :
integer! functionν

function[[ν]] :
λ parametersν . termν

parameters[[ν]] :
[ν]

in which the notation “A! B” represents a polymorphic Haskell type that describes an
extendible partial function from A to B, or a mapping from a finite set of Haskell values
of type A to values of type B. It is implemented separately in Appendix A with the help
of the existing standard Haskell libraries. In particular, the above specification of f-envν

defines the function encoding oracle as a mapping of integers to Etude abstractions of

4.5 STATE OF THE MATTER 97

the form “λx1, x2 ... xn.τ ”, where the structure of the abstraction body τ is depicted
by the data type “termν” scrutinised later in Section 4.6. In general, the Λ oracle
is constructed by the system’s linker in an unspecified manner by enumerating all
functions defined within the individual program modules, although we could easily
extend Etude to accommodate more elaborate instruction set architectures which permit
dynamic introduction of new functions during the actual evaluation of a program.

In a well-formed function environment Λ, every integer n 2 dom(Λ) is mapped
to a well-formed closed Etude function, with 0 generally excluded from Λ’s domain.
Formally, these requirements can be captured concisely by the following property type:

data WF[[.]] :: 8 ν) f-envν ! V

where WFΛ :: 8 Λ) [[0 /2 dom(Λ)]] !
(8 n ! [[n 2 dom(Λ)]] ! WF[[Λ(n)]]) !
(8 n ! [[n 2 dom(Λ)]] ! [[FV(Λ(n)) = ∅]]) !
WF(Λ)

where the well-formedness of individual functions is determined inductively from well-
formedness of their parameter lists as follows:

data WF[[.]] :: 8 ν) functionν ! V

where WFλ :: 8 ν̄, τ) WF(ν̄) ! WF[[λν̄.τ]]

observing that the actual body term τ need not always be well-formed in such entities.
A list of variables represents a well-formed parameter list if and only if it actually
constitutes a well-formed set, i.e., if its length is equal to the cardinality of a set
constructed from these variable names. Formally:

data WF[[.]] :: 8 ν) parametersν ! V

where WFν :: 8 ν̄) [[length(ν̄) = ν̄]] ! WF[[ν̄]]

Finally, the set of variables appearing free within an Etude function includes every free
variable from its body term, excluding any identifiers found directly in the function’s
parameter list. In Haskell, this is captured by the following natural definition:

FV[[.]] :: (ord ν)) functionν ! fνg

FV[[λν̄.τ]] = FV(τ)nν̄

The structure and algebraic properties of Etude terms appearing in function bodies is
discussed later in Section 4.6. For now, we will only characterise them by the simple
substitution construct defined on all well-formed Etude functions as follows:

[[.]]/[[.]] :: (ord ν)) functionν ! (ν ! atomν) ! functionν

[[λν̄.τ]]/[[S]] = [[λν̄.[[τ/(Snν̄)]]]]

Unlike the function environment described above, the structure and properties of the
object environment ∆ threaded throughout the program’s execution as part of its evalu-
ation state are left mostly-unspecified in the generic fragment of Etude’s algebraic se-
mantics, since their complete implementation requires a great deal of knowledge about

98 CHAPTER 4: LAMBDA CALCULUS

the precise operational behaviour of all memory access operations supported by the un-
derlying instruction set architecture. Intuitively, an object environment describes the
address space layout of an Etude program under execution and, further, depicts the
current value of every memory-resident mutable object manipulated by monadic Etude
terms in accordance with the semantic rules defined later in Section 4.6.

Regardless of any particular implementation-specific memory organisation regime,
a generic abstract model of an object environment ∆ can be described by a set ξ̄(∆)

known as the environment’s envelope, a list ψ̄(∆) known as its data stack and a partial
function ᾱ(∆) that depicts bindings of the individual memory-resident objects to their
current contents. Formally, every envelope ξ̄ consists of a set of tuples (σk, φk, µ̄k), in
which the integer σk represents some concrete memory location, the format φk describes
the desired interpretation of data stored at that address and µ̄k depicts a set of zero or
more memory access attributes that further constrain the range of operations permitted
on that address space region. In Haskell, the type of every Etude envelope can be
defined as follows:

envelope:
fenvelope-elementg

envelope-element :
(integer, format, fmodeg)

mode: one of
C V

Intuitively, each envelope element (σk, φk, µ̄k) characterises all operational proper-
ties of the address space region [σk ... σk + S(φk)� 1], observing that entries found
in distinct envelopes may, on occasions, refer to overlapping regions in the program’s
memory image.

The set of access attributes µ̄ associated with each envelope element provides addi-
tional information about the precise semantics of the corresponding memory location.
In particular, portable Etude programs are universally prohibited from modifying values
of objects tagged with the constant attribute “C” and, further, may never assume any
particular behaviour for those object which, in the program’s address space, are tagged
with the volatile attribute “V”, since any such addresses may correspond to shared mem-
ory regions associated with memory-mapped registers and buffers of various hardware
devices, whose precise semantics remain outside of the program’s explicit control.

In every well-formed envelope, each element (σ , φ , µ̄) must entail the validity of
the format φ , the set of attributes µ̄ and the object atom “#σ [[O(φ)]]”, so that σ must, in
effect, represent a well-formed pointer to some φ -formatted memory-resident object.
Formally:

data WF[[.]] :: envelope-element ! V

where WF :: 8 σ , φ , µ̄) WF(φ) ! WF(µ̄) ! WF[[#σ [[O(φ)]]]] ! WF[[(σ , φ , µ̄)]]

4.5 STATE OF THE MATTER 99

in which the notation “O(φ)” provides a mapping of each Etude format φ to a desig-
nated object format suitable for depiction of address values for φ -formatted objects:

O[[.]] :: format ! format

The precise size S(ξ̄) of an entire memory region described by a given envelope ξ̄ is
defined as a difference between the greatest and smallest address value corresponding to
any of its individual envelope elements, or zero if ξ̄ represents an empty set. Formally:

S [[.]] :: envelope ! integer

S [[ξ̄]] (ξ̄ = ∅) = 0
(ξ̄ 6= ∅) = max[σk + S(φk) (σk, φk, µ̄k) ξ̄]�min[σk (σk, φk, µ̄k) ξ̄]

A given envelope ξ̄ may be also shifted into a particular memory location σ by adding
n� σ0 to the the offset σk of every envelope element (σk, φk, µ̄k) 2 ξ̄, where σ0 repre-
sents the least address of any element in ξ̄. In Haskell, this simple construction can be
executed as follows:

[[.]]� [[.]] :: envelope ! integer ! envelope

[[ξ̄]]� [[n]] = f(σk + n� σ0, φk, µ̄k) (σk, φk, µ̄k) ξ̄g

where σ0 = min[σk (σk, φk, µ̄k) ξ̄]

Finally, an envelope ξ̄ may be purged of any elements that overlap a given memory
region [σi ... σf � 1] as follows:

[[.]]n[[.]] :: envelope ! (integer, integer) ! envelope

[[ξ̄]]n[[σi, σf]] = f(σk, φk, µ̄k) (σk, φk, µ̄k) ξ̄, σk + S(φk) � σi _ σk � σfg

The use of access attribute tags in individual envelope elements introduces a number
of challenges that are best met by formalising the notion of an element accessibility
as the binary relation “ξk 2A ξ̄”. In particular, a given element (σ , φ , µ̄) is said to
be accessible in ξ̄ if and only if that envelope contains at least one element of the
form (σ , φ , µ̄0) such that µ̄0 � µ̄. Intuitively, this definition ensures that every memory
access operation performed by an Etude program must always specify at least the
complete attribute set associated with the targeted object in the program’s address
space. Formally, this operator is defined in Haskell as follows:

[[.]] 2A [[.]] :: envelope-element ! envelope ! bool

[[σ , φ , µ̄]] 2A [[ξ̄]] =
W

[σk = σ ^ φk = φ ^ µ̄k � µ̄ (σk, φk, µ̄k) ξ̄]

Besides the address space envelope ξ̄(∆) mentioned earlier, every well-formed object
environment also includes a second envelope ξ̄i(∆) whose elements describe all cur-
rently uninitialised memory objects introduced by the program. Formally, both no-
tations are given a formal mandate by the following pair of implementation-defined
Haskell functions:

ξ̄[[.]], ξ̄i[[.]] :: o-env ! envelope

100 CHAPTER 4: LAMBDA CALCULUS

Further, in order to facilitate establishment of the linear correctness property for our
translation of Etude into the MMIX architecture in Chapter 6, it is necessary to restrict
well-formed Etude programs to certain predictable patterns of memory allocations. To
this end, our abstract model of object environments includes an additional stack com-
ponent ψ̄(∆) that, intuitively, contains the complete history of all individual envelopes
introduced into ξ̄(∆) by the program as a list of stack frames, every one of which is rep-
resented simply by an envelope tagged with its allotted location within ξ̄(∆). Formally,
the structure of such a stack can be depicted by the following pair of Haskell data types:

stack :
[stack-frame]

stack-frame:
(integer, envelope)

so that the notation “ψ̄(∆)” can be formalised by some implementation-defined con-
struction with the following type signature:

ψ̄[[.]] :: o-env ! stack

Finally, the actual content of all initialised address space regions within a given object
environment ∆ can be depicted by a partial function ᾱ(∆ . σ , φ) that maps every valid
pair of the form “(σ , φ)” to its concrete atomic value as follows:

ᾱ[[.]] :: (ord ν)) (o-env . integer, format) ! atomν

The precise behaviour of this function will be, for most part, left unspecified in the
generic fragment of the Etude language. Intuitively, a given memory object (σ , φ) is
said to be populated in ∆ if and only if ᾱ(∆ . σ , φ) represents a well-formed Etude
atom, in which case that construct also determines the object’s current content in ∆.

Although, in general, we leave formulation of the precise validity criteria for object
environments at the mercy of individual Etude implementations, every well-formed ∆

must always specify a valid envelope ξ̄(∆) that includes at least all of the envelope
elements from ξ̄i(∆), together with any envelopes that are mentioned by the individual
stack frames of ψ̄(∆). Formally:

ENVE :: 8 ∆) WF(∆) ! WF[[ξ̄(∆)]]

ENVI :: 8 ∆) WF(∆) ! [[ξ̄i(∆) � ξ̄(∆)]]

ENVS :: 8 ∆) WF(∆) ! [[
S

[ξ̄k � σk (σk, ξ̄k) ψ̄(∆)] � ξ̄(∆)]]

The actual introduction of a new envelope ξ̄ into an existing object environment ∆ is
modelled by an environment extension operation of the form “∆/ξ̄”, while the dual
environment contraction “∆nξ̄” can be used to purge such an envelope from ∆. In the
algebraic semantics of Etude, the precise behaviour of these operations is left open to
further specification by individual Etude implementations, which should always assign
concrete definition to the following pair of Haskell functions:

[[.]]/[[.]] :: o-env ! envelope ! o-env
[[.]]n[[.]] :: o-env ! envelope ! o-env

4.5 STATE OF THE MATTER 101

In all cases, however, a well-formed extension ∆0 of some existing environment ∆ by
an envelope ξ̄ introduces a new stack frame (σc, ξ̄) into ψ̄(∆0), whereby it is inserted
at the front of the existing stack frame list ψ̄(∆). Further, the new envelope is included
in both ξ̄(∆0) and ξ̄i(∆0), after shifting it into place by its concrete location σc chosen
in some unspecified manner by the underlying instruction set architecture. Formally,
these constraints on the behaviours of the environment extension operator are captured
by the following three theorems:

EXTS :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ψ̄(∆/ξ̄) = (σc(∆ . ξ̄), ξ̄) ++ ψ̄(∆)]]

EXTE :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ξ̄(∆/ξ̄) = ξ̄(∆) [(ξ̄� σc(∆ . ξ̄))]]

EXTI :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ξ̄i(∆/ξ̄) = ξ̄i(∆) [(ξ̄� σc(∆ . ξ̄))]]

in which the actual location of ξ̄ within the resulting address space of ∆/ξ̄ is repre-
sented by the notation “σc(∆ . ξ̄)”, mandated by the following implementation-defined
Haskell function:

σc[[.]] :: (o-env . envelope) ! integer

In every other respects, the environment extension preserves all other formal properties
of the original environment ∆. In particular, all atomic bindings from ∆ that do not over-
lap the newly-introduced envelope ξ̄ always remain equivalent to their corresponding
meanings in the extended environment ∆/ξ̄, provided that both ∆ and ∆/ξ̄ are deemed
well-formed according to the implementation-defined rules outlined earlier:

EXTA :: 8 ∆, ξ̄, σk, φk, µ̄k)

WF(∆) ! WF(∆/ξ̄) ! [[(σk, φk, µ̄k) 2 ξ̄(∆)]] !

[[ᾱ(∆/ξ̄ . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

Conversely, the dual operation ∆nξ̄ purges the most recently allocated envelope ξ̄ from
the address space of ∆. In fact, such operations are always guaranteed to be well-formed
if the specified envelope actually appears at the top of the existing stack ψ̄(∆), a property
that can be captured in Haskell by the following theorem:

CON∆ :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! WF[[∆nξ̄]]

After every such well-formed contraction operation, the specified stack frame is popped
or removed from the top of ψ̄(∆) and the associated envelope is purged from the
environment’s two envelopes ξ̄(∆) and ξ̄i(∆):

CONS :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ψ̄(∆nξ̄) = tail(ψ̄(∆))]]

CONE :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ξ̄(∆nξ̄) = ξ̄(∆)n(ξ̄� σc)]]

CONI :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ξ̄i(∆nξ̄) = ξ̄i(∆)n(ξ̄� σc)]]

Most readers will readily recognise a correspondence between the above theorem and
the actual data stack regime imposed on the computational models of most modern
instruction set architectures. Such detailed formalisation of this model proves critical
to a successful treatment of certain rogue machine instruction sequences in a definition
of their semantics through a mapping of assembly programs onto Etude functions,
as mandated by the linear correctness principle from Chapter 2. Nevertheless, the

102 CHAPTER 4: LAMBDA CALCULUS

reader should observe that, in most cases, neither the envelope ξ̄(∆) nor the stack
ψ̄(∆) feature in the actual hardware implementation of the program’s address space,
since, strictly speaking, these components are not required for a successful evaluation
of well-formed Etude programs. Nevertheless, they are included in the above format
model, in order to restrain meaningful Etude programs from adopting certain patterns
of memory allocation that would render verification of the linear correctness principle
all but impossible in practice.

A well-formed contraction of the form “∆nξ̄” is also guaranteed to preserve the
content of every memory-resident object that, in ∆, is stored in a previously-allocated
region (σk, φk, µ̄k) 2 ξ̄(∆) of the program’s address space, provided that this region
does not overlap any of the elements in the envelope ξ̄ that is being exterminated
by the contraction operation:

CONA :: 8 ∆, σc, ξ̄, σk, φk, µ̄k)
WF(∆) !

[[head(ψ̄(∆) = (σc, ξ̄))]] !
[[(σk, φk, µ̄k) 2 ξ̄(∆)]] !

[[σk + S(φk) � σc _ σk � σc + S(ξ̄)]] !

[[ᾱ(∆nξ̄ . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

Finally, an Etude program may populate the individual objects in its address space
with concrete atomic values using an environment update operation of the general form
“∆/(σ , φ , α)”, as represented by the following implementation-defined function:

[[.]]/[[.]] :: (ord ν)) o-env ! (integer, format, atomν) ! o-env

In plain terms, ∆/(σ , φ , α) constructs a new environment ∆0 in which the given object
(σ , φ) is populated with the specified atom α and the associated envelope element is
removed from ξ̄i(∆0), provided that the resulting object environment is valid and that
ξ̄(∆) includes some element of the form “(σ , φ , µ̄)”. Formally:

SETα :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
[[ᾱ(∆/(σ , φ , α) . σ , φ)]] � [[α]]

SETI :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[ξ̄i(∆/(σ , φ , α) . σ , φ) = ξ̄i(∆)n(σ , σ + S(φ))]]

Such well-formed object update operations will never affect the contents of any non-
overlapping memory-resident objects currently allocated in the same address space:

SETᾱ :: 8 ∆, σ , φ , α , ξ̄, σk, φk, µ̄k)
WF(∆) ! WF[[∆/(σ , φ , α)]] !

[[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[(σk, φk, µ̄k) 2A ξ̄(∆)]] !
[[σk + S(φk) � σ _ σk � σ + S(φ)]] !
[[ᾱ(∆/(σ , φ , α) . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

4.6 TERMS OF THE GAME 103

and, further, they always preserve all other properties of the original environment
as follows:

SETE :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[ξ̄(∆/(σ , φ , α)) = ξ̄(∆)]]

SETS :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
[[ψ̄(∆/(σ , φ , α)) = ψ̄(∆)]]

SETX :: 8 ∆, σ , φ , α , µ̄, ξ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] ! WF[[∆/ξ̄]] !

WF[[(∆/(σ , φ , α))/ξ̄]]

SETN :: 8 ∆, σ , φ , α , µ̄, ξ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] ! WF[[∆/ξ̄]] !

[[σc(∆/(σ , φ , α) . ξ̄) = σc(∆ . ξ̄)]]

However, the resulting object environment is guaranteed to be well-formed only if α

represents a meaningful constant akin to “#xφ” for some rational number x, and under
assumption that an appropriate element (σ , φ , µ̄) has been already allocated in the
address space of ∆:

SET∆ :: 8 ∆, σ , φ , x, µ̄)

WF(∆) ! WF[[#xφ]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
WF[[∆/(σ , φ , [[#xφ]])]]

Finally, all updates of the same memory-resident object (σ , φ) with equivalent atomic
forms always result in identical object environments, whether the operation itself is
well-formed or not:

SET� :: 8 ∆, σ , φ , α1, α2) [[α1]] � [[α2]] ! [[∆/(σ , φ , α1) = ∆/(σ , φ , α2)]]

The reader should observe that the above definition of environment update operations
does not scrutinise any access attributes associated with the targeted object. However,
these attributes will soon become relevant to the semantics of the actual Etude term
forms that empower programs with a direct access to the environment data during
their execution.

4.6 Terms of the Game
Armed with the notions of atoms and the evaluation state, we are now ready to describe
the actual computational framework of the language, depicted by a family of syntac-
tic entities known as terms. Besides delivering their desired result values, Etude terms
may be also used to manipulate the program’s evaluation state and interact with other
aspects of its surrounding environment, such as the plethora of input and output devices
supported by modern computers. Although a number of different approaches towards

104 CHAPTER 4: LAMBDA CALCULUS

modelling of such interactive programs in a purely-functional language have been pro-
posed in literature, the most satisfactory one depicts interactive computations by struc-
tures known as monads [Moggi 89, Moggi 91, Wadler 92, Peyton Jones 93]. Without
dwelling into the somewhat arcane and, in our case, mostly irrelevant category-theoretic
foundations of these constructions, it will suffice to observe that monads in Etude fol-
low the same principles as their use in Haskell, with an additional provision made for
the absence of first-class functions in our intermediate program representation. In short,
the technique is based on a realisation that, in principle, it should be possible to detach
the semantic model of an interactive program from that of the devices being interacted
with, in the same way as atoms provide for a separation between the meanings of Etude
terms and the arithmetic objects that these terms manipulate. To this end, an interactive
Etude program is described as a monadic sequence of abstract entities depicting invo-
cations of the individual operating system primitives, every one of which represents a
single incident in the program’s life, generally without any attempt to model the per-
ceivable effects of these incidents on the surrounding computational environment. In
this, the monadic approach abstracts over the precise behaviour of individual input and
output devices, focusing instead on the manner in which these devices are utilised by
the program. In particular, given their interactive nature, the meanings of Etude terms
are most naturally expressed as state transformation functions instead of mere scalar
values. For example, the denotation of the C “printf” function is captured not by its
rather uninteresting return value, or by the collection of side effects resulting from its
evaluation such as the sequence of characters printed on the user’s terminal, but rather
by a function that applies a sequence of character-producing primitive operations to an
abstract object that represents the world in which the function is being evaluated.

Formally, the abstract syntax of all recognised Etude term forms is depicted by the
following set of Haskell data type definitions:

term[[ν]] :
RET (atomsν) (lifted atoms)
atomν (atomsν) (function application)
prim(atomsν) (primitive operation)
IF atomν THEN termν ELSE termν (conditional expressions)
NEW (envelope) (object introduction)
DEL (envelope) (object destruction)
GET [atomν , fmodeg] format (object inspection)
SET [atomν , fmodeg] format TO atomν (object adjustment)
SETI [atomν , fmodeg] format TO atomν (object initialisation)
LET bindingsν ; termν (monadic bindings)

bindings[[ν]] :
[bindingν] (set of term bindings)

binding[[ν]] :
parametersν = termν (individual term binding)

The algebraic semantics of terms are modelled by a set of Haskell functions and proper-

4.6 TERMS OF THE GAME 105

ties analogous to the well-formedness and equivalence of Etude atoms described earlier
in Section 4.4. In particular, every Etude term τ is associated with a set of free variables
FV(τ) derived from its lexical syntax as follows:

FV[[.]] :: (ord ν)) termν ! fνg

FV[[RET (ᾱ)]] = FV(ᾱ)
FV[[α (ᾱ)]] = FV(α) [FV(ᾱ)
FV[[π (ᾱ)]] = FV(ᾱ)
FV[[IF α THEN τ1 ELSE τ2]] = FV(α) [FV(τ1) [FV(τ2)

FV[[NEW (ξ̄)]] = ∅

FV[[DEL (ξ̄)]] = ∅

FV[[GET [α , µ̄]φ]] = FV(α)
FV[[SET [α1, µ̄]φ TO α2]] = FV(α1) [FV(α2)
FV[[SETI [α1, µ̄]φ TO α2]] = FV(α1) [FV(α2)

FV[[LET β̄; τ]] = FV(β̄) [(FV(τ)nBV(β̄))

and, for the actual list of bindings found in every “LET” construct:

FV[[.]] :: (ord ν)) bindingsν ! fνg

FV[[β̄]] =
S

[FV(τk) [[νk = τk]] β̄]

In general, the above construction collects all variable names appearing anywhere
within the term’s structure, except that any variables bound by the definition list β̄

in a term of the form “LET β̄; τ ” are always excluded from the set of variables appear-
ing free in such term’s body τ . Formally, the set of variables bound by a list of Etude
definitions is depicted by the notation “BV(β̄)” and constructed from the union of all
variables appearing anywhere to the left of the “=” sign in the list as follows:

BV[[.]] :: (ord ν)) bindingsν ! fνg

BV[[β̄]] =
S

[νk [[νk = τk]] β̄]

Further, we can also subject terms to the usual substitution function “τ/S” where S
represents a mapping of variable names to atoms intended as a replacement for these
variables within the term τ . Assuming that all atoms appearing in the finite map S are
closed, the definition of “/” is simple, provided that we take care to purge from S any
variables bound by every “LET” term before applying it to that term’s body:

[[.]]/[[.]] :: (ord ν)) termν ! (ν ! atomν) ! termν

[[RET (ᾱ)]] /[[S]] = [[RET ([[ᾱ/S]])]]
[[α (ᾱ)]] /[[S]] = [[[[α/S]]([[ᾱ/S]])]]
[[π (ᾱ)]] /[[S]] = [[π ([[ᾱ/S]])]]
[[IF α THEN τ1 ELSE τ2]]/[[S]] = [[IF [[α/S]] THEN [[τ1/S]] ELSE [[τ2/S]]]]

[[NEW (ξ̄)]] /[[S]] = [[NEW (ξ̄)]]
[[DEL (ξ̄)]] /[[S]] = [[DEL (ξ̄)]]
[[GET [α , µ̄]φ]] /[[S]] = [[GET [[[α/S, µ̄]]]φ]]
[[SET [α1, µ̄]φ TO α2]] /[[S]] = [[SET [[[α1/S, µ̄]]]φ TO [[α2/S]]]]
[[SETI [α1, µ̄]φ TO α2]] /[[S]] = [[SETI [[[α1/S, µ̄]]]φ TO [[α2/S]]]]

[[LET β̄; τ]] /[[S]] = [[LET [[β̄/S]]; τ/(SnBV(β̄))]]

106 CHAPTER 4: LAMBDA CALCULUS

and, for “LET” bindings:

[[.]]/[[.]] :: (ord ν)) bindingsν ! (ν ! atomν) ! bindingsν

[[β̄]]/[[S]] = [[[ν̄k = [[τk/S]]]] [[ν̄k = τk]] β̄]

Like atoms, terms are generally considered to be meaningful only if they are closed,
i.e., if all of their free variables have been substituted for some well-formed atomic
constants. However, in order to formalise the impact of monadic Etude terms on
their evaluation state, every such term τ must be always interpreted in the context
of an appropriate function environment Λ and object environment ∆, so that its well-
formedness is asserted by a property of the form “WF[[Λ, ∆ . τ]]” rather than a mere
“WF[[τ]]” as done previously for Etude atoms. Similarly, the equivalence of two terms
τ1 and τ2, each taken in the context of its respective evaluation state, is always depicted
as a binary property of the form “[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]]”.

In particular, a monadic unit term of the form “RET (ᾱ)” permits Etude programs
to lift a list of atoms into the term monad. For conciseness, we will usually omit the
parentheses surrounding the atom list ᾱ whenever that list consists of precisely one
atom. Conceptually, such lifted terms depict the unit action of the term monad, which
always delivers a predetermined set of results described precisely by the specified list
of atoms without affecting the program’s environment in any other way. Accordingly,
well-formedness of lifted terms is determined solely by the well-formedness of its
constituents, as captured by the following simple theorem:

WFRET :: 8 Λ, ∆, ᾱ) WF(Λ) ! WF(∆) ! WF(ᾱ) ! WF[[Λ, ∆ . RET (ᾱ)]]

and a pair of such terms should be always considered equivalent whenever it is formed
from pairwise-equivalent atomic lists:

EQVRET :: 8 Λ, ∆, ᾱ1, ᾱ2) (ᾱ1 � ᾱ2) ! [[Λ, ∆ . RET (ᾱ1)]] � [[Λ, ∆ . RET (ᾱ2)]]

In Etude, an application of a given function atom α to a list of zero or more arguments
ᾱ is depicted by a term of the form “α (ᾱ)”. Both the function itself and its arguments
are represented by atomic values. While Etude places no specific requirements on the
argument list ᾱ beyond its general validity, the function value α must always represent
an equivalent of a well-formed atomic form “#xφ”, in which φ is a valid format from the
function genre and the integer x is mapped in the associated function environment Λ to
a well-formed Etude function of the form “λν̄.τ ”. Further, for such an application term
to be considered well-formed, the function’s parameter list ν̄ must have the same length
as the argument list ᾱ and the body term τ must be well-formed after substitution of all
parameter variables from ν̄ for the corresponding atomic values from ᾱ. Formally:

WFAPP :: 8 Λ, ∆, x, ᾱ, ν̄, τ)
WF(Λ) ! WF(∆) ! WF[[#xF.Φ]] ! WF(ᾱ) !
[[Λ(x) = [[λν̄.τ]] ^ length(ν̄) = length(ᾱ)]] !
WF(Λ, ∆ . τ/(ν̄ ᾱ)) !
WF[[Λ, ∆ . #xF.Φ(ᾱ)]]

4.6 TERMS OF THE GAME 107

Every such application term is equivalent precisely to a term formed from the substitu-
tion of ᾱ for the variable list ν̄ in the corresponding function’s body τ:

EQVβ :: 8 Λ, ∆, x, ᾱ, ν̄, τ)
WF(Λ) ! WF(∆) ! WF[[#xF.Φ]] ! WF(ᾱ) !
[[Λ(x) = [[λν̄.τ]] ^ length(ν̄) = length(ᾱ)]] !
WF[[Λ, ∆ . τ/(ν̄ ᾱ)]] !
[[Λ, ∆ . #xF.Φ(ᾱ)]] � [[Λ, ∆ . τ/(ν̄ ᾱ)]]

Readers will observe that the above theorem provides a direct Etude analogue of
the beta reduction rule from Section 4.1. To aid reasoning about unreduced func-
tion applications, we also insist on the following structural equivalence between pairs
of such terms in which all corresponding components represent pairwise-equivalent
atomic values:

EQVAPP :: 8 Λ, ∆, α1, ᾱ1, α2, ᾱ2)
(α1 � α2) ! (ᾱ1 � ᾱ2) !
[[Λ, ∆ . α1(ᾱ1)]] � [[Λ, ∆ . α2(ᾱ2)]]

Although superficially-similar, terms of the form “π (ᾱ)”, in which π represents a primi-
tive operation taken from an implementation-defined set of values selected individually
by every system architecture have a very different set of formal properties. For one, the
generic fragment of Etude’s semantics remains silent on any well-formedness criteria
applicable to these terms, since, in general, the range of concrete values acceptable for
a given primitive π is determined solely by the murky details of the underlying operat-
ing system. Nevertheless, if the same primitive is applied to a pair of equivalent atomic
lists, then we can always be sure about the equivalence of the resulting terms:

EQVSYS :: 8 Λ, ∆, π , ᾱ1, ᾱ2) (ᾱ1 � ᾱ2) ! [[Λ, ∆ . π (ᾱ1)]] � [[Λ, ∆ . π (ᾱ2)]]

Theorem EQVSYS makes it possible to detach the notion of term equivalence from the
semantic specifics of the underlying operating system. To complete this detachment,
conditional terms of the form “IF α THEN τ1 ELSE τ2” allow for embedding of arbitrary,
even malformed operands within well-formed Etude programs. In such constructs, only
one of the two branches τ1 and τ2 needs to represent a valid computation:

WFTT :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ1) ! [[x 6= 0]] !
WF[[IF #xZ.Φ THEN τ1 ELSE τ2]]

WFFF :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ2) ! [[x = 0]] !
WF[[IF #xZ.Φ THEN τ1 ELSE τ2]]

In particular, if α represents any natural number other than zero, then the Etude term
“IF α THEN τ1 ELSE τ2” is always equivalent to τ1:

EQVTT :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ1) ! [[x 6= 0]] !
[[IF #xZ.Φ THEN τ1 ELSE τ2]] � [[Λ, ∆ . τ1]]

108 CHAPTER 4: LAMBDA CALCULUS

Conversely, if α has a zero value, then the conditional term serves as a mere synonym
for its later branch τ2. Formally:

EQVFF :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ2) ! [[x = 0]] !
[[IF #xZ.Φ THEN τ1 ELSE τ2]] � [[Λ, ∆ . τ2]]

As for the earlier term form, two such terms are also equivalent when assembled from
pairwise-equivalent components:

EQVIF :: 8 Λ1, ∆1, α1, τ11, τ21, Λ2, ∆2, α2, τ12, τ22)
(α1 � α2) !
(Λ1, ∆1 . τ11) � (Λ2, ∆2 . τ12) ! (Λ1, ∆1 . τ12) � (Λ2, ∆2 . τ22) !
[[Λ1, ∆1 . IF α1 THEN τ11 ELSE τ21]] � [[Λ2, ∆2 . IF α2 THEN τ12 ELSE τ22]]

Terms of the form “NEW (ξ̄)” and “DEL (ξ̄)” provide Etude programs with explicit fa-
cilities for extending and contracting the address space of their environment by the
envelope ξ̄. Formally, such terms are considered to be well-formed only in the context
of an object environment ∆ to which the corresponding extension and contraction op-
erations ∆/ξ̄ and ∆nξ̄ can be applied within the constraints of the underlying language
implementation outlined earlier in Section 4.5. Specifically:

WFNEW :: 8 Λ, ∆, ξ̄) WF(Λ) ! WF[[∆/ξ̄]] ! WF[[Λ, ∆ . NEW (ξ̄)]]
WFDEL :: 8 Λ, ∆, ξ̄) WF(Λ) ! WF[[∆nξ̄]] ! WF[[Λ, ∆ . DEL (ξ̄)]]

Under these conditions, “NEW (ξ̄)” is always equivalent to a lifted term of the form
“RET (#xO.Φ)” in which the integer x has the value of σc(∆ . ξ̄), while “DEL (ξ̄)” stands
for an empty list of atoms “RET ()” in the context of an object environment ∆ contracted
by the supplied envelope ξ̄. Specifically:

EQVNEW :: 8 Λ, ∆, ξ̄)

WF(Λ) ! WF[[∆/ξ̄]] !

[[Λ, ∆ . NEW (ξ̄)]] � [[Λ, ∆/ξ̄ . RET (#[[σc(∆ . ξ̄)]]O.Φ)]]

EQVDEL :: 8 Λ, ∆, ξ̄)

WF(Λ) ! WF[[∆nξ̄]] !

[[Λ, ∆ . DEL (ξ̄)]] � [[Λ, ∆nξ̄ . RET ()]]

Further, each valid construction of the form “NEW (ξ̄)” guarantees well-formedness
of every object atom “α +[[O(φ)]] #nZ.Φ”, in which α is equivalent to an appropriately
converted value of “#[[σc(∆ . ξ̄)]]O.Φ” and n represents an offset into one of the envelope
elements in ξ̄, as captured by the following Haskell definition:

WFOBJ :: 8 Λ, ∆, ξ̄)

WF[[Λ, ∆ . NEW (ξ̄)]] !
(8 n, φ , µ̄) [[(n, φ , µ̄) 2 ξ̄]] ! WF[[([[O(φ)]]O.Φ(#[[σc(∆ . ξ̄)]]O.Φ)) +[[O(φ)]] #nZ.Φ]])

Similarly, the “GET [α , µ̄]φ” term form makes it possible for Etude programs to ac-
cess individual atomic bindings from the associated object environment ∆. As is to be
expected, the α argument of “GET” should be equivalent to some well-formed object

4.6 TERMS OF THE GAME 109

atom “#x[[O(φ)]] +[[O(φ)]] #nZ.Φ”, such that ᾱ(∆ . x + n, φ) represents a valid atomic value
whenever (x + n, φ , µ̄) 2A ξ̄(∆). Formally:

WFGET :: 8 Λ, ∆, x, n, φ , µ̄)
WF(Λ) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] ! WF[[ᾱ(∆ . x + n, φ)]] !

[[(x + n, φ , µ̄) 2A ξ̄(∆)]] !
WF[[Λ, ∆ . GET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ]]

In all cases, a pair of “GET” terms that access equivalent address atoms under identical
access modes and formats are always considered to be equivalent:

EQVGET :: 8 Λ, ∆, α1, α2, φ , µ̄)
(α1 � α2) !
[[Λ, ∆ . GET [α1, µ̄]φ]] � [[Λ, ∆ . GET [α2, µ̄]φ]]

Further, if the address x + n is actually mapped in the term’s evaluation state to an atom
α 0 without the volatile access attribute “V”, then “GET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ” is
also equivalent to a simple lifted term of the form “RET (α)”. Formally:

EQVGETO :: 8 Λ, ∆, x, n, φ , µ̄)
WF(Λ) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] ! WF[[ᾱ(∆ . x + n, φ)]] !

[[(x + n, φ , µ̄nfVg) 2A ξ̄(∆)]] !
[[Λ, ∆ . GET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ]] � [[Λ, ∆ . RET [[ᾱ(∆ . x + n, φ)]]]]

Conversely, both the “SET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α” term form and its “SETI”
variant perform the environment update operation ∆/(x + n, φ , α). In other words,
their well-formedness is mandated by the following pair of theorems:

WFSET :: 8 Λ, ∆, x, n, φ , µ̄, α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , µ̄) 2A ξ̄(∆)]] !
WF[[Λ, ∆ . SET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]]

WFINI :: 8 Λ, ∆, x, n, φ , µ̄, α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , µ̄) 2A ξ̄i(∆)]] !
WF[[Λ, ∆ . SETI [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]]

Intuitively, the “SET” variant of an environment update preserves the conventional se-
mantics of the constant memory access attribute “C”, while “SETI” ignores that at-
tribute for objects located within the uninitialised region of the address space ξ̄i(∆),
in order to facilitate a once-off initialisation of otherwise-immutable memory-resident
objects within a well-formed Etude program. In particular, both forms of the term
“SET [α1, µ̄]φ TO α2” are reducible into the trivial monadic sequence “RET ()”, taken
in the context of an object environment updated with the binding of the address α1

to the value of α2, provided that such an update is deemed well-formed by the above
validity criteria:

EQVSETO :: 8 Λ, ∆, x, n, µ̄, φ , α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , ∅) 2A ξ̄(∆)]] !
[[Λ, ∆ . SET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]] � [[Λ, ∆/(x + n, φ , α) . RET ()]]

110 CHAPTER 4: LAMBDA CALCULUS

EQVINIO :: 8 Λ, ∆, x, n, µ̄, φ , α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , fCg) 2A ξ̄i(∆)]] !
[[Λ, ∆ . SETI [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]] � [[Λ, ∆/(x + n, φ , α) . RET ()]]

Finally, both “SET” and “SETI” are subject to the usual structural equivalence rules as
follows:

EQVSET :: 8 Λ, ∆, α11, α21, α12, α22, µ̄, φ)
(α11 � α12) ! (α21 � α22) !
[[Λ, ∆ . SET [α11, µ̄]φ TO α21]] � [[Λ, ∆ . SET [α12, µ̄]φ TO α22]]

EQVINI :: 8 Λ, ∆, α11, α21, α12, α22, µ̄, φ)
(α11 � α12) ! (α21 � α22) !
[[Λ, ∆ . SETI [α11, µ̄]φ TO α21]] � [[Λ, ∆ . SET [α12, µ̄]φ TO α22]]

Last but not least, a term of the form “LET ν̄1 = τ1, ν̄2 = τ2 ... ν̄n = τn; τ ” permits Etude
programs to capture the results delivered by the monadic terms τ1 ... τn and makes them
available within the body term τ as the corresponding variables from the parameter lists
ν̄1 ... ν̄n. Accordingly, a degenerate form of the “LET β̄; τ ” term that specifies an empty
binding list β̄ is always equivalent to its body expression τ and well-formed whenever
τ happens to be valid. Formally:

EQVLETE :: 8 Λ, ∆, τ) [[Λ, ∆ . LET; τ]] � [[Λ, ∆ . τ]]

Further, a term of the form “LET ν̄ = RET (ᾱ); τ ” constitutes a simple syntactic equiva-
lent of the beta redex “(λν̄.τ)(ᾱ)” from the pure lambda calculus described in Section
4.1. Accordingly, such terms are deemed valid only if ν̄ and ᾱ represent well-formed
lists of equal lengths. Their generic properties are determined in a manner similar to
that described earlier for function applications:

EQVLETA :: 8 Λ, ∆, ν̄, ᾱ)
WF(ν̄) ! WF(ᾱ) !
[[length(ν̄) = length(ᾱ)]] !
[[Λ, ∆ . LET ν̄ = RET (ᾱ); τ]] � (Λ, ∆ . τ/(ν̄ ᾱ))

For conciseness, in the remainder of this work I will usually drop the “RET” keyword
in such trivial “LET” expressions, writing the above term simply as “LET ν̄ =(ᾱ); τ ” for
readability. This style of programming, in which all subexpressions are systematically
bound to variable names and all beta redexes appear as explicit “LET” bindings is well
known in literature under the title of the monadic normal form used to study the oper-
ational semantics of call-by-value lambda calculi [Moggi 91, Hatcliff 94, Danvy 03].
It is also known as the administrative normal form to some authors, since it eliminates
the so-called administrative redexes introduced by translation of a program into the
continuation passing style [Sabry 92, Flanagan 93].

The semantics of “LET” bindings get interesting when two such terms are nested
into a binding of the form “LET ν̄ = (LET β̄; τ1); τ2”. The next theorem states that all
such constructions can be always flattened into “LET β̄; (LET ν̄ = τ1; τ2)”, provided that

4.6 TERMS OF THE GAME 111

none of the variables bound in β̄, other than those found in the associated parameter list
ν̄, appear free in τ2. Formally:

EQVLETN :: 8 Λ, ∆, ν̄, β̄, τ1, τ2)

[[BV(β̄) \ (FV(τ2)nν̄) = ∅]] !

[[Λ, ∆ . LET (ν̄ = LET β̄; τ1); τ2]] � [[Λ, ∆ . LET β̄; (LET ν̄ = τ1; τ2)]]

The reader should observe that the free variable constraint in the above theorem conve-
niently circumvents the variable capture problem inherent to the pure calculus formu-
lation of the substitution function from Section 4.1.

Unfortunately, little else can be said about validity of any other singular term form
“LET ν̄ = τ1; τ2” without dwelling into the underlying implementation details of Etude’s
operational model, since the potential presence of primitive applications in τ1 makes
it impossible to narrow down the set of evaluation states that may be encountered by
the body term τ2. However, a rather relaxed set of requirements for these remaining
constructs may be captured eloquently without divulging any details of the underlying
operating system implementation with the help of the following theorem:

EQVLETS :: 8 Λ, ∆, ν̄1, τ11, τ21, ν̄2, τ12, τ22)
[[Λ, ∆ . τ11]] � [[Λ, ∆ . τ12]] !
[[length(ν̄1) = length(ν̄2)]] !
(8 Λ0, ∆0, ᾱ0)

WF(ᾱ0) !
[[length(ᾱ0) = length(ν̄1)]] !
[[Λ0, ∆0 . τ21/(ν̄1 ᾱ0)]] � [[Λ0, ∆0 . τ22/(ν̄2 ᾱ0)]]) !

[[Λ, ∆ . LET ν̄1 = τ11; τ21]] � [[Λ, ∆ . LET ν̄2 = τ12; τ22]]

Intuitively, theorem EQVLETS states that we can always assert equivalence between a
pair of terms of the form “LET ν̄1 = τ11; τ21” and “LET ν̄2 = τ12; τ22”, provided that τ11

is equivalent to τ12, ν̄1 and ν̄2 represent variable lists of equal lengths and, no matter
what well-formed atomic values are substituted for these variables into the body terms
τ21 and τ22, these bodies remain equivalent under every conceivable evaluation state.

A reader may observe that, so far, we have not mentioned anything about “LET”
terms that specify multiple bindings in the list β̄. Intuitively, such constructs are in-
tended to capture the unspecified aspects of certain expression forms in the C language,
whose precise evaluation order is left open to individual interpretation by every im-
plementation of a C compiler. In principle, such terms are essentially equivalent to a
sequential application of each binding from β̄:

EQVLETM :: 8 Λ, ∆, ν̄, β̄, τ)

[[length(β̄) > 1]] !

[[Λ, ∆ . LET β̄; τ]] � [[Λ, ∆ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]]

However, they are only considered to be well-formed if all permutations of β̄ are equiv-
alent to each other and, further, if none of the variables found to the left of one of the
“=” signs appears free in any other binding from the list. Using the standard mathe-
matical definition of the factorial function x!, together with P (k, β̄), which returns the

112 CHAPTER 4: LAMBDA CALCULUS

canonical k-th permutation of the list β̄, this constraint can be formalised in Haskell as
the following theorem:

WFLETM :: 8 Λ, ∆, β̄, τ)
WF(Λ) ! WF(∆) !

WF[[Λ, ∆ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]] !

[[[FV(τk)nν̄k [[ν̄k = τk]] β̄] [\ BV(β̄) = ∅]] !

(8 k) [[0 � k < length(β̄)!]] ! [[Λ, ∆ . LET β̄; τ]] � [[Λ, ∆ . LET [[P (k, β̄)]]; τ]]) !

WF[[Λ, ∆ . LET β̄; τ]]

To wrap up our algebraic treatment of Etude terms, we must specify four more admin-
istrative theorems. The first of these states that, if one term in a given equivalence class
happens to represent a meaningful computation, then all other terms equivalent to it are
likewise well-formed:

WFEQV :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2)
WF[[Λ1, ∆1 . τ1]] !
[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] !
WF[[Λ2, ∆2 . τ2]]

Finally, the “�” property of terms must always represent a true equivalence relation, in
that the following reflexivity, symmetry and transitivity laws must be satisfied:

REFLτ :: 8 Λ, ∆, τ)
[[Λ, ∆ . τ]] � [[Λ, ∆ . τ]]

SYMMτ :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2)
[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] !
[[Λ2, ∆2 . τ2]] � [[Λ1, ∆1 . τ1]]

TRANSτ :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2, Λ3, ∆3, τ3)
[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] !
[[Λ2, ∆2 . τ2]] � [[Λ3, ∆3 . τ3]] !
[[Λ1, ∆1 . τ1]] � [[Λ3, ∆3 . τ3]]

In the following chapters, incomplete expression of the form “LET β̄;” that depict
Haskell functions of the type “termν ! termν” are often composed together and even-
tually applied to some tail τ in order to construct a proper Etude term entity. In Haskell,
such structures would be normally written as “(τ̊1 � τ̊2 � ... � τ̊k)τ ”, but their semantic
meaning is more obvious when the composition operator “�” is replaced with the “;”
symbol, resulting in the expected term sequence notation “τ̊1; τ̊2; ... τ̊k ; τ ”. To give
this notation a formal mandate, it is useful to introduce the following two Haskell
combinators:

[[.]]; [[.]] :: (termν ! termν) ! (termν ! termν) ! (termν ! termν)

[[τ̊1]]; [[τ̊2]] = τ̊1 � τ̊2

[[.]]; [[.]] :: (termν ! termν) ! termν ! termν

[[τ̊]]; [[τ]] = τ̊ τ

4.7 MODULES AND PROGRAMS 113

In other words, in this work the “;” symbol may stand for either the function composi-
tion operator “�” or a function application, as dictated by the expression’s context. Ei-
ther way, the Etude syntax and the associated informal discussion should always make
the intended meaning clear, so that, in practice, this overloading of the “;” operator
should never impair clarity of the following presentation.

An astute reader will rightly observe that the above set of theorems is, by itself,
insufficient to establish confluence of the rewrite system implied by the stated well-
formedness and term equivalence laws. However, in Chapter 6, confluence of the
MMIX Etude variant is proven constructively by the virtue of its evaluation function,
which performs a single-step functional reduction of a monadic term into its appropriate
normal form. In the meantime, however, the above Spartan system of algebraic relations
will have to suffice for all reasoning about generic Etude constructs and the portable C
programs from which they have been derived.

4.7 Modules and Programs
Usually, Etude programs are not constructed as a single holistic entity, but rather as-
sembled from one or more discrete modules that are designed and compiled as au-
tonomous work units. Any realistic translation of a language such as C must recognise
this common software engineering practice and, accordingly, Etude provides the fol-
lowing Haskell structures intended to capture the essential idea of module separation:

module[[ν]] :
MODULE termν EXPORT exportsν WHERE itemsν

exports[[ν]] :
string! ν

items[[ν]] :
ν ! itemν

item[[ν]] :
functionν

OBJ (dataν) OF (envelope)
IMP string

data[[ν]] :
finteger, format, fmodeg, atomνg

A single module consists of a term known as module initialiser and two sets known
as module exports and module definitions, respectively. The initialiser represents an
expression evaluated at the beginning of every execution of the program and it is these
terms, irrespective of any environments current upon their termination, that dictate all
algebraic properties of all software written in Etude. Module exports specify those
variables defined within the module that are to be made visible to all other entities
within the program. Any such variables are annotated in the module’s syntax with
their globally-unique names depicted by Haskell string values. Finally, every module

114 CHAPTER 4: LAMBDA CALCULUS

includes a set of zero or more bindings of Etude variables to module items, which, in-
tuitively, describe the initial evaluation environment current prior to every invocation
of the program. An individual item can represent an Etude function, an object spec-
ification or a reference to a named declaration imported from some other module of
the entire program. Every object specification entity consists, in turn, of an envelope
associated with a data specification set whose structure resembles another envelope,
in which every datum has been annotated with a concrete atomic value, intended to
represent the initial content of the corresponding address space region within the ob-
ject. Intuitively, the collection of all object specifications included in an Etude program
represents a concise depiction of its initial object environment defined statically prior
to the execution of any initialiser terms and corresponds directly to the notion of static
variables in the C programming language.

For convenience, the three components of an Etude module may be accessed indi-
vidually by the following Haskell functions:

τ [[.]] :: (ord ν)) moduleν ! termν

ξ̄[[.]] :: (ord ν)) moduleν ! exportsν

ῑ [[.]] :: (ord ν)) moduleν ! itemsν

τ [[MODULE τ EXPORT ξ̄ WHERE ῑ]] = τ

ξ̄[[MODULE τ EXPORT ξ̄ WHERE ῑ]] = ξ̄

ῑ [[MODULE τ EXPORT ξ̄ WHERE ῑ]] = ῑ

Although a module represents an irreducible entity that, in isolation, does not possess
any specific semantic meaning, we can still refer to the free variable sets of its export
and item lists using the following predictable Haskell constructions:

FV[[.]] :: (ord ν)) exportsν ! fνg

FV[[ξ̄]] = fνk [[xk = νk]] ξ̄g

FV[[.]] :: (ord ν)) itemsν ! fνg

FV[[̄ι]] =
S

[FV(ιk) [[νk = ιk]] ῑ]

FV[[.]] :: (ord ν)) itemν ! fνg

FV[[λν̄.τ]] = FV(τ)nν̄

FV[[OBJ (δ̄) OF (ξ̄)]] =
S

[FV(αk) [[nk, φk, µ̄k, αk]] δ̄]
FV[[IMP x]] = ∅

Further, we can also formulate the usual substitution function over the list of module
items as follows:

[[.]]/[[.]] :: (ord ν)) itemsν ! (ν ! atomν) ! itemsν

[[̄ι]]/[[S]] = f[[νk = [[ιk/S]]]] [[νk = ιk]] ῑg

[[.]]/[[.]] :: (ord ν)) itemν ! (ν ! atomν) ! itemν

[[λν̄.τ]] /[[S]] = [[λν̄.[[τ/(Snν̄)]]]]

[[OBJ (δ̄) OF (ξ̄)]]/[[S]] = [[OBJ ([[f[[nk, φk, µ̄k, [[αk/S]]]] [[nk, φk, µ̄k, αk]] δ̄g]]) OF (ξ̄)]]
[[IMP x]] /[[S]] = [[IMP x]]

4.7 MODULES AND PROGRAMS 115

Although all practical Etude implementations, including the one from Chapter 6, are
typically defined to perform translations of only a single module at a time, conceptually,
the well-formedness and equivalence properties can be only asserted over entire Etude
programs. Formally, such programs are formed by annotating every one of its modules
mk with a suitable substitution function Sk, so that the set of modules that constitutes a
complete description of an entire self-contained Etude program can be represented by
the following Haskell data structure:

modules[[ν]] :
moduleν ! (ν ! atomν)

In general, the required substitution functions are constructed by an unspecified linking
process that is defined individually for each operating system targeted by our compiler
and therefore remains outside of the present work’s scope. However, on every imple-
mentation of the Etude language, the resulting set of modules m̄ must always satisfy a
number of simple constraints described in the remainder of this section.

First of all, for every module mk in dom(m̄), the set of all free variables appearing
in the module’s initialiser term τ(mk), exports ξ̄(mk) and item definitions ῑ(mk) must
represent a subset of the variables mapped in ῑ(mk), which, in turn, must be identical to
the domain of the corresponding substitution function m̄(mk):

WFM1 :: 8 m̄, mk)
WF(m̄) !
[[mk 2 dom(m̄)]] !

[[(FV(τ(mk)) [FV(ξ̄(mk)) [FV(ῑ(mk))) � dom(ῑ(mk)) = dom(m̄(mk))]]

Further, for every variable νj bound in this set to a definition of an Etude function item
“νj = λν̄j.τj”, the corresponding substitution function m̄(mk) must map νj to a well-
formed atom of the form “#[[nj]]F.Φ” for some integer value nj:

WFM2 :: 8 m̄, mk, νj, ν̄j, τj)
WF(m̄) !
[[mk 2 dom(m̄) ^ ῑ(mk)(νj) = [[λν̄j.τj]]]] !
WF[[#[[LF(m̄(mk)(νj))]]F.Φ]]

in which LF(m̄(mk)(νj)) abstracts over the concrete value of nj using the following
implementation-defined Haskell construction:

LF[[.]] :: (ord ν)) atomν ! integer

More so, every variable νj that is bound in one of the supplied modules mk to a function
definition of the form “νj = λν̄j.τj” must be renamed by m̄(mk) to an integer value nj

unique across the entire module collection m̄:

WFM3 :: 8 m̄, n̄)
WF(m̄) !
[[n̄ = [LF(m̄(mk)(νj)) mk dom(m̄), [[νj = λν̄j.τj]] ῑ(mk)]]] !
[[length(n̄) = n̄]]

116 CHAPTER 4: LAMBDA CALCULUS

Similarly, for every variable νj bound in this set to a definition of an Etude object spec-
ification “νj = OBJ (δ̄j) OF (ξ̄j)”, the corresponding substitution function m̄(mk) must
map νj to a well-formed atom of the form “#[[nj]]O.Φ” for some integer value nj:

WFM4 :: 8 m̄, mk, νj, δ̄j)
WF(m̄) !

[[mk 2 dom(m̄) ^ ῑ(mk)(νj) = [[OBJ (δ̄j) OF (ξ̄j)]]]] !
WF[[#[[LO(m̄(mk)(νj))]]O.Φ]]

in which, once again, LO(m̄(mk)(νj)) abstracts over the concrete value of nj using the
following implementation-defined Haskell construction:

LO[[.]] :: (ord ν)) atomν ! integer

As for function definitions, the list of all such Etude variables must constitute a set of
integer values unique across the entire module collection:

WFM5 :: 8 m̄)
WF(m̄) !

[[n̄ = [LO(m̄(mk)(νj)) mk dom(m̄), [[νj = OBJ (δ̄j) OF (ξ̄j)]] ῑ(mk)]]] !
[[length(n̄) = n̄]]

More so, for every integer nj associated with an object item “νj = OBJ (δ̄j) OF (ξ̄j)”, the
precise location of every envelope datum (ni, φi, µ̄i, αi) 2 δ̄j must be representable as
an atom of the form “(O(φi)O.Φ(#[[nj]]O.Φ)) +O(φi)

#[[ni]]Z.Φ”:

WFM6 :: 8 m̄, mk, νj, δ̄j, ni, φi, µ̄i, αi)
WF(m̄) !

[[mk 2 dom(m̄) ^ ῑ(mk)(νj) = [[OBJ (δ̄j) OF (ξ̄j)]] ^ (ni, φi, µ̄i, αi) 2 δ̄j]] !
WF[[([[O(φi)]]O.Φ(#[[LO(m̄(mk)(νj))]]O.Φ)) +O(φi) #[[ni]]Z.Φ]]

Finally, across the entire module collection, every variable νj bound to an imported
item of the form “IMP xj” must be renamed to the same value as that associated with the
corresponding export definition found in some other module in the program. Formally:

WFM7 :: 8 m̄, mk, νj, xj)
WF(m̄) !
[[mk 2 dom(m̄) ^ ῑ(mk)(νj) = [[IMP xj]]]] !

[[m̄(mk)(νj) = ξ̄(m̄)(xj)]]

where the notation “ξ̄(m̄)” constructs a finite map from exported definition names to
their respective atomic values as follows:

ξ̄[[.]] :: (ord ν)) (moduleν ! (ν ! atomν)) ! (string! atomν)

ξ̄[[m̄]] = fxk = [[Sk(νk)]] mk:Sk m̄, xk = νk ξ̄(mk)g

Intuitively, for every module mk that is associated in m̄ with the substitution function
Sk and for every variable νk exported from that module as string xk, the above ξ̄(m̄)

construction includes a binding of the string xk to the atom associated with νk by the
substitution function Sk.

4.7 MODULES AND PROGRAMS 117

Last but not least, every well-formed collection of Etude modules m̄ must represent
a valid Etude program:

WFM8 :: 8 m̄) WF(m̄) ! WF(L(m̄))

derived from the included module list by the following simple process:

L [[.]] :: (ord ν)) (moduleν ! (ν ! atomν)) ! (f-envν , o-env . termν)

L [[m̄]] = [[Λ0, ∆0 . LET β̄0; RET ()]]
where Λ0 = f[[[[LO(Sk(νj))]] = λν̄j.[[τj/Sk]]]]

mk:Sk m̄, [[νj = λν̄j.τj]] ῑ(mk)g

∆0 = L∆fLF(Sk(νj)):[[OBJ (δ̄j) OF (ξ̄j)]]/Sk

mk:Sk m̄, [[νj = OBJ (δ̄j) OF (ξ̄j)]] ῑ(mk)g

β̄0 = [[[() = [[τ(mk)/Sk]]]] mk:Sk m̄]

In other words, the program constructed by the linking process evaluates, in an unspec-
ified order, the initialiser terms of all the modules in the collection. Every one of these
initialiser terms τ(mk) must represent a monadic construct that delivers an empty set
of Etude atoms “RET ()”, so that the entire program constitutes a simple term of the
form “LET β̄0; RET ()”. Its initial function environment Λ0 is constructed from all the
function definitions found anywhere across the entire collection, while the initial object
environment ∆0 is obtained from the set of suitably-renamed versions of all object spec-
ifications in the individual item lists ῑ(mk) using the following unspecified construction:

L∆[[.]] :: (ord ν)) (integer! itemν) ! o-env

such that, for every (nk, φk, µ̄k) and (nk, φk, µ̄k, αk) included in the specification of an
object mapped in ῑ at some address k, the initial object environment L∆(ῑ) includes a
binding of (k + nk, φk) to the atom αk under the set of access attributes µ̄k. Formally:

LINK1 :: 8 ῑ, k, nj, φj, µ̄j, αj)
WF(L∆(ῑ)) !

[[̄ι(k) = [[OBJ (δ̄k) OF (ξ̄k)]]]] !
[[(nj, φj, µ̄j) 2 ξ̄k _ (nj, φj, µ̄j, αj) 2 δ̄k]] !

[[(k + nj, φj, µ̄j) 2A ξ̄(L∆(ῑ))]]

LINK2 :: 8 ῑ, k, nj, φj, µ̄j, αj)
WF(L∆(ῑ)) !

[[̄ι(k) = [[OBJ (δ̄k) OF (ξ̄k)]]]] !
[[(nj, φj, µ̄j, αj) 2 δ̄k]] !
[[ᾱ(L∆(ῑ) . k + nj, φj)]] � [[αj]])

The reader should observe that the structure of Etude data specification sets allows pro-
grams to place multiple data elements at overlapping address space regions within a sin-
gle memory-resident object, with an understanding that the meaning of such construc-
tions is well-defined only if the binary representations of the respective atomic values
assigned to any such elements are in agreement as to the object’s initial memory image.

For a representative sample of typical Etude programs, the reader is referred to the
number of examples featured later in Sections 5.1, 5.11 and 6.5.

5

THE C
PROGRAMMING

LANGUAGE

CHAPTER 5: THE C PROGRAMMING LANGUAGE 119

Philosophy is a battle against the bewitchment
of our intelligence by means of language.

— Ludwig Wittgenstein

The C programming language was originally developed by Kernighan and Ritchie
at Bell Labs in 1970s, as part of their work on the UNIX operating system for the
PDP-7 architecture [Kernighan 78]. It provides a quintessential imperative design
environment in the ALGOL tradition, whose wide availability, simplicity and access
to low-level programming features has rendered it quickly into the favourite tool of the
UNIX community from the 1980s. Since its introduction, the user base of C has been
increasing steadily across the whole spectrum of the software development industry
and, today, it arguably remains the single most popular programming language in
existence. To meet the growing demand for portability, C has been ratified into an
international standard ANSI/ISO 9899:1990 and further refined in 2000 by the same
regulatory group [ANSI 89, ANSI 99].

In recent years, C saw a growing deployment in software written for embedded
devices and, with these developments, a pressing need for a formal verification of C
programs. Such verification necessarily involves a mathematically rigorous definition
of the language. In the past, numerous authors have undertaken the task of devising a
formal semantic model of C, with the most recent, successful and complete treatments
given by Norrish and Papaspyrou [Norrish 97, Papaspyrou 98]. Nevertheless, to the
best of my knowledge, none of these models have been ever incorporated into a fully
featured compiler for the language and, accordingly, in this chapter I revisit the task
of formalising Standard C by presenting a complete and detailed translation of its
programs into Etude, the variant of lambda calculus defined in Chapter 4. To make the
work more specific, I focus the project on the original version of the Standard described
in the ANSI/ISO 9899:1990 document [ANSI 89]. The formal definition presented in
this chapter covers all aspects of C programs with the sole exception of their lexical and
syntactic analysis, which are omitted in recognition of the already-extensive treatment
given to these subjects in literature [Aho 86, Appel 98ML]. Coupled with the partial
Etude semantics presented earlier in Chapter 4, the translation formalises precisely the
set of requirements described in the C Standard [ANSI 89]. Further, in combination
with the mapping of Etude programs to executable machine instructions presented in
Chapter 6, it also forms a prototype compiler implementation, that, although inefficient
as given (preferring clarity of presentation over optimality of the generated code), could

120 CHAPTER 5: THE C PROGRAMMING LANGUAGE

be easily improved into an industrial-quality development environment, while ensuring
that the result always remains provably equivalent to its present canonical definition.

Throughout this chapter, I carefully avoid any over-specification of those aspects
of the source language that the C Standard leaves either unspecified or open to further
specification by individual compiler vendors. Following the principles discussed earlier
in Section 4.3, all such linguistic features are described without a concrete implemen-
tation in terms of explicit language parameters, whose minimal semantic requirements
are captured in appropriate algebraic theorems. For example, in Section 5.4.5, I for-
malise the precise representation of C types in terms of a function φ , together with a
set of 42 theorems that describe the minimal constraints on its definition which must
be satisfied by every instance of the language. A typical implementation of φ is given
separately in Appendix C, together with definitions of all other implementation-specific
language parameters that are introduced throughout this chapter.

The reader should also keep in mind that the resulting formal semantics of C rely
fundamentally on the Etude program representation given in Chapter 4, and especially
on the generic fragment of its semantics presented in Sections 4.4, 4.5 and 4.6. In
particular, it should be emphasised that many aspects of C are rendered implementation-
defined, unspecified or undefined indirectly through translation into Etude programs
with corresponding properties. For example, all C expressions to whom the C Standard
does not attribute a predetermined evaluation order are translated into Etude LET group
bindings, for which theorems WFLETM and EQVLETM from Section 4.6 provide only a very
rudimentary set of operational guarantees. The minimal documentation requirements
mandated by the C Standard for all such indirectly-defined aspects of the language are
presented in Section 6.3, in the form of a concrete operational semantics for Etude on
the MMIX instruction set architecture.

5.1 Overview
Under the formal semantic model of C presented in this chapter, every well-formed
translation unit is represented naturally by an Etude module. Global and static vari-
ables are mapped to mutable object items in the constructed program, while all C func-
tions and statement labels are rendered as Etude functions. To illustrate the intended
behaviour of this translation, let us consider the following simple C program that com-
putes the factorial of an integer x:

int fac(int x) {
int r, i;
r = 1;
i = 1;
while (i <= x) {

r *= i;
i += 1;

}
return r;

}

5.1 OVERVIEW 121

This program could be mapped into the following set of three Etude functions:

fac = λx. LET r = #1Z.Φ;
LET i = #1Z.Φ;
fac1(x, r, i)

fac1 = λx, r, i. IF i �Z.Φ x THEN

LET r = r �Z.Φ i;
LET i = i +Z.Φ #1Z.Φ;
fac1(x, r, i)

ELSE

fac2(x, r, i)

fac2 = λx, r, i. RET (r)

Under this mapping, every C function and statement label (including the implicit
“continue” and “break” labels defined by every iteration statement) is represented
by an Etude function which acccepts as its parameters the list of all local C variables
that are visible within its scope. Jumps are translated into Etude tail calls and function
calls are translated into monadic bindings of appropriate Etude application expressions.

While this natural translation works for the current elementary example, in most
cases Etude variables are not a very good match for their C counterparts, since they
cannot be accessed indirectly through pointer references in the way that C variables can.
In a more accurate translation, every C variable should denote a mutable Etude object
whose content corresponds to the variable’s value. Accordingly, the translation defined
in this chapter produces a representation of “fac” akin to the following Etude program:

fac0 = λx. LET r = NEW (0, Z.Φ);
LET i = NEW (0, Z.Φ);
LET () = SET [r]Z.Φ TO #1Z.Φ;
LET () = SET [i]Z.Φ TO #1Z.Φ;
fac02(x, r, i)

fac1
0 = λx, r, i. LET t1 = GET [i]Z.Φ,

t2 = GET [x]Z.Φ;
IF t1 �Z.Φ t2 THEN

LET t1 = GET [r]Z.Φ,
t2 = GET [i]Z.Φ;

LET () = SET [r]Z.Φ TO t1 �Z.Φ t2;
LET t1 = GET [i]Z.Φ;
LET () = SET [i]Z.Φ TO t1 +Z.Φ #1Z.Φ;
fac02(x, r, i)

ELSE

fac02(x, r, i)

fac2
0 = λx, r, i. LET t1 = GET [r]Z.Φ;

LET () = DEL (0, Z.Φ);
LET () = DEL (0, Z.Φ);
RET (t1)

Under this mapping, every C variable is represented by a memory-resident object with
an envelope derived from that variable’s C type. For example, in the above code

122 CHAPTER 5: THE C PROGRAMMING LANGUAGE

fragment, r and i represent integer variables, so that all of the corresponding envelopes
contain a single tuple of the form “(0, Z.Φ)”, which binds the envelope offset 0 to the
standard integer format “Z.Φ” with an empty set of access attributes. All such objects
are deallocated at the end of their C scope by appropriate “DEL” terms, invoked in
the reverse order of the objects’ introduction. Further, since the C Standard does not
prescribe a specific order of evaluation for most subexpressions in the program, the
corresponding Etude terms are always evaluated within a single Etude group, such as
that used to bind the temporary variables t1 and t2 in the above example.

Although this version of the program is arguably less pleasant than the earlier trans-
lation, it carries the benefit of a uniform treatment of all C expressions and scopes.
Since the Etude term equivalence relation defined in Chapter 4 considers only the se-
quence of actual system calls invoked during a program’s evaluation and not the result-
ing memory image, in the context of an entire program both of the above representations
of “fac” may, in principle, be deemed synonymous, which a smarter implementation of
the compiler could easily utilise to produce an even more efficient representation of that
function, either immediately during its translation into Etude terms, or else through a
set of generic term transformations applied to the constructed Etude modules in an
optimising back end of the compiler. The linear approach to compiler design specif-
ically promotes such performance improvements through its formulation of the linear
correctness criteria.

5.2 Notation and Lexical Syntax
For conciseness, the translation presented in this chapter omits details of a textual anal-
ysis of C programs, effectively operating entirely on a parse tree of a single translation
unit. Nevertheless, the structural resemblance of that representation to the formal BNF
grammar defined in the C Standard should provide sufficient clues for a future imple-
mentation and verification efforts of these remaining stages of the compilation pro-
cess, using any one of a number of well-established techniques described extensively
in literature [Aho 86, Appel 98ML].

The parse tree of a C program is an inductive data structure pieced together from
various nodes that represent keywords, tokens and non-terminals. Keywords carry no
information and are therefore omitted from the implementation. In typesetting, they are
written in bold monospaced font to distinguish them visually from other Haskell con-
structs; “int”, “while” and “==” are three examples of such keywords. Keywords
introduced by entities that do not appear within the concrete syntax of C programs are
typeset in an italic font such as “int” to distinguish them from any occurrences of
similar lexemes in the actual source files.

The remaining nodes are collectively known as syntactic entities, every one of
which is defined by a distinct Haskell data type in a manner similar to the earlier treat-
ment of Etude’s syntax in Chapter 4. Although, in a formal description of the language,

5.2 NOTATION AND LEXICAL SYNTAX 123

syntactic entities represent ordinary Haskell terms, for the sake of exposition every oc-
currence of such an entity within a general Haskell expression is surrounded by the
semantic brackets “[[]]” as described earlier in Chapter 3. Further, in order to provide
a visual separation between the syntactic and semantic aspects of the language, every
occurrence of a non-trivial general Haskell expression within an entity’s syntax is itself
surrounded by the same semantic brackets as in “[[[[B(t)]]*]]”, in which the subexpres-
sion “B(t)” represents a single element of a larger syntactic form “[[t0*]]”. If a given
syntactic entity has a context-sensitive interpretation, a suitable formal representation
of that context is also inserted into the semantic brackets, where it appears ahead of
the entity itself and is separated from it by the “.” symbol as in “D[[S, T , D, I . e]]”, in
which e depicts a syntactic entity that is be interpreted in the context of four elements
S, T , D and I.

In general, the meaning of every syntactic C entity e in its lexical context Γ is
represented by an appropriate denotation written as “D[[Γ . e]]”. In order to meet the
minimal diagnostic requirements mandated by the C Standard, most of such denotations
are represented by monadic Haskell constructions obtained in the context of some
unspecified monad M from the Haskell class “monad-fix”, so that any violations of
semantic constraints whose identification is required by the language definition can
be detected as a monadic exception raised using the standard Haskell function “fail”,
written as “reject” in this presentation. For clarity, most of such exceptions are raised
by assertions of the form “require P”, in which P is an appropriate boolean Haskell
expression, whose value must be true in every valid C program. Further, I rely heavily
on a monadic combinator “ ”, defined in Appendix A in such a way that “M1 M2”
reduces to the first of the two monadic actions M1 and M2 which does not represent a
failure. In effect, in the common pattern:

do require P1

M1

do require P2

M2
...

do require Pn

Mn

the boolean expressions P1 ... Pn split the analysis into n distinct cases, scrutinised by
the associated monadic actions M1 ... Mn, so that, if such a Haskell expression was
to be used to describe some syntactic entity e, the entity’s ultimate meaning would
be determined by the first successful action Mi for which the corresponding condition
Pi holds. In general, I usually formulate the n predicates in such a way as to ensure
that at most one of them will ever hold for any given entity, so that the resulting
semantics should remain unaffected by the order in which the cases are analysed in
the presentation. As a result, our compiler could be easily coerced into producing a
more meaningful diagnostic messages through a suitable refinement of the monad M.

124 CHAPTER 5: THE C PROGRAMMING LANGUAGE

The reader should observe however, that, in this work, the M monad serves no other
purpose beyond error detection and that the semantic context of every entity is always
propagated explicitly throughout the translation process, so that M is not expected to
provide any specific state management facilities.

5.3 Identifiers and Variables
In the concrete syntax of C, tokens known as identifiers are used to designate various
semantic entities such as variables, functions and members of structure or union types.
In the present formal definition of its semantics, these identifiers are represented simply
as Haskell string values, in order to render them usable as names of exported Etude
items. Nevertheless, to improve the clarity of our discussion, it is useful to define
a distinct Haskell type intended solely for depiction of C identifiers. Formally, this
simple type is introduced by the following Haskell synonym declaration:

identifier :
string

Although the discussion in Section 5.1 suggests that names such as “fac”, “x” and
“i” assigned by a programmer to the individual C entities are retained under their
translation into Etude programs, in reality C identifiers are not a very good match
for Etude variables. In particular, the C programming language has its own set of
idiosyncratic rules that define visibility of names within the program, which are often
orthogonal to the actual life spans of objects associated with these entities by the
translation. While the match is perfect for global individuals such as C functions, in
most cases, the entity designated by an identifier may persist long after the identifier
itself ceased to be visible within the program and, in some cases, certain entities such
as string literals are not associated with any C identifier at all. In recognition of these
difficulties, all Etude variables that appear in the translated program are represented
uniformly by the following Haskell data type “ν”:

ν :
identifier (external variables)
Vinteger (internal variables)
T integer (temporary variable)

The “identifier” form of these Etude variables is reserved solely for representation
of C entities such as functions and named global objects whose declarations appear
outside of any function definitions, while all other constructs are bound systematically
to unique variable names of the form “Vn”, in which the integer n represents a globally-
unique index introduced by a simple algorithm described later in Section 5.5. More
so, temporary variables of the form “Tn” are reserved for internal use within individual
Etude terms constructed by the translation and, as a rule, will never appear free within
a denotation of a complete C entity, thus ensuring that they are always available for an
unrestricted use by any other closed term in the program.

5.4 TYPES 125

5.4 Types
During translation, many C entities such as function declarations and members of
a structure or union object are annotated with various auxiliary information used to
provide further information about the entity’s semantics. In standard C nomenclature,
these annotations are known as types, although they bear little resemblance to their type-
theoretic namesakes. In the actual source files, such types are usually depicted using
the “type-name” syntax defined later in Section 5.8.9. However, for historical reasons,
this syntax is unsuitable for a direct deployment during translation and, accordingly,
most C compilers resort to an abstracted denotation of these entities during analysis of
C programs. In the following presentation, these abstract entities are always referred to
as C types in order to distinguish them from their Haskell cousins.

5.4.1 Abstract Syntax
The language defines fifteen distinct C type forms, described collectively by the fol-
lowing Haskell constructions:

type:
signed integer-specifier (signed integer types)
unsigned integer-specifier (unsigned integer types)
char (plain character type)
int (plain integer type)
enum type ν (enumeration types)
float (single precision floating type)
double (double precision floating type)
long double (extended floating point type)
struct-or-union ν members (structure and union types)
type * (pointer types)
type [integeropt] (array types)
type (prototypeopt) (function types)
type : integer . integer (bit field types)
void (the void type)
type-qualifier type (variable types)

types:
[type] (a list of types)

integer-specifier : one of
char short int long (integral type variants)

member :
type identifieropt @ integer (structure and union members)

members:
[member] (member lists)

prototype:
types
types ... (function prototypes)

where the two Haskell types “struct-or-union” and “type-qualifier” used in the above
definition are discussed separately in Sections 5.8.4 and5.8.7 later in this chapter.

126 CHAPTER 5: THE C PROGRAMMING LANGUAGE

As described later in Section 5.8, in the concrete syntax of the language most of
these types are usually depicted by sequences of C tokens similar to those found in
their abstract names given above. In particular, structure, union and enumeration types
of the form “struct ν”, “union ν” and “enum t ν” are introduced into C programs
using the “struct-or-union-specifier” and “enum-specifier” entities defined in Sections
5.8.4 and 5.8.5. On the other hand, pointer, array and function types are represented
by the concrete syntax of C declarators discussed in Section 5.8.8, whose enormous
complexity is the main reason for introduction of the above abstract structures into the
present formal specification of the language. Finally, bit field types of the form “t:n.m”
can be introduced only as part of a larger structure or union declaration as described
in Section 5.8.4. Within such bit fields, the “int” type assumes a slightly unusual
semantics, whereas, in every other context, it is precisely equivalent to “signed int”.

5.4.2 Corresponding Types

Many type properties are left unspecified in the C Standard, with an intention that a
suitable choice of their values should be made in consideration of various architecture-
specific factors. In the following presentation, such properties of C types are usually
described using Haskell signatures and theorems instead of complete definitions. Nev-
ertheless, most of the partially-specified type forms are guaranteed to share certain
properties with some other predetermined entity known as that form’s corresponding
type. Five such designated C types are introduced by the following Haskell signature:

char_t, int_t, wchar_t, ptrdiff_t, size_t :: type

Informally, “char_t” and “int_t” depict the corresponding types of their “char”
and “int” variants, with “int_t” used only during analysis of the bit field type form
“int:m.n”. Both of these types are always guaranteed to be equal to a “signed” or
“unsigned” version of “char” and “int”, respectively:

WFchar_t :: [[char_t 2 fsigned char, unsigned charg]]
WFint_t :: [[int_t 2 fsigned int, unsigned intg]]

Of the remaining three types, “wchar_t” is used solely in formalisation of certain
initialiser forms described in Section 5.8.12, while “ptrdiff_t” and “size_t” are
required to capture various aspects of pointer arithmetic discussed throughout Section
5.7, without committing to its details in the generic specification of the language. Each
of these types is guaranteed to be equal to one of the ten basic integral types, as captured
by the following three theorems:

WFwchar_t :: [[wchar_t 2 BIT]]
WFptrdiff_t :: [[ptrdiff_t 2 BIT]]
WFsize_t :: [[size_t 2 BIT]]

where “BIT ” represents the complete set of all basic integral type forms. Formally, this
set consists of the eight “signed” and “unsigned” type variants together with their

5.4 TYPES 127

plain “char” and “int” cousins, as specified by the following Haskell definition:

BIT = f
signed char, signed short, signed int, signed long,
unsigned char, unsigned short, unsigned int, unsigned long,
char, int

g

An example of the most popular implementation of the five corresponding types de-
scribed above, also suitable for the MMIX architecture from Chapter 6, is presented
separately in Appendix C.

The reader should also observe that every enumeration type form “enum t ν”
corresponds to another basic integral type t. That type, however, is always specified
explicitly by every instance of such an entity, since, in some C compilers, its choice may
vary between enumerations. For a further discussion of this issue, an interested reader
is referred to the definition of enumeration specifiers presented later in Section 5.8.5.

5.4.3 Properties of Types

For convenience, the above syntactic forms of C types are grouped into a number of type
families, every one of which is identified by an appropriate Haskell predicate function.
In particular, types of the form “enum t ν”, and all “const” and “volatile”-
qualified versions thereof, are known as enumeration types. Such types are meaningful
only if t represents one of the ten basic integral types described previously in Section
5.4.2 and if no type qualifier is applied to the enumeration more than once in its syntax.
Formally, this group of types is identified by the following predicate “ET”:

ET[[.]] :: type ! bool

ET[[enum t ν]] = t 2 BIT
ET[[q t]] = q /2 tq(t) ^ ET(t)
ET[[other]] = false

in which the notation “q /2 tq(t)” is discussed later in Section 5.4.4.

Similarly, the family of bit field types is identified by the predicate “BF”. It con-
sists of all qualified or unqualified versions of the type forms “signed int:m.n”,
“unsigned int:m.n” and “int:m.n”, provided that both m and n represent non-
negative integers and m has a value no greater than ω � S(t)� n, where ω is the byte
width parameters from Section 4.4 and S(t) represents the size of the C type t, as de-
scribed later in Section 5.4.6. Formally:

BF[[.]] :: type ! bool

BF[[t:m.n]] = t 2 fsigned int, unsigned int, intg ^
n � 0 ^ 0 � m � ω � S(t)� n

BF[[q t]] = q /2 tq(t) ^ BF(t)
BF[[other]] = false

In such types, the integers m and n are known as the bit width and offset, respectively.

128 CHAPTER 5: THE C PROGRAMMING LANGUAGE

For convenience, they can be retrieved from an arbitrary bit field type using the follow-
ing pair of Haskell functions:

W [[.]], O[[.]] :: type ! integer

W [[t:m.n]] = m
W [[q t]] = W (t)

O [[t:m.n]] = n
O [[q t]] = O(t)

Intuitively, the offset of a bit field type determines its location within a larger object
described by the associated base type, while its width represents the number of actual
bits occupied by the object.

Collectively, the four “signed” type forms, “int”, “signed int:m.n” and
all qualified versions thereof are known as signed integral types. Further, the plain
“char” type, “int:m.n” and enumeration types “enum t ν” are included in this
family if their corresponding types “char_t”, “int_t:m.n” and t are themselves
signed. In Haskell, these criteria can be captured concisely by the following Haskell
predicate “ST”:

ST[[.]] :: type ! bool

ST[[signed char]] = true
ST[[signed short]] = true
ST[[signed int]] = true
ST[[signed long]] = true
ST[[int]] = true
ST[[char]] = ST[[char_t]]
ST[[enum t ν]] = ET[[enum t ν]] ^ ST(t)
ST[[signed int:m.n]] = BF[[signed int:m.n]]
ST[[int:m.n]] = ST[[int_t:m.n]]
ST[[q t]] = q /2 tq(t) ^ ST(t)
ST[[other]] = false

Similarly, the family of unsigned integral types, identified with the predicate “UT”, is
defined trivially as follows:

UT[[.]] :: type ! bool

UT[[unsigned char]] = true
UT[[unsigned short]] = true
UT[[unsigned int]] = true
UT[[unsigned long]] = true
UT[[char]] = UT[[char_t]]
UT[[enum t ν]] = ET[[enum t ν]] ^ UT(t)
UT[[unsigned int:m.n]] = BF[[signed int:m.n]]
UT[[int:m.n]] = UT[[int_t:m.n]]
UT[[q t]] = q /2 tq(t) ^ UT(t)
UT[[other]] = false

Further, the three basic types “char”, “signed char” and “unsigned char” are
often referred to as character types. They are identified by the following Haskell

5.4 TYPES 129

predicate, observing that the wide character type “wchar_t” is excluded from this
type family, even though, in a sense, it is also used to depict character values:

CHR[[.]] :: type ! bool

CHR[[char]] = true
CHR[[signed char]] = true
CHR[[unsigned char]] = true
CHR[[q t]] = q /2 tq(t) ^ CHR(t)
CHR[[other]] = false

More so, the family of floating types consists of the three syntactic forms “float”,
“double” and “long double”, together with all properly-qualified versions thereof.
Intuitively, these types describe floating point numbers, usually of the kind defined in
the IEEE Standard for Binary Floating-Point Arithmetic [IEEE 754]. Formally, they
are identified as follows:

FLT[[.]] :: type ! bool

FLT[[float]] = true
FLT[[double]] = true
FLT[[long double]] = true
FLT[[q t]] = q /2 tq(t) ^ FLT(t)
FLT[[other]] = false

In C, qualified and unqualified types of the form “t*” are known as pointer types. In
this work, they are associated with the type family predicate “PTR”. The type t from
which such pointers are derived must represent a valid object, function or incomplete
type, as depicted by the “OBJ”, “FUN” and “INC” predicates defined shortly:

PTR[[.]] :: type ! bool

PTR[[t*]] = OBJ(t) _ FUN(t) _ INC(t)
PTR[[q t]] = q /2 tq(t) ^ PTR(t)
PTR[[other]] = false

Collectively, all signed and unsigned types are known simply as integral types, which,
in combination with the floating type family, also form the set of all arithmetic types
supported by the C language. More so, arithmetic and pointer types constitute the
family of scalar types which, intuitively, characterise all C variables whose values are
translated into simple Etude atoms. Formally, these three auxiliary type families are
depicted by the following predicates “INT”, “AT” and “SCR”:

INT [[.]], AT[[.]], SCR[[.]] :: type ! bool

INT [[t]] = ST (t) _ UT (t)
AT [[t]] = INT(t) _ FLT (t)
SCR[[t]] = AT (t) _ PTR(t)

Further, the family of structure and union types consists of all correctly-qualified and
unqualified versions of constructs with the abstract syntax of “struct ν m̄” and

130 CHAPTER 5: THE C PROGRAMMING LANGUAGE

“union ν m̄”, in which m̄ represents a list of structure or union members. For-
mally, such types are identified by the Haskell predicate “SU”, which can be defined
as follows:

SU[[.]] :: type ! bool

SU[[struct ν m̄]] = true
SU[[union ν m̄]] = true
SU[[q t]] = q /2 tq(t) ^ SU(t)
SU[[other]] = false

As exposed by the earlier BNF grammar, every member of such a type consists of a
member type, an optional identifier and a non-negative integer known as the member’s
offset, which, informally, specifies the precise location of the member within an entire
structure or union as a byte offset into the corresponding Etude object. The three
components of every member entity can be extracted individually from its abstract
syntax using the following trio of auxiliary Haskell definitions:

T [[.]] :: member ! type (type)
N [[.]] :: member ! identifieropt (name)
O [[.]] :: member ! integer (offset)

T [[t xopt @ n]] = t
N [[t xopt @ n]] = xopt

O [[t xopt @ n]] = n

In practice, every member list constitutes a unique name space for its member names
and, accordingly, such lists are usually viewed as sets of members indexed by their
associated identifiers. This natural interpretation can be formalised in Haskell using the
following implicit coercion function:

[[.]] :: members ! (identifier! member)

[[m̄]] = fN (mk):mk mk m̄, N (mk) 6= εg

In other words, the name space introduced by a given structure or union type consists
of all named members of that structure or union, with each identifier appearing in
such a member mapped to the member entity itself. Anonymous members without
an identifier are explicitly excluded from this name space. Observe that the above
conversion function is treated as an implicit coercion whose name is always omitted
from the presentation, since its existence can be inferred trivially from the context of
the surrounding Haskell expression.

The Etude variable associated with every enumeration, structure and union type is
known as that type’s tag and may be obtained from its abstract syntax using the notation
“tag(t)”, whose obvious implementation can be captured in Haskell as follows:

tag[[.]] :: type ! ν

tag[[enum t ν]] = ν

tag[[struct-or-union ν m̄]] = ν

tag[[q t]] = tag(t)

5.4 TYPES 131

Such tags are used solely to formalise the equivalence relation for structure, union and
enumeration types. In this work, they are associated with Etude variables only in order
to simplify generation of globally-unique type tags in Sections 5.5 and 5.8.

Similarly, the “struct-or-union” and member list components of a structure or union
type can be extracted from its abstract syntax using the following simple constructions:

su[[.]] :: type ! struct-or-union

su[[struct-or-union ν m̄]] = struct-or-union
su[[q t]] = su(t)

m̄ [[.]] :: type ! members

m̄ [[struct-or-union ν m̄]] = m̄
m̄ [[q t]] = m̄(t)

Unqualified types of the form “t[nopt]” are known as array types. In all cases, such
types must be derived from a valid member of the object type family, as identified by the
“OBJ” predicate described shortly, together with an optional number n, that, when spec-
ified, must represent a strictly-positive integer no greater than lub(ptrdiff_t)/S(t)
in magnitude. Formally:

ARR[[.]] :: type ! bool

ARR[[t[nopt]]] = OBJ(t) ^ (nopt = ε _ 0 < nopt � lub(ptrdiff_t)/S(t))
ARR[[other]] = false

using the “S(t)” and “lub(t)” notations discussed separately in Sections 5.4.6 and 5.4.5.
The optional integer component of an array type is known as the array’s length. Intu-
itively, it specifies the number of discrete objects stored in that array. For convenience,
the length of every array type can be determined by the following function:

length[[.]] :: type ! integeropt

length[[t[nopt]]] = nopt

Collectively, all of the above types with the exception of bit fields, arrays of unspecified
length and structure or union types with an empty member list form an important family
of object types, which, intuitively, can be used to describe C variables with predictable
storage requirements. In Haskell, this family can be identified as follows:

OBJ[[.]] :: type ! bool

OBJ[[t]] = unq(t) 2 BIT _
FLT(t) _ ET(t) _ PTR(t) _
(ARR(t) ^ length(t) 6= ε) _
(SU(t) ^ m̄(t) 6= ∅)

More so, types of the form “t(prototypeopt)” represent function types, which are never
qualified and must be derived from an object or incomplete type other than an array. In
Haskell, these types are identified by the following predicate:

FUN[[.]] :: type ! bool

FUN[[t(popt)]] = (OBJ(t) _ INC(t)) ^ :ARR(t) ^ WF(popt)
FUN[[other]] = false

132 CHAPTER 5: THE C PROGRAMMING LANGUAGE

and their optional prototype popt can be obtained by the following function:

prot[[.]] :: type ! prototypeopt

prot[[t(popt)]] = popt

Informally, the prototype of a C function characterises any argument values expected
by every call to that function as described in Section 5.7. An empty prototype indicates
that no information about the arguments’ types is available to the compiler, while a
prototype of the form “t̄...” signals that the function may accept additional arguments
beyond those specified by its prototype’s type list. When present, a prototype without
the “...” suffix must be formed only from valid object, incomplete and function types,
while prototypes with the “...”, are considered to be well-formed if they specify a non-
empty list of types and if the corresponding prototype without that suffix is also deemed
valid. Formally:

WF[[.]] :: (prototypeopt) ! bool

WF[[ε]] = true
WF[[t̄]] =

V
[OBJ(tk) _ FUN(tk) _ INC(tk) tk t̄] ^ t̄ 6= ∅

WF[[t̄...]] = WF(t̄) ^ t̄ 6= ∅

Although a well-formed C program may never define a function with an incomplete
parameter type, a careful perusal of the C standard reveals that nonsensical constructs
such as “int(void, void, void)” are still valid within “sizeof” expressions and
cast operations. Accordingly, they are supported in this work, although virtually no
other C compiler provides a correct implementations of these types.

The special type “void” is known as the void type. All of its qualified and
unqualified variants are identified collectively by the following predicate “VT”:

VT[[.]] :: type ! bool

VT[[void]] = true
VT[[q t]] = q /2 tq(t) ^ VT(t)
VT[[other]] = false

The “void” type represents a distinguished member of the incomplete type family,
which, intuitively, describes objects with unknown storage requirements. Other exam-
ples of incomplete types include arrays of unspecified length and structures or unions
with empty member lists. Formally, these rather unusual entities are identified by the
collective predicate “INC”:

INC[[.]] :: type ! bool

INC[[t]] = VT(t) _ (ARR(t) ^ length(t) = ε) _ (SU(t) ^ m̄(t) = ∅)

A reader will observer that the structure of many C type forms defined at the beginning
of this section is derived from some other type entity, known as that type’s base. In
particular, the base of an enumeration or bit field type defines that type’s corresponding
basic integral derivation, while the base of a pointer type represents the type of an object
addressed by the pointer. Similarly, the base of an array type describes the array’s

5.4 TYPES 133

individual elements, while, for functions, it characterises the entity’s returned value.
For convenience, the notion of the base type is captured collectively by the following
Haskell definition:

B[[.]] :: type ! type

B[[enum t ν]] = t
B[[t*]] = t
B[[t[nopt]]] = t
B[[t(popt)]] = t
B[[t:m.n]] = t
B[[q t]] = B(t)

For clarity, in the C Standard the base type of a pointer, array or function type is usually
referred to as the entity’s referenced, element or returned type, respectively.

5.4.4 Type Qualifiers
As already hinted in the previous section, most C types can be qualified with one or both
of the keywords “const” and “volatile”. Intuitively, a type whose qualification
includes the “const” keyword is said to be constant-qualified. Such types describe
objects whose values remain immutable throughout execution of a well-formed C pro-
gram. Similarly, a type that includes the “volatile” qualifier is said to be volatile-
qualified. Intuitively, these types describe objects such as memory-mapped hardware
device registers, whose values may be modified by means outside of the program’s ex-
plicit control. The complete set of all such qualifiers is derived from a type’s syntax as
follows:

tq[[.]] :: type ! ftype-qualifierg

tq[[q t]] = fqg [tq(t)
tq[[other]] = ∅

It should be pointed out that, since the above function returns a set of type qualifiers
rather than a list, the precise order in which individual qualifiers appear within the syn-
tax of a C type does not affect that type’s core meaning, so that both of the syntactic
forms “const volatile t” and “volatile const t” remain semantically indis-
tinguishable everywhere within a C program.

Informally, every C type corresponds to a unique unqualified type, obtained by
stripping any type qualifier keywords from its syntax. Formally, this type is depicted
by the notation “unq(t)”, which can be implemented in Haskell as follows:

unq[[.]] :: type ! type

unq[[q t]] = unq(t)
unq[[other]] = other

Finally, any type may be qualified with an arbitrary list of type qualifiers q̄, which, in
this work, is paraphrased as a list concatenation operation “q̄ ++ t”. When this notation
is used to qualify an array type of the form “t[nopt]”, the result is an unqualified type
of the same length, whose element type describes the qualified version of the original

134 CHAPTER 5: THE C PROGRAMMING LANGUAGE

array’s elements. Otherwise, the qualified type is obtained by composing the supplied
list of type qualifiers q̄ into a single function of the Haskell type “type ! type” using
the list composition operator “�” described separately in Appendix A and applying that
function to the original type t. Formally:

[[.]] ++ [[.]] :: [type-qualifier] ! type ! type

[[q̄]] ++ [[t[nopt]]] = [[[[q̄ ++ t]][nopt]]]
[[q̄]] ++ [[t]] = (�q̄)(t)

In certain contexts, it is also useful to requalify an already-qualified C type, in which
case a union of the supplied type qualifiers q̄ with the existing qualification of t is
obtained and applied to the unqualified version of t using the above “++” operator. In
this work, such construction is paraphrased as the following set operation:

[[.]] [[[.]] :: ftype-qualifierg ! type ! type

[[q̄]] [[[t[nopt]]] = [[[[q̄ [t]][nopt]]]
[[q̄]] [[[t]] = (q̄ [tq(t)) ++ (unq(t))

Finally, in Section 5.7.1.3, requalification can be also applied to the list of members of
a structure or union type, as implemented by the following simple list composition:

[[.]] [[[.]] :: ftype-qualifierg ! members ! members

[[q̄]] [[[m̄]] = [[[[[q̄ [tk]] xk @ nk]] [[tk xk @ nk]] m̄]

In certain contexts, we must also consider the recursive qualification of a structure
or union type t, which extends the set tq(t) with any qualifiers hidden among the
construct’s individual members, together with the qualification of any array element
types found in its syntax. Formally, the recursive qualification of a C type is defined by
induction over the entity’s structure as follows:

rtq[[.]] :: type ! ftype-qualifierg

rtq[[t]] SU(t) = tq(t) [
S

[rtq(T (mk)) mk m̄(t)]
ARR(t) = tq(t) [rtq(B(t))
otherwise = tq(t)

Observe that the result of this construction is well-formed only if the operand does not
represent a function type, or else if the specified set of type qualifiers is empty, since
function types cannot be qualified in a well-formed C program.

The two “const” and “volatile” type qualifiers correspond naturally to the
Etude access attributes “C” and “V”, a fact that is easily exploited by the following
Haskell mapping of these constructs:

µ [[.]] :: type-qualifier ! mode

µ [[const]] = [[C]]
µ [[volatile]] = [[V]]

In Section 5.4.6, this correspondence is utilised to construct Etude envelopes suitable
for depiction of C variable objects in an address space of the translated program.

5.4 TYPES 135

5.4.5 Representation of Values
As discussed in Chapter 4, many unspecified aspects of the various binary encoding
schemes used in Etude for representation of its numeric quantities is captured by the
notion of an atomic format. Likewise, every C object and bit field type is naturally
associated with one of these formats by an unspecified function φ(t), as exposed by the
following Haskell signature:

φ [[.]] :: type ! format

In particular, under every implementation of the C language, the format of all signed,
unsigned and floating types belongs to the “Z”, “N” and “R” genre, respectively:

REPR1 :: 8 t) [[ST (t)]] ! (WF[[φ(t)]], [[γ(φ(t)) = [[Z]]]])
REPR2 :: 8 t) [[UT (t)]] ! (WF[[φ(t)]], [[γ(φ(t)) = [[N]]]])
REPR3 :: 8 t) [[FLT(t)]] ! (WF[[φ(t)]], [[γ(φ(t)) = [[R]]]])

Further, the format of all function types and all pointers to such types belongs to the
Etude function genre “F”, while all structure, union and array types, together with any
pointers to an object or incomplete type are formatted in the object genre “O”:

REPR4 :: 8 t)
[[FUN(t) _ (PTR(t) ^ FUN(B(t)))]] !
(WF[[φ(t)]], [[γ(φ(t)) = [[F]]]])

REPR5 :: 8 t)
[[SU(t) _ ARR(t) _ (PTR(t) ^ (OBJ(B(t)) _ INC(B(t))))]] !
(WF[[φ(t)]], [[γ(φ(t)) = [[O]]]])

More so, on every C implementation, pointers to all character and void types must share
the same format:

REPR6 :: 8 t1, t2)
[[PTR(t1) ^ (CHR(B(t1)) _ VT(B(t1)))]] !
[[PTR(t2) ^ (CHR(B(t2)) _ VT(B(t2)))]] !
[[φ(t1) = φ(t2)]]

Likewise, all pairs of compatible object types described later in Section 5.4.11 always
assume a common representation:

REPR7 :: 8 t1, t2) [[OBJ(t1) ^ OBJ(t2) ^ t1 � t2]] ! [[φ(t1) = φ(t2)]]

The plain “char” type must have the same format as “char_t”, every well-formed
array type must share its format with a pointer to its element type and all function types
must have the same representation as a pointer to that function:

REPR8 :: [[φ(char) = φ(char_t)]]
REPR9 :: 8 t) [[ARR(t)]] ! [[φ(t) = φ [[[[B(t)]]*]]]]
REPR10 :: 8 t) [[FUN(t)]] ! [[φ(t) = φ [[t*]]]]

More so, a well-formed bit field type of the form “int:m.n” must be represented
identically to its corresponding type “int_t:m.n”:

REPR11 :: 8 m, n) [[BF[[int:m.n]]]] ! [[φ [[int:m.n]] = φ [[int_t:m.n]]]]

136 CHAPTER 5: THE C PROGRAMMING LANGUAGE

Values of a qualified object or bit field type must have the same representation as those
of the corresponding unqualified type:

REPR12 :: 8 T , t) [[OBJ(t) _ BF(t)]] ! [[φ(t) = φ(unq(t))]]

Last but not least, all well-formed pointers to every qualified and unqualified version of
a given C type must share the same format:

REPR13 :: 8 t) [[PTR(t)]] [[φ(t) = φ [[[[unq(B(t))]]*]]]]

As described in Chapter 4, every supported format φ is also associated with a pair of
numeric quantities “glb(φ)” and “lub(φ)”, known as the format’s greatest lower bound
and least upper bound, respectively. For integral formats, the set of all integers n in
the range glb(φ) � n � lub(φ) is known as the format’s set of representable values.
Inevitably, every arithmetic C type is also associated with such a set, which can be
derived directly from the type itself using the following two Haskell constructions:

glb[[.]], lub[[.]] :: type ! rational

glb[[t]] = glb(φ(t))
lub[[t]] = lub(φ(t))

We have already discussed many of the constraints placed on Etude formats in Chapter
4. However, the C programming language imposes a number of further requirements
on the range of values associated with the individual integral C types. In particular,
every basic integral type must be capable of representing at least the following range of
values:

INT1 :: [[glb[[signed char]] � �127]]
INT2 :: [[glb[[signed short]] � �32767]]
INT3 :: [[glb[[signed int]] � �32767]]
INT4 :: [[glb[[signed long]] � �2147483647]]

INT5 :: [[lub[[signed char]] � 127]]
INT6 :: [[lub[[signed short]] � 32767]]
INT7 :: [[lub[[signed int]] � 32767]]
INT8 :: [[lub[[signed long]] � 2147483647]]

INT9 :: [[lub[[unsigned char]] � 255]]
INT10 :: [[lub[[unsigned short]] � 65535]]
INT11 :: [[lub[[unsigned int]] � 65535]]
INT12 :: [[lub[[unsigned long]] � 4294967295]]

Further, the four “signed” and “unsigned” versions of the “char”, “short”,
“int” and “long” types must be capable of encoding all values that are representable
by all previous types in that list:

INT13 :: [[glb[[signed char]] � glb[[signed short]]
� glb[[signed int]] � glb[[signed long]]]]

INT14 :: [[lub[[signed char]] � lub[[signed short]]
� lub[[signed int]] � lub[[signed long]]]]

INT15 :: [[lub[[unsigned char]] � lub[[unsigned short]]
� lub[[unsigned int]] � lub[[unsigned long]]]]

5.4 TYPES 137

Likewise, the set of all non-negative values representable by every “signed” integral
type form must be a subset of those representable by its “unsigned” variant:

INT16 :: 8 is) WF(is) ! [[lub[[signed is]] � lub[[unsigned is]]]]

Finally, every well-formed bit field type must support a subset of the values repre-
sentable by its base type:

INT17 :: 8 t, m, n) [[BF[[t:m.n]]]] ! [[glb(t) � glb[[t:m.n]] � lub[[t:m.n]] � lub(t)]]

In Chapter 4, formats from the “R” genre are further associated with a set of four floating
point parameters known as the radix, precision, minimum exponent and maximum
exponent, respectively. These properties can be naturally propagated to floating C types,
observing, however, that the C Standard requires all floating C types to share a single
radix value:

FLT1 :: 8 t1, t2) [[FLT(t1) ^ FLT(t2)]] ! [[r(φ(t1)) = r(φ(t2))]]

Further, the range of values representable exactly by the “float” type, as indicated
by its precision and exponent bounds, must be a subset of those meaningful under the
“double” representation and, for “double”, it must be a subset of “long double”:

FLT2 :: [[p(φ [[float]]) � p(φ [[double]]) � p(φ [[long double]])]]
FLT3 :: [[Emax(φ [[float]]) � Emax(φ [[double]]) � Emax(φ [[long double]])]]
FLT4 :: [[Emin(φ [[float]]) � Emin(φ [[double]]) � Emin(φ [[long double]])]]

Finally, each of these three types must be capable of representing at least the values
described by the following choices of its four floating point parameters:

FLT5 :: 8 n :: integer) [[(b = 10n) + b(p� 1)� log10(b)c � 6]]
FLT6 :: 8 n :: integer) [[(b = 10n) + b(q� 1)� log10(b)c � 10]]
FLT7 :: [[dlog10(bEmin � 1)e � �37]]
FLT8 :: [[blog10((1� b�p)� bEmax)c � 37]]
FLT9 :: [[(1� b�p)� bEmax � 10+37]]
FLT10 :: [[b1 � p � 10�5]]
FLT11 :: [[b1 � q � 10�9]]
FLT12 :: [[bEmin � 1 � 10�37]]

where b, Emin and Emax represent the radix and exponent bounds of the “float” type,
p is equal to that type’s precision and q determines the precision of “double”:

b = r (φ [[float]])
Emin = Emin (φ [[float]])
Emax = Emax(φ [[float]])
p = p (φ [[float]])
q = p (φ [[double]])

For a more thorough treatment of the generic floating point arithmetic in Etude, an
interested reader is referred to the earlier discussion of the topic in Section 4.4. A
typical implementation of the φ(t) function, suitable for the MMIX architecture from
Chapter 6, is included in Appendix C.

138 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.4.6 Storage Requirements
Ultimately, every object type defined in the C Standard is intended to characterise some
collection of C variables or address space regions reserved for storage of mutable C
values attributed with that type. In Etude, such regions are described concisely by the
notion of an envelope from Section 4.5, so that, in effect, every C type t describes an
Etude envelope constructed naturally by the following function ξ̄(t):

ξ̄[[.]] :: type ! envelope

ξ̄[[t]] VT (t) = ∅

BF (t) = [[(0, [[φ [[unsigned int]]]], [[µ̄(t)]])]]
SCR (t) = [[(0, [[φ(t)]], [[µ̄(t)]])]]
ARR(t) =

S
[ξ̄(B(t))� (k � S(B(t))) k [0 ... length(t)� 1]]

SU (t) =
S

[ξ̄(T (mk))� O(mk) mk tq(t) [m̄(t)]

In other words, every scalar type t describes a singular envelope of the form “(0, φ , µ̄)”,
where φ is either the format of the “unsigned int” type if t represents a bit field, or
else the format of t itself for all other scalar type forms. The set of access attributes µ̄

associated with the type’s envelope element is obtained from its recursive qualification
using the following simple Haskell construction:

µ̄[[.]] :: type ! fmodeg

µ̄[[t]] = fµ(µk) µk rtq(t)g

On the other hand, the envelope of a complete structure or union type is defined as a
union of the individual envelopes of its member types, each shifted by the member’s
offset within the object. Finally, the envelope of a complete array type (i.e., an array of
some predetermined length n) is formed from n copies of the envelope associated with
the array’s element type t, each shifted by the offset k� S(t) for some k in the range
0 � k < n. Formally, the size S(t) of every complete object type t is defined simply as
the size of t’s envelope, as epitomised by the following trivial Haskell function:

S [[.]] :: type ! integer

S [[t]] = S(ξ̄(t))

Since the definition of ξ̄(t) rests on the implementation-defined mapping between C
types and Etude formats, the size of most object types is left unspecified in the portable
fragment of the C language. However, every implementation of a C compiler must
ensure that the “char” type has the predetermined size of 1 and that all “signed” and
“unsigned” variants of the same integral type have identical storage requirements:

SIZE1 :: [[S(char) = 1]]
SIZE2 :: 8 is) WF(is) ! [[S [[signed is]] = S [[unsigned is]]]]

Further restrictions on C type sizes can be inferred indirectly from the requirements
placed upon their corresponding Etude formats described earlier in Section 5.4.5. For
example, since all pointers to qualified and unqualified versions of compatible types
must share a single binary representation, they must likewise agree in the storage
requirements derived from their common Etude format.

5.4 TYPES 139

5.4.7 Integral Promotion
Most arithmetic operations defined on integer values by the concrete syntax of C ex-
pressions described in Section 5.7 can be applied directly only to operands of the
“signed” and “unsigned” versions of the “int” or “long” type. Such types
are said to be invariant and are identified by the Haskell predicate “INV”. Specifi-
cally, the family of invariant types includes “unsigned int”, the “signed” and
“unsigned” versions of the “long” type, as well as all non-integral types. Formally:

INV[[.]] :: type ! bool

INV[[t]] = unq(t) 2 funsigned int, signed long, unsigned longg _ :INT(t)

In most cases, operands of every non-invariant C type are implicitly converted to the
“signed” or “unsigned” version of the “int” type, with the “signed” variant
chosen whenever it is capable of representing every numeric value of the unconverted
operand. This process, known as integral promotion, also drops all type qualifiers
associated with any invariably-typed operands, except that, for subtle technical reasons
described later in Section 5.7.1.3, type qualification is always preserved for structure
and union objects. Formally, this construction is modelled in Haskell as follows:

ip[[.]] :: type ! type

ip[[t]] SU(t) = t
INV(t) = unq(t)
glb[[int]] � glb(t) � lub(t) � lub[[int]] = [[signed int]]
otherwise = [[unsigned int]]

It should be observed that integral promotion never reduces the set of values repre-
sentable by its operand. It is applied in C as a convenient means of culling the number
of viable operator forms supported by the expression syntax described in Section 5.7.

5.4.8 Pointer Promotion
In most contexts, functions and arrays do not constitute true first-class objects in the C
language. Instead, they are usually manipulated indirectly through pointer references,
which can be constructed either explicitly by the programmer using the “&” operator
described in Section 5.7, or implicitly by the compiler through the process known as
pointer promotion. Formally, pointer promotion converts every function type into a
pointer to that function and every array into a pointer to its element type, leaving all
other types unchanged. In Haskell, this operation can be modelled as follows:

pp[[.]] :: type ! type

pp[[t]] FUN(t) = [[t*]]
ARR(t) = [[[[B(t)]]*]]
SU (t) = t
otherwise = unq(t)

Like integral promotion, pointer promotion adjusts the types of C objects without af-
fecting their Etude representations, in order to reduce the number of distinct expression
forms supported by the language.

140 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.4.9 Default Argument Promotion
The language also defines a similar conversion known as default argument promotion,
intended to normalise the types of arguments supplied to functions declared without an
explicit prototype. Formally, default argument promotion converts the “float” type
into a “double” and, for all other argument types, returns the integral and pointer
promoted version of its operand:

ap[[.]] :: type ! type

ap[[t]] (unq(t) = [[float]]) = [[double]]
otherwise = ip(pp(t))

The language always applies this promotion in absence of a precise information about
the type of a given function argument. Informally, it makes it possible for such functions
to be called with almost arbitrary numeric values, without regard for any differences in
the specific storage requirements of the individual arithmetic types.

5.4.10 Usual Arithmetic Conversions
When two C expressions are involved in a single binary operation, their C types are usu-
ally unified into a common arithmetic type by a process known as the usual arithmetic
conversion. In all cases, any type qualifiers are first discarded by the operation and
integral promotion is applied to both operands. Then, if one of the resulting operands
has the “signed long” type, the other has the “unsigned int” type and if the
set of values representable by “unsigned int” is not a subset of those representable
by “signed long”, then the entire operation assumes the “unsigned long” type.
Otherwise, the common arithmetic type is equal to the first type from the following list
that matches one of the two operands after integral promotion:

long double, double, float,
unsigned long, signed long, unsigned int, signed int

Observe that, after integral promotion, every arithmetic type is guaranteed to be con-
verted into one of these seven type forms. Formally, the usual arithmetic conversion is
represented by the type operator “t×+” and is formulated in Haskell as follows:

[[.]] t×+ [[.]] :: type ! type ! type

[[t1]] t×+ [[t2]]

((ip(t1) = [[signed long]] ^ ip(t2) = [[unsigned int]]) _
(ip(t2) = [[signed long]] ^ ip(t1) = [[unsigned int]])) ^

lub[[unsigned int]] > lub[[signed long]] = [[unsigned long]]
ip(t1) = [[long double]] _ ip(t2) = [[long double]] = [[long double]]
ip(t1) = [[double]] _ ip(t2) = [[double]] = [[double]]
ip(t1) = [[float]] _ ip(t2) = [[float]] = [[float]]
ip(t1) = [[unsigned long]] _ ip(t2) = [[unsigned long]] = [[unsigned long]]
ip(t1) = [[signed long]] _ ip(t2) = [[signed long]] = [[signed long]]
ip(t1) = [[unsigned int]] _ ip(t2) = [[unsigned int]] = [[unsigned int]]
ip(t1) = [[unsigned int]] _ ip(t2) = [[unsigned int]] = [[unsigned int]]
ip(t1) = [[signed int]] _ ip(t2) = [[signed int]] = [[signed int]]
otherwise = t1 t t2

5.4 TYPES 141

The final rule in this definition proclaims the common arithmetic type of non-arithmetic
operands equal to their composite type, using an algorithm depicted by the notation
“t1 t t2” and described later in Section 5.4.12. Although this extension does not fol-
low the letter of the C Standard, it provides for a very concise formalisation of cer-
tain C expression forms described in Section 5.7, while retaining the published se-
mantics of all usual arithmetic conversions under their standard application to pairs of
arithmetic types.

The usual arithmetic conversion affects the operands’ actual values only if one of
them represents a negative quantity of the “signed long” type, the other has the
“unsigned int” type and if both of these are converted into “unsigned long”
by the above algorithm. In all other cases, only the types of the operands are adjusted
by the above conversion and their actual values remain unchanged.

5.4.11 Type Compatibility
In the course of translation, qualified types are usually compared using a relation
known as type compatibility. By definition, two types are said to be compatible if
they have identical qualifications and if their unqualified variants satisfy one of the
following criteria:
1 both entities represent structurally-identical arithmetic types, or
2 one of the two operands represents an enumeration type and the other is compatible

with that enumeration’s corresponding type, or
3 both operands represent structure or union types with the same “struct-or-union”

component and type tag, or
4 both represent pointers to compatible referenced types, or
5 both represent arrays of compatible element types and either both arrays have equal

lengths, or else at least one of them does not include a length component, or
6 both constitute functions with compatible returned types and prototypes, or
7 both types represent identically-qualified versions of the “void” type, or
8 one of the two operands has the “int” form and the other is a “signed int”.

In this work, the type compatibility relation is written as “t1 � t2”. Formally, the “�”
operator is defined by the following protracted Haskell predicate:

[[.]] � [[.]] :: type ! type ! bool

[[t1]] � [[t2]] = (tq(t1) = tq(t2)) ^
((AT (t1) ^ unq(t1) = unq(t2)) _
(ET (t1) ^ B(t1) � unq(t2)) _
(ET (t2) ^ B(t2) � unq(t1)) _
(SU (t1) ^ SU (t2) ^ su(t1) = su(t2) ^ tag(t1) = tag(t2)) _
(PTR (t1) ^ PTR (t2) ^ B(t1) � B(t2)) _
(ARR(t1) ^ ARR(t2) ^ B(t1) � B(t2) ^
(length(t1) = length(t2) _ length(t1) = ε _ length(t2) = ε)) _

(FUN(t1) ^ FUN(t2) ^ B(t1) � B(t2) ^ prot(t1) � prot(t2)) _
(VT (t1) ^ VT (t2)) _
(funq(t1), unq(t2)g = f[[int]], [[signed int]]g))

142 CHAPTER 5: THE C PROGRAMMING LANGUAGE

where the compatibility relation for function prototypes is formalised as follows:

[[.]] � [[.]] :: prototypeopt ! prototypeopt ! bool

[[]] � [[]] = true
[[]] � [[t̄]] = [[t̄]] � [[[ap(tk) tk t̄]]]
[[t̄]] � [[]] = [[t̄]] � [[[ap(tk) tk t̄]]]
[[t̄1]] � [[t̄2]] = length(t̄1) = length(t̄2) ^V

[unq(pp(tk1)) � unq(pp(tk2)) (tk1, tk2) t̄1 t̄2]
[[t̄1]] � [[t̄2]] = t̄1 � t̄2

[[other1]] � [[other2]] = false

In other words, two omitted function prototypes are always compatible with each other
and, further, a non-empty prototype without the “...” suffix is deemed compatible
with an omitted prototype if and only if it is compatible with a prototype formed by
applying default argument promotion to every element of its type list. On the other
hand, a compatible pair of prototypes without the “...” suffix must specify type lists
of equal lengths, whose corresponding elements constitute qualified or unqualified
versions of compatible types after pointer promotion. In all other cases, a pair of
function prototypes is compatible if and only if both operands include the “...” suffix
and type lists that are pairwise-compatible with each other.

Two compatible types are considered to be “essentially the same” by the language
and are generally interchangeable anywhere within a C program, unless one of these
types represents an incomplete array type or a function without a prototype, in which
case the under-specified variant of the type may remain inadmissible in certain semantic
contexts described later in Sections 5.7 and 5.8.

5.4.12 Composite Types
A pair of compatible types may be used to derive a single composite type, which is
always guaranteed to be compatible with both of the original candidates for such a
composition. Intuitively, the composition algorithm combines all information depicted
by its two type operands. Formally, it is represented by the binary type operator “t”
and implemented by the following Haskell function:

[[.]] t [[.]] :: type ! type ! type

[[t1]] t [[t2]]

AT (t1) ^ unq(t1) = unq(t2) = tq(t1) [tq(t2) [unq(t1)
ET (t1) ^ B(t1) � unq(t2) = tq(t2) [t1
ET (t2) ^ B(t2) � unq(t1) = tq(t1) [t2
SU (t1) ^ SU (t2) ^ su(t1) = su(t2) ^ tag(t1) = tag(t2)

= tq(t1) [tq(t2) [[[[[su(t1)]] [[tag(t1)]] [[m̄(t1) t m̄(t2)]]]]
PTR (t1) ^ PTR (t2) = tq(t1) [tq(t2) [[[[[B(t1) t B(t2)]]*]]
PTR (t1) ^ INT (t2) = tq(t2) [(t1)
INT (t1) ^ PTR (t2) = tq(t1) [(t2)
ARR(t1) ^ ARR(t2) = tq(t1) [tq(t2) [[[[[B(t1) t B(t2)]][[[length(t1) t length(t2)]]]]]
FUN(t1) ^ FUN(t2) = tq(t1) [tq(t2) [[[[[B(t1) t B(t2)]]([[prot(t1) t prot(t2)]])]]
VT (t1) _ VT (t2) = tq(t1) [tq(t2) [[[void]]
funq(t1), unq(t2)g = f[[int]], [[signed int]]g = tq(t1) [tq(t2) [[[signed int]]

5.4 TYPES 143

Intuitively, this construction merges two compatible types by obtaining a composition
of their individual components. If one of the operands represents an enumeration type
and the other is compatible with that enumeration’s corresponding integral type, then
their composition returns the enumeration operand unchanged. Similarly, if one of the
two types represents a qualified or unqualified version of the plain “int” type and the
other is an explicit “signed int”, then their composite type is, by definition, equal
to the “signed int” type. Further, in order to simplify formalisation of certain C
expressions described later in Section 5.7, the above definition extends the standard
type composition rules as follows:

1 If the two entities represent differently-qualified versions of otherwise compatible
types, then their composite type is qualified with all the type qualifiers of both
operands.

2 If one of the two entities represents a void type, then the result is always equal to
an appropriately-qualified version of that type, regardless of the nature of the other
operand.

3 Finally, if one of the two entities represents a pointer and the other is an integral
type, then the result is equal to the pointer operand.

If, in a composition of two array types, one of the operands has an incomplete length,
then the result always assumes the length of the other operand. Otherwise, the result
has a length identical to that of both types. Formally:

[[.]] t [[.]] :: integeropt ! integeropt ! integeropt

[[]] t [[nopt]] = nopt

[[nopt]] t [[]] = nopt

[[n1]] t [[n2]] (n1 = n2) = n1

Similarly, when two structure or union types are composed by the above algorithm
and one of these has an empty member list, then the result has the member list of
the other operand. Otherwise, both member lists must have identical lengths and their
composition is performed pairwise on the corresponding list elements as follows:

[[.]] t [[.]] :: members ! members ! members

[[m̄1]] t [[m̄2]] m̄1 = ∅ = m̄2

m̄2 = ∅ = m̄1

length(m̄1) = length(m̄2) = [mk1 t mk2 (mk1, mk2) m̄1 m̄2]

In particular, a pair of compatible members must always assume identical names and
offset values, with their respective types composed in the result:

[[.]] t [[.]] :: member ! member ! member

[[t1 x1 @ n1]] t [[t2 x2 @ n2]] (x1 = x2 ^ n1 = n2) = [[[[t1 t t2]] x1 @ n1]]

Finally, the composition of two optional function prototypes produces an omitted pro-
totype if and only if neither operand includes any prototype information. Otherwise,
if only one of the operands has a prototype and that prototype does not include the

144 CHAPTER 5: THE C PROGRAMMING LANGUAGE

“...” suffix, then that prototype is preserved under composition. In all other cases,
both prototypes must have identical lengths and agree in their use of the “...” suffix,
in which case their composition produces a similarly-structured prototype, whose ele-
ments are obtained by a pairwise composition of the corresponding elements in their
type lists after pointer promotion. In Haskell:

[[.]] t [[.]] :: prototypeopt ! prototypeopt ! prototypeopt

[[]] t [[]] = [[]]
[[]] t [[t̄]] = t̄
[[t̄]] t [[]] = t̄
[[t̄1]] t [[t̄2]] length(t̄1) = length(t̄2) = [[[pp(tk1) t pp(tk2) (tk1, tk2) t̄1 t̄2]]]
[[t̄1...]] t [[t̄2...]] length(t̄1) = length(t̄2) = [[[pp(tk1) t pp(tk2) (tk1, tk2) t̄1 t̄2] ...]]

In Sections 5.8 and 5.10, composition is used to merge the typing information for
multiple declarations of a single logical entity such as C function. Further, in Section
5.7, type composition is used to compute the types of most C expressions constructed
from multiple operands with distinct typing properties. Although the later use of this
operation is not recognised by the C Standard, it allows us to refactor the semantics
of most C expression forms into a small number of orthogonal rules, which proves
invaluable to a successful formalisation of these entities in Section 5.7.

5.5 Name Spaces and Scopes
In C, identifiers are used to designate a number of different kinds of entities, such as
functions, variables, type names, type tags, statement labels and finally members of
structure and union types. When two or more entities in a C program are designated
by the same identifier, they are said to share that identifier with each other. A single
identifier may be always shared by entities of a distinct kind, with the actual entity being
denoted determined by its syntactic context. Accordingly, the language is said to define
a number of name spaces for its identifiers, one for functions, variables and type names
(known collectively as ordinary identifiers), one for type tags, one for statement labels
and one each for every structure and union type defined by the program. The present
section contains a detailed discussion of the ordinary identifier, tag and member name
spaces, while the the rather specialised label identifiers are scrutinised later in Section
5.9 as part of a semantic analysis of C statements.

A single identifier may be also shared by multiple entities belonging to the same
name space. However, unlike identifiers shared across name spaces, at most one of the
entities that share such an identifier can be visible to any given portion of a C program.
The collection of all entities visible to some program fragment is known as a scope and,
in most cases, corresponds loosely to a set of constructs enclosed in a single compound
statement “{...}”.

The scoping structure of C programs differs substantially from that of typical
purely functional languages such as Etude. In the Etude term “LET ν = τ1; τ2”, the
scope of ν is contained cleanly within the body τ2, as dictated by the lexical structure

5.5 NAME SPACES AND SCOPES 145

of the underlying parse tree, whereas, in the C statement “{int x; s1; s2; ... sn;}”,
the scope of x extends to the entire statement list “s1; s2; ... sn;” and concludes only
at the end of the complete compound statement that surrounds its declaration.

This effect is even more pronounced for tag names, whose declarations may be
buried deeply within a C expression, often transcending the program’s lexical syntax in
a highly unpredictable manner. For example, the following code fragment constitutes a
perfectly valid C program:

int x = sizeof (struct s { int a, b, c });
struct s y = { 1, 2, 3 };
int z = y.a + y.b + y.c;

The structure type s is introduced within the initialiser of x and remains visible to
the following declarations of y and z, so that its scope extends outside of the nesting
structure within which s has been defined.

In light of such examples, most of the entities encountered within a C program
cannot be analysed in isolation and must be generally interpreted in the context of the
surrounding program in which they appear. In the following discussion, this linguistic
feature is modelled by a translation context explicitly associated with most syntactic
entities of the program. Any adjustments to this context introduced by a given syn-
tactic entity are included as part of that entity’s formal denotation and, in almost all
cases, the updated context is propagated to all subsequent entities in the depth-first
left-to-right traversal of the program’s parse tree. For example, in the above code frag-
ment, the structure type s is introduced into the current tag scope T by its definition
“struct x {int a, b, c;}” and remains visible to the following two statements.

For most entities, the translation context includes at least four components S, T ,
D and I, known as the current variable and tag scopes, set of item definitions and the
scope index, respectively. Their structures are described in Haskell by the following
three type synonyms:

S : identifier! designator (current variable or tag scope)
D: ν ! itemν opt (variable definitions)
I : integer (scope index)

In particular, the current scopes S and T define the semantic significance of all visi-
ble identifiers whose declarations are bound to a C variable, typedef name, function
designator, structure, union or enumeration type. Further, the set of item definitions D
depicts the actual bindings of all Etude variables associated with any C functions and
data objects defined in the course of translation. Finally, the scope index I represents
the nesting depth of the current scope with the program’s lexical structure.

The actual binding of a given entity in its current scope associates its identifier with
a name designator formed from a C type, an entity known as linkage and a scope index,
as captured by the following data type definition:

designator :
linkage type @ I

146 CHAPTER 5: THE C PROGRAMMING LANGUAGE

whose three components can be accessed individually with help of the following trivial
Haskell functions:

L [[.]] :: designator ! linkage (linkage)
T [[.]] :: designator ! type (type)
I [[.]] :: designator ! integer (identifier)

L [[` t @ I]] = `
T [[` t @ I]] = t
I [[` t @ I]] = I

A designator’s scope index I (d) identifies the precise scope into which the binding
of the corresponding C name has been originally introduced. As we shall soon dis-
cover, this index is critical to a correct formalisation of the C declaration semantics in
Section 5.8. The linkage of a designator has the following structure:

linkage:
extern ν (external linkage)
intern ν (internal linkage)
private ν (private linkage)
auto ν (automatic linkage)
register ν (register linkage)
const integer (constant linkage)
type (type linkage)

Collectively, all of the “extern” and “intern” linkage forms are said to represent
the family of globally-linked entities, which are identified formally by the notation
“GL(`)”. Further, the set of all “extern”, “intern” and “private” entities con-
stitutes the family of static linkage forms, identified by the Haskell predicate “SL”
as follows:

GL[[.]], SL[[.]] :: linkage ! bool

GL[[extern ν]] = true
GL[[intern ν]] = true
GL[[other]] = false

SL [[extern ν]] = true
SL [[intern ν]] = true
SL [[private ν]] = true
SL [[other]] = false

The linkage of a designator serves the dual rôle of associating certain C identifiers
with Etude variables, while also providing additional information about the precise
usage of these variables within a C program. In particular, an identifier declared with
a linkage of the form “extern ν”, “intern ν” or “private ν” always designates
a single Etude object, whose declaration is included in the set of item definitions of
the eventual Etude module constructed from the entire translation unit, while identifiers
associated with a linkage of the form “auto ν” or “register ν” represent temporal
variables defined locally within a C function, with the later form reserved specifically
for identifiers declared with the “register” storage class specifier as described later

5.5 NAME SPACES AND SCOPES 147

in Section 5.7. Collectively, these five constructions are known as the l-value linkage
forms and are singled out by the following predicate “LV”:

LV[[.]] :: linkage ! bool

LV[[extern ν]] = true
LV[[intern ν]] = true
LV[[private ν]] = true
LV[[auto ν]] = true
LV[[register ν]] = true
LV[[other]] = false

A further discussion of l-values is included later in Section 5.7.1.2. Intuitively the Etude
variable ν associated with every such linkage form denotes a mutable object designated
by that identifier. In this work, this variable is represented uniformly by the notation
“ν(`)”, as formalised by the following Haskell definition:

ν [[.]] :: linkage ! ν

ν [[extern ν]] = ν

ν [[intern ν]] = ν

ν [[private ν]] = ν

ν [[auto ν]] = ν

ν [[register ν]] = ν

The actual bindings of these Etude variables are maintained in the associated set of
variable definitions D, whose codomain will contain, by the end of an entire translation
process, the precise set of items declared in the Etude module constructed from the
supplied C program. Since local C variables are never associated with a static Etude
item, they are represented in D by an omitted entity “ε”. Their bindings are only
recorded in D for the sake of presentation, in order to ensure that the denotation of
every logically-distinct C entity retains a unique syntax after its translation into Etude.
In particular, whenever a new local object is introduced into the C program, its linkage
is generally bound to a unique Etude variable of the form “Vn”, in which the integer
index n renders the variable distinct from all others already present in D. Such a unique
variable can be obtained naturally by the following Haskell construction:

ν[[.]] :: D ! ν

ν[[D]] = succ(max(f[[Vk]] [[Vk]] dom(D)g [fV0g))

which relies on the standard Haskell successor function “succ” to construct a new vari-
able index greater than any others already present in D. Before obtaining the successor
of the maximum element from the domain of D, the above construction ensures that
this domain includes at least one internal variable of the “Vn” form by extending this
set with an otherwise-unused variable “V0”. We will discuss the precise syntax and
semantics of variable introduction separately in Section 5.8.

A linkage of the form “const n” indicates that the corresponding identifier repre-
sents an enumeration constant with the integer value specified by the integer n. Since

148 CHAPTER 5: THE C PROGRAMMING LANGUAGE

this value can be viewed as an intuitive denotation of the constant, its retrieval is de-
picted in the following presentation by the following notation “n(d)”:

n[[.]] :: linkage ! integer

n[[const n]] = n

Finally, a variable name bound to an object declaration with a “type” linkage is said
to represent a typedef name. Such identifiers denote a C type rather than a variable and
are introduced into the concrete syntax of the language by the “typedef” declarations
scrutinised later in Section 5.8. Nevertheless, since typedef names share a single name
space with other ordinary identifiers used to designate C variables and functions, they
are recorded in the current scope as part of its object declaration set.

The “type” linkage form is also associated with the designator of every tag name
binding present in a current tag scope T . The type of such a designator always rep-
resents a C structure, union or enumeration type, the syntax of which includes a tag
variable used to differentiate between structurally identical but logically distinct types
introduced by the program. To ensure uniqueness of these entities, every new structure,
union and enumeration type is always labelled with a unique tag variable upon its intro-
duction into the program. For convenience, these tags are generated by the following
function “tag(D)” similar to the earlier definition of “ν(D)”:

tag[[.]] :: D ! ν

tag[[D]] = succ(max(f[[Tk]] [[Tk]] dom(D)g [fT0g))

Besides its use in type identification, these temporary variables serve no other useful
purpose in the program and are always bound in the set of its item definitions D to an
omitted Etude item “ε”.

When a new structure or union type is initially introduced into the program’s
syntax, it always begins as an incomplete type with an empty list of members, subject
to a later completion by a subsequent declaration of that type within the same scope.
Formally, this type completion process is depicted by the notation “C (t . S)”, which
adjusts the types of all designators found in the supplied scope S as follows:

C [[.]] :: (type . S) ! S

C [[t . S]] = fxk:[[`k [[CT(t0 . tk)]] @ Ik]] xk:[[`k tk @ Ik]] Sg
where t0 = [[[[su(t)]] [[tag(t)]] [[CM(t0 . m̄(t))]]]]

assuming, of course, that t represents a complete structure or union type.
In particular the construction “CT(t0 . t)” substitutes the supplied complete type t0

for every occurrence of a compatible structure or union type in t. Formally:
CT[[.]] :: (type . type) ! type

CT[[t0 . t]] unq(t) � t0 = tq(t) [t0

SU (t) = tq(t) [[[[[su(t)]] [[tag(t)]] [[CM(t0 . m̄(t))]]]]
PTR (t) = tq(t) [[[[[CT(t0 . B(t))]]*]]
FUN(t) = tq(t) [[[[[CT(t0 . B(t))]]([[CP(t0 . prot(t))]])]]
ARR(t) = tq(t) [[[[[CT(t0 . B(t))]][[[length(t)]]]]]
otherwise = t

5.6 CONSTANTS 149

in which CM(t . m̄) projects the same algorithm onto the type of every member found
in the specified list m̄:

CM[[.]] :: (type . members) ! members

CM[[t . m̄]] = [[[[[CT(t . tk)]] xk @ nk]] [[tk xk @ nk]] m̄]

and, similarly, CP(t . popt) completes every type found in a given optional function
prototype popt as follows:

CP[[.]] :: (type . prototypeopt) ! prototypeopt

CP[[t . ε]] = [[ε]]
CP[[t . t̄]] = [[[[[CT(t . tk) tk t̄]]]]]
CP[[t . t̄...]] = [[[[[CT(t . tk) tk t̄]]]...]]

A careful reader will observe that scope completion may, in fact, produce an infinite
Haskell object, whenever the structure or union being completed is itself referenced in
the syntax of a pointer entity embedded within the supplied type, member or function
prototype operand. Fortunately, with its non-strict evaluation semantics, Haskell is
well-equipped to deal with such constructions, provided that we refrain from excessive
examination of the resulting member types. For example, in Section 5.4.11, the type
compatibility algorithm for structures and unions was defined solely on the basic of
equality between their “struct-or-union” and tag components, avoiding any reference
to the associated member lists.

5.6 Constants
In the concrete syntax of the C programming language, most predetermined numeric
values are represented by lexical tokens known as constants. Their collective structure
is defined by the following trivial data type definitions:

constant :
floating-constant
integer-constant
enumeration-constant
character-constant

Since, in this work, we do not concern ourselves with details of a textual representation
of C programs, the “floating-constant”, “integer-constant” and “character-constant”
constructs, as well as a similar syntactic entity “string-literal” described later in Section
5.7, are treated as abstract data types with an unspecified implementation. Their precise
meanings are derived from the entity’s lexical syntax and, in this work, are represented
by the following four unspecified Haskell functions:

DFC [[.]] :: (monad-fix M)) floating-constant ! M(type, rational)
DIC [[.]] :: (monad-fix M)) integer-constant ! M(type, integer)
DCC[[.]] :: (monad-fix M)) character-constant ! M(type, integer)
DSC [[.]] :: (monad-fix M)) string-literal ! M(type, dataν)

150 CHAPTER 5: THE C PROGRAMMING LANGUAGE

observing that every such entity denotes a C type paired with the entity’s actual value, as
represented by a rational number for floating constants, an integer quantity for integer
and character constants and an Etude object data specification for string literals. In all
cases, the entity’s denotation is derived within some unspecified exception monad M,
in order to provision for any error diagnostics as stipulated earlier in Section 5.2.

On the other hand, every enumeration constant is represented simply by an identi-
fier with a “const” linkage, so that its concrete syntax is defined in Haskell as follows:

enumeration-constant :
identifier

Using these definitions, the type and rational value of every C constant can be derived
in the context of its current scope S by the following construction:

DC[[.]] :: (monad-fix M)) (S . constant) ! M(type, rational)

DC[[S . floating-constant]] = DFC (floating-constant)
DC[[S . integer-constant]] = DIC (integer-constant)
DC[[S . character-constant]] = DCC(character-constant)

DC[[S . enumeration-constant]] = do
require (enumeration-constant 2 dom(S) ^ L(d) = [[const [[n(L(d))]]]])
return (T (d), n(L(d)))

where d = S(enumeration-constant)

so that every well-formed enumeration constant must always represent a variable identi-
fier that is bound in the current variable scope S to a designator with a constant linkage.

5.7 Expressions
Most of the computational complexity associated with C programs is captured by en-
tities known as expressions. In the concrete syntax of the language, expressions can
assume a number of different forms, most of which consist of an operator depicted by a
lexical token such as “+” or “&&”, together with one, two or three operand expressions.

In order to capture the relative binding strengths of the various arithmetic operators
provided by the language, the concrete syntax of C expression has been stratified into
sixteen distinct precedence levels, each associated with a unique non-terminal symbol
in the BNF grammar and, consequently, a separate Haskell type in this presentation.
In particular, every C expression form is uniquely classified as a primary, postfix,
unary, cast, multiplicative, additive, shift, relational, equality, bitwise AND, bitwise
exclusive OR, bitwise inclusive OR, logical AND, logical OR, conditional, assignment
or plain expression. The precedence level of a C operator is used to disambiguate its
application in a larger expression that also incorporates references to other operation
forms. For example, since the “+” operator has a lower precedence than “*”, the
composite expression form “e1 + e2 * e3” is interpreted as “e1 + (e2 * e3)” rather than
“(e1 + e2) * e3”. Besides this simple syntactic rôle, precedence levels serve no other
purpose in the language and do not influence a semantic interpretation of the individual
expression forms in any other way.

5.7 EXPRESSIONS 151

The syntax of all valid C expression forms is captured by the following set of nineteen
Haskell data types:

primary-expression:
identifier
constant
string-literal
(expression)

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator : one of
& * + - ~ !

cast-expression:
unary-expression
(type-name) cast-expression

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

152 CHAPTER 5: THE C PROGRAMMING LANGUAGE

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator : one of
= *= /= %= += -= <<= >>= &= ^= |=

expression:
assignment-expression
expression , assignment-expression

The user should observe that every Haskell type used to describe a given expression
precedence level explicitly includes all data constructors from levels higher than itself.
For example, “additive-expression” includes all constructors of the “multiplicative-
expression” type. In the actual Haskell implementation, the initial data constructors of
the “multiplicative-expression” and “additive-expression” types are actually written as
“MultiplicativeExpressionT (CastExpressionT)” and “AdditiveExpression (Multiplica-
tiveExpressionT)”, respectively, although, for conciseness, their names are always hid-
den in the following presentation using a liberal application of appropriate implicit
coercion functions. However, in most contexts, this segregation of C expressions into
sixteen distinct precedence levels serves little useful purpose and it is convenient to
think of all C expressions simply as values of the Haskell type “expression”, which
implicitly includes all other expression forms. Since most functions presented in this
section are defined only on plain “expression” arguments, the reader should always

5.7 EXPRESSIONS 153

assume that every operand to these functions has been promoted into that type using
an appropriate implicit coercion function, whose trivial definition and application have
been excluded from the presentation in the interest of readability.

5.7.1 Meanings of Expressions

In the C language, the above expression syntax is utilised by a number of related, but
conceptually distinct logical constructs known as function designators, l-values, values,
void, constant and static initialiser expressions. The formal denotations of these entities
are scrutinised individually by five separate Haskell functions “DFD”, “DLV”, “DV”,
“DVE”, “DICE” and “DSIE” that are defined independently in Sections 5.7.1.1, 5.7.1.2,
5.7.1.3, 5.7.1.4, 5.7.3.1 and 5.7.3.3 below.

In all cases, however, these denotations are derived in the context of a current vari-
able and tag scopes S and T , set of item definitions D and the current scope index
I. While no expression introduces any bindings into its current scope by itself, any
type tag declarations found in the syntax of casts and “sizeof” operations may ex-
tend the scope with new declarations of structure, union and enumeration types. As
already mentioned, such declarations persist outside of the expression’s own syntax
and, accordingly must be always propagated throughout the translation in the order of
a depth-first left-to-right traversal of the program’s parse tree. Further, the translation
of string literals and certain forms of function call operations may result in an introduc-
tion of new bindings into the set of variable definitions D, whose envelopes may be also
recorded in the temporary variable set V , which, intuitively, collects all variables local
to a given C expression. The precise purpose of this set is discussed later in Section 5.9.
Formally, the structure of V is defined as the following trivial Haskell type synonym:

V : ν ! envelope (local variable definitions)

Accordingly, a complete denotation of every C expression form consists of the updated
scopes S0 and T 0, item definition set D0, the set V of all temporary variables introduced
by the entity, as well as the expression’s C type t and a monadic Etude term τ , whose
reduction produces the sequence of side effects and an atomic value corresponding
to the expression’s computational meaning, except that, for constant expressions, τ

can be variously replaced by the entity’s numeric or atomic value, as described later
in Section 5.7.3.

5.7.1.1 Function Designators

As suggested by its name, a function designator describes a reference to a C function.
The set of all admissible function designator expressions consists precisely of those
variables which, in the expression’s current scope S, are bound to a well-formed l-value
designator of a function type, together with every unary indirection operation of the
form “*e” in which e represents a well-formed value of a function pointer, as well
as all parenthesised versions of one of these two expression forms. The meaning of
every such function designator e is described by an appropriate C function type and

154 CHAPTER 5: THE C PROGRAMMING LANGUAGE

a monadic Etude term whose evaluation produces an atom from the function genre
“F”, with a value equal to the atomic encoding of the corresponding Etude function.
Formally:

DFD[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

DFD[[S, T , D, I . x]] = do require (x 2 dom(S) ^ LV(L(S(x))) ^ FUN(T (S(x))))
return (S, T , D, ∅, T (S(x)), [[RET [[ν(L(S(x)))]]]])

DFD[[S, T , D, I . *e]] = do (Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (PTR(te) ^ FUN(B(te)))
return (Se, Te, De, Ve, B(te), τe)

DFD[[S, T , D, I . (e)]] = do DFD(S, T , D, I . e)
DFD[[S, T , D, I . other]] = reject

Intuitively, expressions of the form “*e” allow C programs to convert a value deno-
tation of any well-formed function pointer e into a function designator, although, in
reality, this operation is rarely required in practice, since, as described later in Section
5.7.1.3, the compiler is usually able to perform it implicitly without any aid from the
programmer.

In the context of a function call operation discussed later in Section 5.7.1.3, an un-
declared identifier also behaves like a designator of a function with the type “int()”.
Formally, the denotation of such a degenerate designator is obtained by the following
trivial derivation:

DUND[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

DUND[[S, T , D, I . x]] = do
require (x /2 dom(S))
return (S, T , fx:[[IMP x]]g/D, ∅, [[int()]], [[RET (x)]])

DUND[[S, T , D, I . other]] = reject

observing that all such identifiers are implicitly bound in the resulting set of item
definitions D to an imported Etude item “IMP x”, provided that no previous binding
of that identifier exists in the expression’s context. In the above Haskell definition, this
effect is achieved by extending a singular finite map “fx:[[IMP x]]g” with all the bindings
already present in D, using the map extension operator “/” described in Appendix A.
Since “A/B” always replaces any keys mapped in both of its operands A and B with
their B values, this useful idiom ensures that D is affected by the operation only if it
contains no binding of x at the beginning of the construct.

5.7.1.2 L-Values
In C, an l-value represents an actual memory-resident object whose content may be
manipulated by the program. Its denotation always depicts an Etude term which deliv-
ers a single atom from a function or object genre, whose reduced value describes an
actual location of the denoted C object in the program’s address space. Formally, the
meanings of all such expressions are characterised by the following Haskell function:

DLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

5.7 EXPRESSIONS 155

In particular, every variable name intended as a depiction of an l-value must be bound
in its current scope to a designator with an l-value linkage and an object or incomplete
type. Predictably, such identifiers denote the designator’s type and a trivial monadic
term that delivers the value of an Etude variable associated with that designator:

DLV[[S, T , D, I . x]] = do
require (x 2 dom(S) ^ LV(L(S(x))) ^ (OBJ(T (S(x))) _ INC(T (S(x)))))
return (S, T , D, ∅, T (S(x)), [[RET [[ν(L(S(x)))]]]])

On the other hand, every well-formed string literal introduces a new unique variable
ν(D) into its set of variable definitions D, binding that variable to a new Etude object
item whose data specification is obtained from the string literal’s denotation. An entire
l-value of this form has the string literal’s type and a denotation of the trivial Etude term
reducible to its new variable value:

DLV[[S, T , D, I . string-literal]] = do
(t, δ̄) DSC(string-literal)
return (S, T , D [fν(D):[[OBJ (δ̄) OF ([[ξ̄(t)]])]]g, ∅, t, [[RET [[ν(D)]]]])

Every direct member operation of the form “e.x” also constitutes a well-formed l-value,
provided that its expression operand e is itself an l-value of a complete structure or
union type and that x represents some named member m of that type. The entire oper-
ation has the member’s type T (m) and a denotation that computes a sum of its offset
O(m) within the entire structure or union object with the member’s l-value converted
into the corresponding object format O(φ(T (m))). Formally:

DLV[[S, T , D, I . e.x]] = do
(Se, Te, De, Ve, te, τe) DLV(S, T , D, I . e)
(m) m̄(te)(x)
require (SU(te) ^ x 2 dom(m̄(te)))
return (Se, Te, De, Ve, T (m),

[[LET T1 = τe; RET ([[O(φ(T (m)))]]O.Φ(T1) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ)]])

Similarly, in every indirect member operation of the form “e->x”, the expression
operand e must represent a well-formed value of a pointer to a structure or union type
that includes x as a named member, with the entire construct assuming the member’s
type and a denotation that delivers the sum of the pointer’s own value with the member’s
offset within the entire structure or union object. Formally:

DLV[[S, T , D, I . e->x]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
(m) m̄(B(te))(x)
require (PTR(te) ^ SU(B(te)) ^ x 2 dom(m̄(te)))
return (Se, Te, De, Ve, T (m),

[[LET T1 = τe; RET ([[O(φ(T (m)))]]O.Φ(T1) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ)]])

Intuitively, such operations are equivalent to an expression of the form “(*e).x”, in
which the indirection operation “*e” converts a value e of a pointer type “t*” into an
l-value of type t that designates an object located at the memory address depicted by the

156 CHAPTER 5: THE C PROGRAMMING LANGUAGE

pointer. As described in Section 5.7.1.3, the denotation of every C pointer represents a
monadic Etude term reducible precisely to such an address, so that its value is directly
equivalent to that of the corresponding indirect l-value:

DLV[[S, T , D, I . *e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (PTR(te))
return (Se, Te, De, Ve, B(te), τe)

Last but not least, every parenthesised version of an l-value “(e)” has the same denota-
tion as its constituent e, while an array subscript operations with the syntax of “e1[e2]”
is semantically equivalent to “*(e1 + (e2))”, which completes the entire collection of
all l-value forms supported by the language:

DLV[[S, T , D, I . (e)]] = DLV[[S, T , D, I . e]]
DLV[[S, T , D, I . e1[e2]]] = DLV[[S, T , D, I . *(e1 + (e2))]]
DLV[[S, T , D, I . other]] = reject

An l-value is said to be modifiable if it represents an object whose value can be used
as a target of an assignment operation. Formally, such l-values must have a complete
object type other than an array and neither the object itself nor any of its members may
include the “const” type qualifier. In all other respects, modifiable l-values behave
like their ordinary l-value cousins, so that their meanings can be formalised concisely
by the following construction:

DMLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

DMLV[[S, T , D, I . e]] = do
(Se, Te, De, Ve, te, τe) DLV(S, T , D, I . e)
require (OBJ(te) ^ :(ARR(te)) ^ [[const]] /2 rtq(te))
return (Se, Te, De, Ve, te, τe)

Finally, a well-formed l-value is said to be addressable if it does not describe an object
of a C bit field type, or one declared with a register linkage form. Formally, the
denotations of such constructs are derived in Haskell as follows:

DALV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

DALV[[S, T , D, I . x]] = do
require (x 2 dom(S) ^ LV(L(S(x))) ^ L(S(x)) 6= [[register [[ν(L(S(x)))]]]]) ^

(OBJ(T (S(x))) _ INC(T (S(x)))) ^ :BF(T (S(x)))
return (S, T , D, ∅, T (S(x)), [[RET [[ν(L(S(x)))]]]])

DALV[[S, T , D, I . string-literal]] = do
(t, δ̄) DSC(string-literal)
return (S, T , D [fν(D):[[OBJ (δ̄) OF ([[ξ̄(t)]])]]g, ∅, t, [[RET [[ν(D)]]]])

DALV[[S, T , D, I . e.x]] = do
(Se, Te, De, Ve, te, τe) DALV(S, T , D, I . e)
(m) m̄(te)(x)
require (SU(te) ^ x 2 dom(m̄(te)))
return (Se, Te, De, Ve, T (m),

[[LET T1 = τe; RET ([[O(φ(T (m)))]]O.Φ(T1) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ)]])

5.7 EXPRESSIONS 157

DALV[[S, T , D, I . e->x]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
(m) m̄(B(te))(x)
require (PTR(te) ^ SU(B(te)) ^ x 2 dom(m̄(te)))
return (Se, Te, De, Ve, T (m),

[[LET T1 = τe; RET ([[O(φ(T (m)))]]O.Φ(T1) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ)]])

DALV[[S, T , D, I . *e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (PTR(te))
return (Se, Te, De, Ve, B(te), τe)

DALV[[S, T , D, I . (e)]] = DALV[[S, T , D, I . e]]
DALV[[S, T , D, I . e1[e2]]] = DALV[[S, T , D, I . *(e1 + (e2))]]
DALV[[S, T , D, I . other]] = reject

Intuitively, such l-values describe well-formed operands of a unary address operation
of the form “&e” but, in all other contexts, are treated identically to any other l-value
form described earlier.

5.7.1.3 Values
Besides function designators and l-values, most well-formed expressions belong to the
semantic family of values which, intuitively, depict the actual Etude atoms resulting
from such expressions’ evaluation. In the translated C program, the meaning of a value
with a scalar type is represented uniformly by a monadic Etude term that delivers an
atom depicting the actual content of some memory-resident l-value, or else a result
of an appropriate arithmetic operation on such atoms. On the other hand, values of a
structure or union type are represented directly by their location within the program’s
address space, since the content of the corresponding object cannot, in general, be
depicted by a single scalar quantity. Formally, the denotations of all well-formed C
values are represented by the following Haskell construction:

DV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν)

In particular, every parenthesised version of a value expression “(e)” has the same
meaning as its constituent e, while a well-formed constant also constitutes a value of a C
type derived from its lexical syntax, with a denotation that delivers an atomic rendition
of the constant’s numeric value under an appropriate Etude format:

DV[[S, T , D, I . constant]] = do (t, x) DC(S . constant)
return (S, T , D, ∅, t, [[RET (#x[[φ(t)]])]])

DV[[S, T , D, I . (e)]] = do DV(S, T , D, I . e)

Further, every application of the “sizeof” operator to a type name that depicts an
object type, or to an l-value or value expression of such a type, denotes a trivial term of
the implementation-defined “size_t” type described earlier in Section 5.4.2, whose
evaluation delivers the size of the operand’s type as an integer atom. The reader should
observe that any C expressions appearing within a “sizeof” operation are never
evaluated by the program, so that all associated temporary variables Ve introduced

158 CHAPTER 5: THE C PROGRAMMING LANGUAGE

by these expressions’ denotations are quietly discarded from the resulting set of item
definitions D:

DV[[S, T , D, I . sizeof (type-name)]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
require (OBJ(tt))
return (St, Tt, Dt, ∅, [[size_t]], [[RET (#[[S(tt)]][[φ [[size_t]]]])]])

DV[[S, T , D, I . sizeof e]] = do
(Se, Te, De, Ve, te, τe) DLV(S, T , D, I . e) DV(S, T , D, I . e)
require (OBJ(te))
return (Se, Te, Dndom(Ve), ∅, [[size_t]], [[RET (#[[S(te)]][[φ [[size_t]]]])]])

in which the “ ” symbol represents a generic monadic choice operator described in
Appendix A. Given a list of n monadic Haskell terms M1, M2 ... Mn, the construction
“M1 M2 ... Mn” returns the first of its operands Mi which does not represent the
monadic zero (or failure) action. In other words, in the above definition, the expression
“DLV(S, T , D, I . e) DV(S, T , D, I . e)” is equivalent to DLV(S, T , D, I . e) if e rep-
resents a well-formed l-value and to DV(S, T , D, I . e) if it assumes a valid value form.

In a value context, a direct member operation of the form “e.x” obtains a location
of the member x within the memory-resident representation of the value operand e
and delivers the current content of the underlying Etude object as a result of the entire
construct. Formally, its meaning is derived similarly to the one of an l-value with an
analogous structure, except that the value, rather than l-value denotation of the operand
e is used in the construction. Formally:

DV[[S, T , D, I . e.x]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
(m) m̄(te)(x)
(τ) [[LET T1 = τe; RET ([[O(φ(T (m)))]]O.Φ(T1) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ)]]
require (SU(te) ^ x 2 dom(m̄(te)))
return (Se, Te, De, Ve, T (m), V (T (m) . τ))

Once an address τ of the required memory-resident object has been obtained by the
above definition, the actual value denotation of “e.x” is obtained from it by constructing
a new Etude term which retrieves a current content of that object from the program’s
address space. In this work, such terms are depicted by the notation “V (t . τ)”, in
which τ represents an Etude term which delivers an address of a C variable or object
with the type t. Specifically, if t represents a bit field type, then the constructed term
retrieves the content of the bit field’s container object using an Etude operation of the
form “GET [T1, µ̄]Ψ”, in which the variable “T1” is bound to the container’s location, µ̄

represents the set of all access attributes associated with t and Ψ depicts a designated
Etude format assigned to all bit field containers. By definition, Ψ is always equal to the
format of the “unsigned long” type, as captured by the following Haskell function:

Ψ :: format
Ψ = φ [[unsigned int]]

5.7 EXPRESSIONS 159

The actual bit field value is then extracted from its container in an unspecified manner
discussed separately in Appendix C. On the other hand, if t represents any other scalar
type, then the Etude term constructed by V always retrieves an entire content of the
specified memory-resident object and returns it as an atom of a format appropriate for
t. In all other cases, the constructed denotation is identical to τ itself, since, as already
mentioned earlier in this section, all values of a function, structure, union or array type
are depicted directly by the location of the corresponding Etude entity with the address
space of a program. In Haskell, the V combinator can be implemented as follows:

V [[.]] :: (type . termν) ! termν

V [[t . τ]] BF(t) = [[LET T1 = τ ; LET T2 = GET [T1, [[µ̄(t)]]]Ψ; RET [[U(t . T2)]]]]
SCR(t) = [[LET T1 = τ ; GET [T1, [[µ̄(t)]]][[φ(t)]]]]

otherwise = τ

The notation “U(t . α)” represents some unspecified Etude term that extracts the bit
field t from its container value α . The precise semantics of U are left open to in-
terpretation by the individual implementations of a C compiler but, on every system,
the function is guaranteed to be accompanied by the reverse operation P , such that
U(t . P (t . α 0, α)) � α for all bit field types t, whenever α and α 0 represent Etude
atoms that are well-formed under the formats of t and the base type of t, respec-
tively. Formally, these two functions are described by the following pair of Haskell
type signatures:

U[[.]] :: (type . atomν) ! atomν

P [[.]] :: (type . atomν , atomν) ! atomν

and the above-mentioned constraint on their definition is captured concisely by the
following theorem:

PACK :: 8 x, y, t)
WF[[#x[[φ(t)]]]] ! WF[[#yΨ]] ! [[BF(t)]] !
[[U(t . P (t . [[#y[[Ψ]]]], [[#x[[φ(t)]]]]))]] � [[#x[[φ(t)]]]]

Intuitively, this theorem guarantees that every numeric quantity within the range of
values representable by a given bit field type t can be inserted into a container atom of
the bit field format Ψ and subsequently extracted from that container without affecting
the bit field’s original value. Accordingly, under typical implementations of the C
language, adjacent bit field members of structure type are often “packed” into a single
“unsigned long” object in order to reduce the amount of space required for their
storage within the program’s address space.

In a function call operation of the form “e(aelopt)”, the first operand e must rep-
resent either a valid pointer value whose referenced type describes a function returning
an object type, or else a function designator formed from an undeclared identifier x
as described earlier in Section 5.7.1.1. In both cases, the entire function call assumes
the returned type of the corresponding function designator. Every such operation intro-
duces a new temporary l-value ν(Da) of that returned type into the resulting set of local

160 CHAPTER 5: THE C PROGRAMMING LANGUAGE

variable definitions V , which, intuitively, is used to store the result computed by the tar-
geted C function. Its actual denotation evaluates, in an unspecified order, the value of e
and any expressions in the optional argument list aelopt, then applies the function atom
designated by e to the list of Etude variables derived from the supplied list of argument
expressions and, finally, returns the content of the temporary l-value ν(Da) as the result
of the entire operation. Formally, the complete translation of such constructs is defined
in Haskell as follows:

DV[[S, T , D, I . e(aelopt)]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e) DUND(S, T , D, I . e)
require (PTR(te) ^ FUN(B(te)) ^ OBJ(B(B(te))))
(Sa, Ta, Da, Va, Wa, β̄a) DAEL(Se, Te, De, I, prot(B(te)) . aelopt)

return (Sa, Ta, Da [fν(Da):εg, Ve [Va [Wa [fν(Da):ξ̄(B(B(te)))g, B(B(te)),
[[LET [[[[T1 = τe]] ++ β̄a]];

LET () = T1([[[[ν(Da)]] ++ dom(Wa)]]);
[[V (B(B(te)) . RET [[ν(Da)]])]]]])

where the precise meaning of argument expression lists, represented above by the
notation “DAEL(S, T , D, I, popt . aelopt)”, is discussed separately in Section 5.7.2.

Further, all values formed from a cast operation of the form “(type-name)e” con-
vert the value of their expression operand into the C type denoted by the specified type
name, using an appropriate Etude operation “φ 0

φ (α)”, in which α represents the atom
delivered from evaluation of the value e, φ is its Etude format and φ 0 is the format
corresponding to the targeted C type. In all cases, both the type name operand and the
specified expression value must represent scalar quantity. Formally:

DV[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, Ve, te, τe) DV(St, Tt, Dt, I . e)
require (SCR(tt) ^ SCR(te))
return (Se, Te, De, Ve, tt, [[LET T1 = τe; RET ([[φ(tt)]][[φ(te)]](T1))]])

The reader should, however, recall from Chapter 4 that the Etude format conversion
operator is only partially specified in the generic fragment of Etude’s semantics and
therefore, indirectly, also in standard C programs. At the very least, this operator is
always capable of translating atoms between two arithmetic formats, in which case the
object’s numeric value is retained whenever possible. Further, conversions between
objects and integral types, objects of two different kinds and pairs of distinct function
encodings are also possible on every instruction set architecture, although the precise
meanings of all such pointer conversions are always left open for further specification
by the individual implementations of the language.

Most often, pointer values are introduced into a C program using an address oper-
ation of the form “&e”. In every such operation, the operand must represent a function
designator or an addressable l-value. In all cases, the entire construct has the type of
a pointer to its expression operand and a denotation identical to that of the function

5.7 EXPRESSIONS 161

designator or l-value e. Formally:

DV[[S, T , D, I . &e]] = do
(Se, Te, De, Ve, te, τe) DFD(S, T , D, I . e) DALV(S, T , D, I . e)
return (Se, Te, De, Ve, [[te*]], τe)

The reader should recall from Chapter 4 that all details of a binary encoding of object
values are left unspecified in the generic fragment of Etude semantics, so that no
portable C program can ever rely on any particular numeric properties of the value
produced by the above “&” operator.

Every unary C expression of the form “+e” is equivalent to its value operand e con-
verted into that operand’s integral-promoted type. Similarly, “-e” and “~e” deliver the
negation and bit complement of e after integral promotion. All three of these operations
assume the type of their converted operands, which must belong to the arithmetic fam-
ily for “+” and “-”, or represent an integral type for “~”. On the other hand, a logical
not operation of the form “!e” always adopts the plain “int” type and its operand e
may represent an arbitrary scalar value, whose result is compared in the constructed
denotation for equality with the integer constant “0”, using an application of the binary
Etude operator “=φ” under an appropriate format φ . Formally, the denotations of all
such operations are expressed in Haskell as follows:

DV[[S, T , D, I . +e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (AT(te))
return (Se, Te, De, Ve, ip(te), [[LET T1 = τe; RET ([[φ(ip(te))]][[φ(te)]](T1))]])

DV[[S, T , D, I . -e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (AT(te))
return (Se, Te, De, Ve, ip(te), [[LET T1 = τe; RET (�[[φ(ip(te))]]([[φ(ip(te))]][[φ(te)]](T1)))]])

DV[[S, T , D, I . ~e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (INT(te))
return (Se, Te, De, Ve, ip(te), [[LET T1 = τe; RET (�[[φ(ip(te))]]([[φ(ip(te))]][[φ(te)]](T1)))]])

DV[[S, T , D, I . !e]] = do
(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (SCR(te))
return (Se, Te, De, Ve, [[int]], [[LET T1 = τe; RET (T1 =[[φ(te)]] #0[[φ(te)]])]])

The two binary operators “*” and “/” form a family of C expressions known as the
binary arithmetic operations. A denotation of every such entity can be characterised
completely by some binary Etude operator op, such as “�φ” and “�φ” for “*” and “/”,
respectively. Each binary arithmetic operation must be supplied with a pair of values
of some arithmetic C types. It first computes the common arithmetic type of these
operands using the usual arithmetic conversion algorithm described earlier in Section
5.4.10 and converts both operands’ values into that type, which will be also assumed
by the entire operation. In all cases, both values are evaluated within a single Etude

162 CHAPTER 5: THE C PROGRAMMING LANGUAGE

group, thus leaving the relative order of their execution unspecified. The resulting
Etude atoms are then applied to the provided Etude operator “opφ”, where φ represents
an Etude format derived from the C type of the entire operation. Formally:

DAO[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DAO[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (AT(t1) ^ AT(t2))
return (S2, T2, D2, V1 [V2, t1 t×+ t2,

[[LET T1 = τ1, T2 = τ2;
RET (([[φ(t1 t×+ t2)]][[φ(t1)]](T1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](T2)))]])

In particular, the two C operators “*” and “/” are characterised by the respective binary
arithmetic operations “�φ” and “�φ” as follows:

DV[[S, T , D, I . e1 * e2]] = DAO(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 / e2]] = DAO(S, T , D, I, [[�]] . e1, e2)

Further, addition and subtraction operations of the form “e1 + e2” or “e1 - e2” represent
binary arithmetic operations “+φ” and “�φ” if and only if both of their operands have
arithmetic types. Otherwise, one of the two operands in an expression of the form
“e1 + e2” must represent a pointer to an object type and the other must have an integral
type, with the entire construct having the pointer operand’s type and a denotation that
evaluates both operands in an unspecified order, producing the sum of the pointer’s
value with the product of the integer operand’s result converted into the standard integer
format “Z.Φ” and multiplied by the size of the pointer’s referenced type. Formally:

DV[[S, T , D, I . e1 + e2]]

= DAO(S, T , D, I, [[+]] . e1, e2)

do (S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
RET (T1 +[[φ(t1)]] (Z.Φ[[φ(t2)]](T2) �Z.Φ #[[S(B(t1))]]Z.Φ))]])

do (S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (PTR(t2) ^ OBJ(B(t2)) ^ INT(t1))
return (S2, T2, D2, V1 [V2, t2,

[[LET T1 = τ1, T2 = τ2;
RET (T2 +[[φ(t2)]] (Z.Φ[[φ(t1)]](T1) �Z.Φ #[[S(B(t2))]]Z.Φ))]])

Similarly, if the first operand to a subtraction operation “e1 - e2” represents a pointer
to an object type and the second has an integral type, then the entire expression has
the pointer’s type and a denotation that delivers the sum of the pointer’s value with the
product of the appropriately-converted integer operand multiplied by the negated size of

5.7 EXPRESSIONS 163

the pointer’s referenced type. More so, if both operands represent pointers to qualified
or unqualified versions of compatible object types, then the entire operation has the
implementation-defined “ptrdiff_t” type described in Section 5.4.2 and denotes a
difference of the pointers’ values, divided by the size of their common referenced type.
Formally:

DV[[S, T , D, I . e1 - e2]]

= DAO(S, T , D, I, [[�]] . e1, e2)

do (S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
RET (T1 +[[φ(t1)]] (Z.Φ[[φ(t2)]](T2) �Z.Φ #[[�S(B(t1))]]Z.Φ))]])

do (S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (PTR(t1) ^ PTR(t2) ^ OBJ(B(t2)) ^ unq(B(t1)) � unq(B(t2)))
return (S2, T2, D2, V1 [V2, [[ptrdiff_t]],

[[LET T1 = τ1, T2 = τ2;
RET ([[φ [[ptrdiff_t]]]]Z.Φ((T1 �[[φ(t1)]] T2) �Z.Φ #[[S(B(t1 t t2))]]Z.Φ))]])

Intuitively, if p is a pointer to the n-th element of some C array object and i is an integer,
then the operations “p + i”, “i + p” and “i - p” construct pointers to the element at the
location n + i or n� i in the same array, provided that such an element exists. Further,
if p1 and p2 represent two pointers into the same C array, then “p1 - p2” determines the
number of elements in the array segment delimited by these two locations.

The next group of six expression forms, constructed from applications of the binary
C operators “%”, “<<”, “>>”, “&”, “^” and “|” to pairs of value expressions, represents
the family of binary integral operations. The semantics of such expressions differ
from their earlier binary arithmetic cousins only in that their operands are restricted
to integral, rather than arbitrary arithmetic types. The precise denotation of every
well-formed binary integral operation is described completely by the following Haskell
construction:

DIO[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DIO[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (INT(t1) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1 t×+ t2,

[[LET T1 = τ1, T2 = τ2;
RET (([[φ(t1 t×+ t2)]][[φ(t1)]](T1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](T2)))]])

In particular, the six C operators “%”, “<<”, “>>”, “&”, “^” and “|” represent binary
integral operations characterised by the Etude operators “. .

φ”, “�φ”, “�φ”, “4φ”,

164 CHAPTER 5: THE C PROGRAMMING LANGUAGE

“5φ” and “5φ”, respectively:

DV[[S, T , D, I . e1 % e2]] = DIO(S, T , D, I, [[. .]] . e1, e2)
DV[[S, T , D, I . e1 << e2]] = DIO(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 >> e2]] = DIO(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 & e2]] = DIO(S, T , D, I, [[4]] . e1, e2)

DV[[S, T , D, I . e1 ^ e2]] = DIO(S, T , D, I, [[5]] . e1, e2)

DV[[S, T , D, I . e1 | e2]] = DIO(S, T , D, I, [[5]] . e1, e2)

For a further information about the resulting Etude constructions, the reader is referred
to the earlier discussion of their properties in Section 4.4.

Similarly, each of the four relational operations “e1 < e2”, “e1 > e2”, “e1 <= e2”
and “e1 >= e2” can be also described by one of the binary Etude operators “<φ”, “>φ”,
“�φ” or “�φ”, using the following common derivation of its meaning:

DRO[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DRO[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (AT(t1) ^ AT(t2)) _

(PTR(t1) ^ (OBJ(B(t1)) _ INC(B(t1))) ^
PTR(t2) ^ (unq(B(t1)) � unq(B(t2))))

return (S2, T2, D2, V1 [V2, [[int]],
[[LET T1 = τ1, T2 = τ2;

RET (([[φ(t1 t×+ t2)]][[φ(t1)]](T1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](T2)))]])

Intuitively, in every such operation, either both of the operands must have arithmetic
types, or else both operands must represent pointers to qualified or unqualified versions
of compatible object or incomplete types. Either way, the result has the plain “int”
type and a denotation that applies the corresponding Etude operator op to the values of
both operands, converted into their common arithmetic type. Specifically, the four C
operators “<”, “>”, “<=” and “>=” are typified by their respective Etude equivalents
“<φ”, “>φ”, “�φ” and “�φ” as follows:

DV[[S, T , D, I . e1 < e2]] = DRO(S, T , D, I, [[<]] . e1, e2)
DV[[S, T , D, I . e1 > e2]] = DRO(S, T , D, I, [[>]] . e1, e2)
DV[[S, T , D, I . e1 <= e2]] = DRO(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 >= e2]] = DRO(S, T , D, I, [[�]] . e1, e2)

Further, a closely-related pair of equality operations “e1 == e2” and “e1 != e2” corre-
sponds to the binary Etude operators “=φ” and “6=φ” as follows:

DV[[S, T , D, I . e1 == e2]] = DEO(S, T , D, I, [[=]] . e1, e2)
DV[[S, T , D, I . e1 != e2]] = DEO(S, T , D, I, [[6=]] . e1, e2)

However, equality operators accept a broader range of operands then those supported
by the earlier relational operation forms. In particular, they can be also applied in com-
parison of two function pointers, a pointer to an object against a “void” pointer and
for comparison of arbitrary pointer values against the integer constant “0”, optionally

5.7 EXPRESSIONS 165

cast into the “void*” type as described in Section 5.7.3.2. Formally, every application
of the C operator “==” and “!=” must satisfy one of the following conditions:
1 both operands must constitute values of arithmetic types, or
2 both operands must represent pointers to qualified or unqualified versions of com-

patible types, or
3 one operand must represent a pointer to an object or incomplete type and the other

must describe a pointer to a qualified or unqualified version of “void”, or
4 one operand must be a pointer and the other must constitute a null pointer constant,

of the form described later in Section 5.7.3.2.

In Haskell:

DEO[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DEO[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (AT(t1) ^ AT(t2)) _

(PTR(t1) ^ PTR(t2) ^ (unq(B(t1)) � unq(B(t2)) _
((OBJ(B(t1)) _ INC(B(t1))) ^ VT(B(t2))) _
((OBJ(B(t2)) _ INC(B(t2))) ^ VT(B(t1))))) _

(PTR(t1) ^ NULL(S1, T1, D1, I . e2)) _
(PTR(t2) ^ NULL(S, T , D, I . e1))

return (S2, T2, D2, V1 [V2, [[int]],
[[LET T1 = τ1, T2 = τ2;

RET (([[φ(t1 t×+ t2)]][[φ(t1)]](T1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](T2)))]])

On the other hand, in all logical operations of the form “e1 && e2” and “e1 || e2”,
both operands may represent arbitrary scalar values and the entire construction always
assumes the plain “int” type. In particular, a logical AND operation of the form
“e1 && e2” returns the integer constant “1” if both of its operands have non-zero values
and “0” otherwise. Specifically, it begins by evaluating the first operand e1 and com-
paring its atomic value for inequality with the constant “0” of an appropriate C type. If
e1 has a non-zero value, then the operation evaluates its second operand e2, delivering
the comparison of its atomic value against “0”. Otherwise, e2 is never evaluated and the
entire expression delivers the constant value of “0” as a result of the entire operation:

DV[[S, T , D, I . e1 && e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (SCR(t1) ^ SCR(t2))
return (S2, T2, D2, V1 [V2, [[int]],

[[LET T1 = τ1;
IF T1 6=[[φ(t1)]] #0[[φ(t1)]] THEN

LET T2 = τ2;
RET (T2 6=[[φ(t2)]] #0[[φ(t2)]])

ELSE

RET (#0[[φ(t1)]])]])

166 CHAPTER 5: THE C PROGRAMMING LANGUAGE

Similarly, a logical OR operation of the form “e1 || e2” returns “1” if and only if at
least one of its operands has a non-zero value. First, it compares the operand e1 against
“0” and always delivers “1” if e1 has a non-zero value, without ever examining the
denotation of its second operand e2. Otherwise, the entire operation delivers the result
of comparing e2 against “1” as follows:

DV[[S, T , D, I . e1 || e2]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
require (SCR(t1) ^ SCR(t2))
return (S2, T2, D2, V1 [V2, [[int]],

[[LET T1 = τ1;
IF T1 6=[[φ(t1)]] #0[[φ(t1)]] THEN

RET (#1[[φ(t1)]])
ELSE

LET T2 = τ2;
RET (T2 6=[[φ(t2)]] #0[[φ(t2)]])]])

Finally, the meaning of all conditional operations of the form “e1 ? e2 : e3” can be
formalised in Haskell as follows:

DV[[S, T , D, I . e1 ? e2 : e3]] = do
(S1, T1, D1, V1, t1, τ1) DV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
(S3, T3, D3, V3, t3, τ3) DV(S2, T2, D2, I . e3)
require (SCR(t1)) ^

((AT(t2) ^ AT(t3)) _
(SU(t2) ^ unq(t2) � unq(t3)) _
(PTR(t2) ^ PTR(t3) ^ unq(B(t2)) � unq(B(t3))) _
(PTR(t2) ^ NULL(S2, T2, D2, I . e3)) _
(PTR(t3) ^ NULL(S1, T1, D1, I . e2)) _
(PTR(t2) ^ PTR(t3) ^ (((OBJ(B(t2)) _ INC(B(t2))) ^ VT(B(t3))) _

((OBJ(B(t3)) _ INC(B(t3))) ^ VT(B(t2))))))
return (S3, T3, D3, V1 [V2 [V3, t2 t×+ t3,

[[LET T1 = τ1;
IF T1 6=[[φ(t1)]] #0[[φ(t1)]] THEN

LET T2 = τ2;
RET ([[φ(t2 t×+ t3)]][[φ(t2)]](T2))

ELSE

LET T3 = τ3;
RET ([[φ(t2 t×+ t3)]][[φ(t3)]](T3))]])

In other words, such constructs always assume the common arithmetic type of their
second and third operand. Their denotations represent monadic Etude terms that evalu-
ate e1 and return the appropriately-converted denotation of either e2 or e3, whenever the
first operand has a non-zero or zero value, respectively. The reader should observe that,
in all cases, at most one of the two operands e2 or e3 is ever reduced on any given exe-
cution path through the program. At any rate, in every such conditional operation, the
first operand e1 must have a scalar type and the other two expressions must represent

5.7 EXPRESSIONS 167

values that satisfy one of the following five conditions:

1 both of these operands represent values of an arithmetic type, or
2 both of these operands represent qualified or unqualified versions of compatible

structure or union object types, or
3 both represent pointers to qualified or unqualified versions of compatible types, or
4 either operand represents is a pointer and the other is a null pointer constant, or
5 one operand represents a pointer to an object or incomplete type and the other

represents a pointer to a qualified or unqualified version of the “void” type.

The denotation of a comma operation “e1,e2” is rather simpler. Intuitively, in such
expressions the first operand e1 may represent an arbitrary function designator, l-value,
value or void expression and the second operand must represent a value, whose type is
also inherited by the entire construct. A denotation of every comma operation evaluates
both of its arguments in sequence, discarding the result of e1 and delivering that of the
second operand e2. Formally:

DV[[S, T , D, I . e1,e2]] = do
(S1, T1, D1, V1, τ1) DE(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV(S1, T1, D1, I . e2)
return (S2, T2, D2, V1 [V2, t2, [[LET () = τ1; τ2]])

All of the remaining value operators “=”, “*=”, “/=”, “%=”, “+=”, “-=”, “<<=”,
“>>=”, “&=”, “^=”, “|=”, “++” and “--” introduce the set of fifteen assignment
operation forms, intended to facilitate modification of values contained in memory-
resident objects. The first operand to every assignment operation must always represent
a modifiable l-value. The entire construct assumes that l-value’s type, delivering the
updated content of the underlying Etude object.

In particular, a simple assignment operation of the form “e1 = e2” replenishes the
object designated by the l-value e1 with an appropriately-converted value of e2, pro-
vided that both expressions satisfy one of the following conditions:

1 both operands have arithmetic types, or
2 e1 has a structure or union type, whose unqualified version is compatible with the

type of e2 and both operands represent object types, or
3 both e1 and e2 represent pointers to qualified or unqualified versions of compatible

types and the referenced type of e2 is qualified with a subset of the qualifications
associated with the type referenced by e1, or

4 one of the two expressions represents a pointer to an object or incomplete type, the
other is a pointer to the “void” type and the referenced type of e2 is qualified with
a subset of the qualifications associated with the type referenced by e1, or

5 e1 has a pointer type and e2 is a null pointer constant.

In all cases, the entire operation has the type of the first operand e1. Its denotation
evaluates, in an unspecified order, both the l-value e1 and the value of e2, with the later

168 CHAPTER 5: THE C PROGRAMMING LANGUAGE

converted into the type of the entire operation. Next, the converted value of e2 is placed
into the memory-resident object designated by e1 as follows:

1 if the e1 has a bit field type, then the existing value of the entire bit field container
at that memory location is retrieved and replenished with the value of e2, using the
unspecified P combinator described earlier in this section, with the result stored
back into the same memory location.

2 On the other hand, if e2 has any other scalar type, then the object designated by its
l-value is replenished with the value of e2, converted into the first operand’s type.

3 Finally, if e1 represents a structure or union l-value, then the entire structure or
union object depicted by the denotation of e2 is copies into that l-value using an
unspecified function “set”, whose typical implementation is given in Appendix C.

In Haskell:

DV[[S, T , D, I . e1 = e2]]

= do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (BF(t1) ^ AT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]]Ψ;
LET T4 = RET ([[φ(t1)]][[φ(t2)]](T2));
LET () = SET [T1, [[µ̄(t1)]]]Ψ TO [[P (t1 . T3, T4)]];
RET (T4)]])

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (AT(t1) ^ AT(t2)) _

(PTR(t1) ^ PTR(t2) ^ ((unq(B(t1)) � unq(B(t2))) _
((OBJ(B(t1)) _ INC(B(t1))) ^ VT(B(t2))) _
((OBJ(B(t2)) _ INC(B(t2))) ^ VT(B(t1)))) ^

(tq(B(t2)) � tq(B(t1)))) _
(PTR(t1) ^ NULL(S, T , D, I . e2))

return (S2, T2, D2, V1 [V2, t1,
[[LET T1 = τ1, T2 = τ2;

LET T3 = RET ([[φ(t1)]][[φ(t2)]](T2));
LET () = SET [T1, [[µ̄(t1)]]][[φ(t1)]] TO T3;
RET (T3)]])

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (SU(t1) ^ OBJ(t1) ^ unq(t1) � unq(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET () = [[set [[t1 . T1]] to [[t2 . T2]]]];
RET (T1)]])

Intuitively, the construction “set (t1 . α1) to (t2 . α2)” which appears in the above
definition of structure and union assignments, duplicates the structure and content of

5.7 EXPRESSIONS 169

an entire address space region described by the envelope of t2 from the location given
by the atom α2 into a similarly-structured region beginning at the address α1 and
moulded into the envelope ξ̄(t1). Since the precise semantics of this construction are
left unspecified by the C Standard and, at any rate, cannot be captured exactly within
the regime of the generic Etude fragment, its implementation is characterised in this
chapter only by the following Haskell type signature:

set [[.]] to [[.]] :: (type . atomν) ! (type . atomν) ! termν

On every Etude implementation, the term “set (t1 . α1) to (t2 . α2)” is always guar-
anteed to reduce into a trivial “RET ()”, in the context of some appropriately-updated
object environment ∆//(σ1, ξ̄1, σ2, ξ̄2), as long as that environment is well-formed,
α1 and α2 represent meaningful object atoms of appropriate formats, the two address
space regions have identical sizes and either do not overlap at all, or else the overlap
is exact, t1 depicts a recursively-unqualified type and, finally, t2 does not mention the
“volatile” type qualifier:

SET :: 8 Λ, ∆, t1, σ1, t2, σ2)

WF(Λ) ! WF[[∆//(σ1, ξ̄(t1), σ2, ξ̄(t2))]] ! WF[[#σ1O(φ(t1))]] ! WF[[#σ2O(φ(t2))]] !

[[S(t1) = S(t2) ^ (σ1 + S(t1) � σ2 _ σ1 � σ2 + S(t2) _ σ1 = σ2)]] !
[[rtq(t1) = ∅ ^ rtq(t2) � fCg]] !
[[Λ, ∆ . set [[t1 . #σ1O(φ(t1))]] to [[t2 . #σ2O(φ(t2))]]]]

� [[Λ, ∆//(σ1, ξ̄(t1), σ2, ξ̄(t2)) . RET ()]]

in which the notation “∆//(σ1, ξ̄1, σ2, ξ̄2)” depicts the environment derived by “set”:
[[.]]//[[.]] :: o-env ! (integer, envelope, integer, envelope) ! o-env

Similarly to all other object environment operations from Section 4.5, the minimal
algebraic properties of this function on every Etude implementation are captured by
the following pair of Haskell theorems:

COPYα :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2, σ , φ)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] !

[[(n, φ , ∅) 2A ξ̄1 ^ (σ1 + n, φ , ∅) 2A ξ̄(∆)]] !

[[(n, φ , fCg) 2A ξ̄2 ^ (σ2 + n, φ , fCg) 2A ξ̄(∆)]] !

[[ᾱ(∆//(σ1, ξ̄1, σ2, ξ̄2) . σ1 + n, φ)]] � [[ᾱ(∆//(σ1, ξ̄1, σ2, ξ̄2) . σ2 + n, φ)]]

COPYα :: 8 ∆, σ1, ξ̄2, σ2, ξ̄2)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] !

[[ξ̄i(∆//(σ1, ξ̄1, σ2, ξ̄2)) = ξ̄i(∆)n(σ1, σ1 + S(ξ̄1))]]

Such well-formed object update operations will never affect the contents of any non-
overlapping memory-resident objects currently allocated in the same address space, or
for that matter, any other properties of the original object environment:

COPYᾱ :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2, σk, φk, µ̄k)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] !

[[(σk, φk, µ̄k) 2A ξ̄(∆)]] !

[[σk + S(φk) � σ1 _ σk � σ1 + S(ξ̄1)]] !

[[ᾱ(∆//(σ1, ξ̄1, σ2, ξ̄2) . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

170 CHAPTER 5: THE C PROGRAMMING LANGUAGE

COPYE :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] !

[[ξ̄(∆//(σ1, ξ̄1, σ2, ξ̄2)) = ξ̄(∆)]]

COPYS :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] !

[[ψ̄(∆//(σ1, ξ̄1, σ2, ξ̄2)) = ψ̄(∆)]]

COPYX :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2, ξ̄)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] ! WF[[∆/ξ̄]] !

WF[[(∆//(σ1, ξ̄1, σ2, ξ̄2))/ξ̄]]

COPYN :: 8 ∆, σ1, ξ̄1, σ2, ξ̄2, ξ̄)

WF(∆) ! WF[[∆//(σ1, ξ̄1, σ2, ξ̄2)]] ! WF[[∆/ξ̄]] !

[[σc(∆//(σ1, ξ̄1, σ2, ξ̄2) . ξ̄) = σc(∆ . ξ̄)]]

On the other hand, all compound assignments of the form “e1 op= e2” are essentially
equivalent to the simple assignment “e1 = e1 op e2”, effectively replenishing the tar-
geted l-value with the result of applying the binary operator op to its existing content
and the value of the second operand e2, except that e1 is evaluated only once by every
instance of such an operation.

In all assignments of the form “e1 %= e2”, “e1 <<= e2”, “e1 >>= e2”, “e1 &= e2”,
“e1 ^= e2” and “e1 |= e2”, both the l-value operand e1 and the value e2 must have
an integral type. A formal denotation of such constructs is depicted by the notation
“DIA(S, T , D, I, op . e1, e2)”, in which op is the corresponding Etude operator “. .

φ”,
“�φ”, “�φ”, “4φ”, “5φ” or “5φ”. In Haskell, this notation is implemented as follows:

DIA[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DIA[[S, T , D, I, op . e1, e2]]

= do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (BF(t1) ^ AT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]]Ψ;
LET T4 = RET ([[U(t1 . T3)]] op[[φ(t1)]] ([[φ(t1)]][[φ(t2)]](T2)));
LET () = SET [T1, [[µ̄(t1)]]]Ψ TO [[P (t1 . T3, T4)]];
RET (T4)]])

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (INT(t1) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]][[φ(t1)]];
LET T4 = RET (T3 op[[φ(t1)]] ([[φ(t1)]][[φ(t2)]](T2)));
LET () = SET [T1, [[µ̄(t1)]]][[φ(t1)]] TO T4;
RET (T4)]])

5.7 EXPRESSIONS 171

Specifically, each of this compound assignment forms is mapped onto its Etude equiv-
alent by the following set of Haskell definitions:

DV[[S, T , D, I . e1 %= e2]] = DIA(S, T , D, I, [[. .]] . e1, e2)
DV[[S, T , D, I . e1 <<= e2]] = DIA(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 >>= e2]] = DIA(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 &= e2]] = DIA(S, T , D, I, [[4]] . e1, e2)

DV[[S, T , D, I . e1 ^= e2]] = DIA(S, T , D, I, [[5]] . e1, e2)

DV[[S, T , D, I . e1 |= e2]] = DIA(S, T , D, I, [[5]] . e1, e2)

Similarly, in the compound assignments “e1 *= e2” and “e1 /= e2”, the two operands e1

and e2 may assume arbitrary arithmetic types, with the entire denotation derived from
the corresponding Etude operator “�φ” or “�φ” by the following function DAA:

DAA[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, V , type, termν)

DAA[[S, T , D, I, op . e1, e2]]

= do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (BF(t1) ^ AT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]]Ψ;
LET T4 = RET ([[U(t1 . T3)]] op[[φ(t1)]] ([[φ(t1)]][[φ(t2)]](T2)));
LET () = SET [T1, [[µ̄(t1)]]]Ψ TO [[P (t1 . T3, T4)]];
RET (T4)]])

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (AT(t1) ^ AT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]][[φ(t1)]];
LET T4 = RET (T3 op[[φ(t1)]] ([[φ(t1)]][[φ(t2)]](T2)));
LET () = SET [T1, [[µ̄(t1)]]][[φ(t1)]] TO T4;
RET (T4)]])

so that the actual meanings of these assignments can be captured in Haskell using the
following translations:

DV[[S, T , D, I . e1 *= e2]] = DAA(S, T , D, I, [[�]] . e1, e2)
DV[[S, T , D, I . e1 /= e2]] = DAA(S, T , D, I, [[�]] . e1, e2)

The final two compound assignment forms “e1 += e2” and “e1 -= e2” also accept a pair
of arithmetic operands, applying their corresponding Etude operators “+φ” or “�φ” in
the constructed denotation. In addition, their l-value operand e1 may also represent
a pointer to an object type, in which case the value operand e2 must have an integral
type. As in the earlier additive expression forms, the value of e2 is multiplied by the
size of the pointer’s referenced type, before adding it to or subtracting it from the
value of the pointer e1. In effect, given a pointer variable p which, at the beginning

172 CHAPTER 5: THE C PROGRAMMING LANGUAGE

of the operation, contains the address of the n-th element in some C array object, the
compound assignment “p += i” sets p to the location of the element n + i in the same
array. Conversely, “p -= i”, sets p to the element n� i, which, in Etude, is achieved
by adding i��S(B(t)) to the original p’s value, assuming that t represents the type
of the construction’s l-value operand. In this work, the meaning of all such compound
assignment forms is formalised by the following semantic translations:

DV[[S, T , D, I . e1 += e2]]

= DAA(S, T , D, I, [[+]] . e1, e2)

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]][[φ(t1)]];
LET T4 = RET (T3 +[[φ(t1)]] ((Z.Φ[[φ(t2)]](T2)) �Z.Φ #[[S(B(t1))]]Z.Φ));
LET () = SET [T1, [[µ̄(t1)]]][[φ(t1)]] TO T4;
RET (T4)]])

DV[[S, T , D, I . e1 -= e2]]

= DAA(S, T , D, I, [[�]] . e1, e2)

do (S1, T1, D1, V1, t1, τ1) DMLV(S, T , D, I . e1)
(S2, T2, D2, V2, t2, τ2) DV (S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)) ^ INT(t2))
return (S2, T2, D2, V1 [V2, t1,

[[LET T1 = τ1, T2 = τ2;
LET T3 = GET [T1, [[µ̄(t1)]]][[φ(t1)]];
LET T4 = RET (T3 +[[φ(t1)]] ((Z.Φ[[φ(t2)]](T2)) �Z.Φ #[[�S(B(t1))]]Z.Φ));
LET () = SET [T1, [[µ̄(t1)]]][[φ(t1)]] TO T4;
RET (T4)]])

In C, the four expression forms “++e”, “e++”, “--e” and “e--” represent specialised
cases of compound assignments used to increase or decrease the value of a modifiable
object e by the integer constant “1”. In particular, the two prefix variants of these
expressions with a concrete syntax of “++e” and “--e” are equivalent precisely to the
corresponding compound assignments “e += 1” and “e -= 1”:

DV[[S, T , D, I . ++e]] = DV[[S, T , D, I . e += 1]]
DV[[S, T , D, I . --e]] = DV[[S, T , D, I . e -= 1]]

On the other hand, their postfix variants differ from “e += 1” and “e -= 1” in that the
original, rather than the updated value of e is returned by each of these operation. As
a result, the formal denotations of these expressions differ from those of the earlier
compound assignment forms only in the choice of Etude variable returned as the result
of the entire operation. Like “e += 1” and “e -= 1”, “e++” and “e--” accept arbi-
trary modifiable l-value operands of a bit-field, arithmetic or pointer type, so that their
denotations must be translated into Etude as follows:

5.7 EXPRESSIONS 173

DV[[S, T , D, I . e++]]

= do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (BF(te))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]]Ψ;
LET T3 = RET ([[U(te . T2)]]);
LET () = SET [T1, [[µ̄(te)]]]Ψ TO [[P (te . T2, [[T3 +[[φ(te)]] #1[[φ(te)]]]])]];
RET (T3)]])

do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (AT(te))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]][[φ(te)]];
LET () = SET [T1, [[µ̄(te)]]][[φ(te)]] TO (T2 +[[φ(te)]] #1[[φ(te)]]);
RET (T2)]])

do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (PTR(te) ^ OBJ(B(te)))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]][[φ(te)]];
LET () = SET [T1, [[µ̄(te)]]][[φ(te)]] TO (T2 +[[φ(te)]] #[[S(B(te))]]Z.Φ);
RET (T2)]])

DV[[S, T , D, I . e--]]

= do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (BF(te))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]]Ψ;
LET T3 = RET ([[U(te . T2)]]);
LET () = SET [T1, [[µ̄(te)]]]Ψ TO [[P (te . T2, [[T3 �[[φ(te)]] #1[[φ(te)]]]])]];
RET (T3)]])

do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (AT(te))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]][[φ(te)]];
LET () = SET [T1, [[µ̄(te)]]][[φ(te)]] TO (T2 �[[φ(te)]] #1[[φ(te)]]);
RET (T2)]])

do (Se, Te, De, Ve, te, τe) DMLV(S, T , D, I . e)
require (PTR(te) ^ OBJ(B(te)))
return (Se, Te, De, Ve, te,

[[LET T1 = τe;
LET T2 = GET [T1, [[µ̄(te)]]][[φ(te)]];
LET () = SET [T1, [[µ̄(te)]]][[φ(te)]] TO (T2 +[[φ(te)]] #[[�S(B(te))]]Z.Φ);
RET (T2)]])

174 CHAPTER 5: THE C PROGRAMMING LANGUAGE

Last but not least, a value constructed from a function designator denotes the same
term as that designator itself, while denotations of values obtained from an implicit
conversion of an l-value with an object or an array type represent the actual content of
the corresponding C object, as obtained by an application of the V combinator to the
l-value’s ordinary meaning. In all cases, the result has the pointer-promoted type of the
original expression:

DV[[S, T , D, I . e]] = do
(Se, Te, De, Ve, te, τe) DFD(S, T , D, I . e) DLV(S, T , D, I . e)
require (FUN(te) _ OBJ(te) _ ARR(te))
return (Se, Te, De, Ve, tq(te) [pp(te), V (te . τe))

The retainment of type qualifiers by values obtained from such a conversion represents
a small deviation from the strict letter of the C Standard, required for a proper formal-
isation of qualified structure and union types in the Etude framework. However, since
these qualifiers are always ignored in all other semantic analysis of structure and union
values, this abnormality does not impact the accuracy of our formalisation and, for all
intents and purposes, may be safely ignored by more casual readers.

5.7.1.4 Void Expressions

In the C programming language, the expression syntax is also used to describe a rather
different kind of entities that are generally known as void expressions. Intuitively, such
constructs are only ever evaluated for their side effects, so that their type is always equal
to a qualified or unqualified version of “void” and their denotations represent monadic
Etude terms that deliver an empty list of results “RET ()”. Formally, the meaning of
every well-formed void expression is depicted by the following Haskell derivation:

DVE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , termν)

Most commonly, void expressions arise from calls to a C function with a “void”
returned type. In particular, if “e(aelopt)” represents a well-formed function call op-
eration, in which the function designator e has one such type, then the operation is
performed identically to its earlier value expression variant, except that no temporary
variable is ever allocated for the function’s returned value and that the derived Etude
term does not deliver any such values to the surrounding program. In particular, the
operand e is first evaluated together with any operands found in the argument expres-
sion list aelopt, with values of all such arguments placed in appropriate temporary ob-
jects, whose complete list is then applied to the targeted Etude function. In Haskell,
this translation can be expressed concisely as follows:

DVE[[S, T , D, I . e(aelopt)]] = do
(Se, Te, De, Ve, te, τe) DV (S, T , D, I . e)
require (PTR(te) ^ FUN(B(te)) ^ VT(B(B(te))))
(Sa, Ta, Da, Va, Wa, β̄) DAEL(Se, Te, De, I, prot(B(te)) . aelopt)

return (Sa, Ta, Da, Ve [Va [Wa, [[LET [[[[[T1 = τe]]] ++ β̄]]; T1([[dom(Wa)]])]])

5.7 EXPRESSIONS 175

Further, an arbitrary C expression can be converted into the “void” type using an
explicit cast operation, in which case the operand’s meaning is always constructed by a
separate function DE that is described later in the current section:

DVE[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, Ve, τe) DE (St, Tt, Dt, I . e)
require (VT(tt))
return (Se, Te, De, Ve, τe)

Void expressions may also assume the conditional or sequence syntax “e1 ? e2 : e3”
and “e1,e2”, provided that their e2 and e3 operands represent void expressions, as
stipulated by the following pair of Haskell definitions:

DVE[[S, T , D, I . e1 ? e2 : e3]] = do
(S1, T1, D1, V1, t1, τ1) DV (S, T , D, I . e1)
(S2, T2, D2, V2, τ2) DVE(S1, T1, D1, I . e2)
(S3, T3, D3, V3, τ3) DVE(S2, T2, D2, I . e3)
require (SCR(t1))
return (S3, T3, D3, V1 [V2 [V3, [[LET T1 = τ1; IF T1 6=[[φ(t1)]] #0[[φ(t1)]] THEN τ2 ELSE τ3]])

DVE[[S, T , D, I . e1,e2]] = do
(S1, T1, D1, V1, τ1) DE (S, T , D, I . e1)
(S2, T2, D2, V2, τ2) DVE(S1, T1, D1, I . e2)
return (S2, T2, D2, V1 [V2, [[LET () = τ1; τ2]])

Last but not least, every parenthesised version of a void expression has the same deno-
tation as its constituent, with no other semantic form ever permitted in such constructs:

DVE[[S, T , D, I . (e)]] = DVE(S, T , D, I . e)
DVE[[S, T , D, I . other]] = reject

In many contexts, a void expression can be obtained by an implicit conversion of an
arbitrary well-formed function designator, l-value or value expression, in which case
the expression’s result is assigned to a temporary variable, whose value is otherwise
ignored by the translated program. In this work, denotations of such implicitly-void
expressions are formalised by the above-mentioned Haskell function DE:

DE[[.]] :: (monad-fix M)) (S, S, D, I . expressionopt) ! M(S, S, D, V , termν)

DE[[S, T , D, I . eopt]]

= do require (eopt = ε)
return (S, T , D, ∅, [[RET ()]])

do (Se, Te, De, Ve, τe) DVE(S, T , D, I . eopt)
return (Se, Te, De, Ve, τe)

do (Se, Te, De, Ve, te, τe)
 DFD(S, T , D, I . eopt) DLV(S, T , D, I . eopt) DV(S, T , D, I . eopt)

return (Se, Te, De, Ve, [[LET T1 = τe; RET ()]])

This construction is particularly useful for a concise formalisation of the “,” and void
cast operations described earlier in this section, as well as expression statements dis-
cussed in Section 5.9. In the later context, the void expression operand may be omitted

176 CHAPTER 5: THE C PROGRAMMING LANGUAGE

entirely, resulting in the null statement construct “;” which, by the above translation, is
taken to denote the trivial monadic term “RET ()”.

5.7.2 Function Arguments
In every function call operation of the form “e(aelopt)”, the optional operand ael rep-
resents a comma-separated list of assignment expressions which depict the individual
argument values supplied by the program to the function designated by the expression
operand e. The concrete syntax of these lists is depicted in Haskell as follows:

argument-expression-list :
assignment-expression
argument-expression-list (assignment-expression)

It is convenient to view such constructs simply as sequences of zero or more expres-
sion entities, which can be easily derived from their concrete syntax by the following
recursive process:

list[[.]] :: argument-expression-listopt ! [expression]

list[[ael, e]] = list(ael) ++ [e]
list[[e]] = [e]
list[[]] = ∅

At the beginning of every function call operation, the value of each argument is con-
verted into the pointer-promoted version of the corresponding prototype entry, or else
into the argument-promoted version of the expression’s own type if no explicit type in-
formation is provided for the argument by the underlying function designator. In both
cases, this converted value is stored into a temporary memory-resident object of an
appropriate C type. Formally, the denotation of every such argument expression e is
represented by the construct “DAE(S, T , D, I, topt . e)”, in which topt represents either
the pointer-promoted version of the corresponding prototype entry, or the omitted type
“ε” if no such entry exists in the prototype:

DAE[[.]] :: (monad-fix M)) (S, S, D, I, typeopt . expression) ! M(S, S, D, V , V , termν)

observing that all such denotations include, besides the usual S, T , D, V and τ com-
ponents common to ordinary C expressions, an additional set of variable bindings W,
which, intuitively, specifies the actual set of temporary Etude objects allocated for the
function’s argument values.

The constraints on such argument expressions are identical to those described ear-
lier for simple assignment operations, except that no particular restrictions are imposed
on the l-value’s type qualification, so that the actual modification of the temporary ar-
gument object must be performed using Etude’s initialisation operator “SETI” instead
of the earlier “SET” term form applied in Section 5.7.1.3. For the same reason, val-
ues of structure and union arguments are initialised using a separate implementation-
defined construct “setI (t1 . α1) to (t2 . α2)”, which is essentially equivalent to the
earlier “set (t1 . α1) to (t2 . α2)” combinator, except that the “setI” form is also guar-
anteed to be defined for constant-qualified types t, provided that the corresponding

5.7 EXPRESSIONS 177

memory region also appears in the environment’s initialiser envelope ξ̄i(∆). Formally,
the type signature of “setI” is introduced as follows:

setI [[.]] to [[.]] :: (type . atomν) ! (type . atomν) ! termν

and its minimal semantics are described by the following theorem:

SETI :: 8 Λ, ∆, t1, σ1, t2, σ2)

WF(Λ) ! WF[[∆//(σ1, ξ̄(t1), σ2, ξ̄(t2))]] ! WF[[#σ1O(φ(t1))]] ! WF[[#σ2O(φ(t2))]] !

[[S(t1) = S(t2) ^ (σ1 + S(t1) � σ2 _ σ1 � σ2 + S(t2) _ σ1 = σ2)]] !

[[rtq(t1) � fCg ^ rtq(t2) � fCg ^ ξ̄(t1) � ξ̄i(∆)]] !
[[Λ, ∆ . setI [[t1 . #σ1O(φ(t1))]] to [[t2 . #σ2O(φ(t2))]]]]

� [[Λ, ∆//(σ1, ξ̄(t1), σ2, ξ̄(t2)) . RET ()]]

Using this definition, the meaning of a single argument expression with an explicitly-
specified C type can be formalised relatively easily as follows:

DAE[[S, T , D, I, t . e]]

= do (Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (AT(t) ^ AT(te)) _

(PTR(t) ^ PTR(te) ^ ((unq(B(t)) � unq(B(te))) _
((OBJ(B(t)) _ INC(B(t))) ^ VT(B(te))) _
((OBJ(B(te)) _ INC(B(te))) ^ VT(B(t))))) _

(PTR(t) ^ NULL(S, T , D, I . e))
return (Se, Te, De [fν(De):εg, Ve, fν(De):ξ̄(t)g,

[[LET T1 = τe; SETI [[[ν(De)]], ∅][[φ(t)]] TO ([[φ(t)]][[φ(te)]](T1))]])

do (Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (SU(t) ^ OBJ(t) ^ unq(t) � unq(te))
return (Se, Te, De [fν(De):εg, Ve, fν(De):ξ̄(t)g,

[[LET T1 = τe; [[setI (t . ν(De)) to [[te . T1]]]]]])

Otherwise, if the function prototype has provided us with no explicit type informa-
tion about a given argument, then the resulting temporary l-value has the argument-
promoted version of the expression’s own type and, in all other respects, its denotation
is derived identically to the meaning of a similar explicitly-typed argument assignment:

DAE[[S, T , D, I, ε . e]]

= do (Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (SCR(ap(te)))
return (Se, Te, De [fν(De):εg, Ve, fν(De):ξ̄(ap(te))g,

[[LET T1 = τe; SETI [[[ν(De)]], ∅][[φ(ap(te))]] TO ([[φ(ap(te))]][[φ(te)]](T1))]])

do (Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
require (SU(ap(te)) ^ OBJ(ap(te)))
return (Se, Te, De [fν(De):εg, Ve, fν(De):ξ̄(ap(te))g,

[[LET T1 = τe; [[setI (ap(te) . ν(De)) to [[te . T1]]]]]])

The above derivation of individual argument assignments may be extended trivially
to an entire list of argument expressions, whereby the meaning τe of every individual

178 CHAPTER 5: THE C PROGRAMMING LANGUAGE

argument is converted into an Etude binding of the form “() = τe” as follows:
DAES[[.]] :: (monad-fix M))

(S, S, D, I, typesopt . [expression]) ! M(S, S, D, V , V , bindingsν)

DAES[[S, T , D, I, ε . ē]]

= do require (length(ē) = 0)
return (S, T , D, ∅, ∅, ∅)

do (Se, Te, De, Ve, We, τe) DAE (S, T , D, I, ε . head(ē))

(Sa, Ta, Da, Va, Wa, β̄a) DAES(Se, Te, De, I, ε . tail(ē))

return (Sa, Ta, Da, Ve [Va, We [Wa, [[() = τe]] ++ β̄a)

DAES[[S, T , D, I, t̄ . ē]]

= do require (length(t̄) = length(ē) = 0)
return (S, T , D, ∅, ∅, ∅)

do (Se, Te, De, Ve, We, τe) DAE (S, T , D, I, pp(head(t̄)) . head(ē))

(Sa, Ta, Da, Va, Wa, β̄a) DAES(Se, Te, De, I, tail(t̄) . tail(ē))

return (Sa, Ta, Da, Ve [Va, We [Wa, [[() = τe]] ++ β̄a)

In the actual function call operation, the above definition is applied directly only if the
targeted function either includes a prototype without “...” suffix, or else if it omits the
prototype altogether from its C type. As a special case, if the prototype consists entirely
of a single “void” type entry, then the corresponding argument expression list must
be empty and its denotation is formed from an empty argument variable set W and a
null binding list β̄ as follows:

DAEL[[.]] :: (monad-fix M))
(S, S, D, I, prototypeopt . argument-expression-listopt) !
M(S, S, D, V , V , bindingsν)

DAEL[[S, T , D, I, t̄ . aelopt]] = do require (length(t̄) = 1 ^ VT(head(t̄)) ^ aelopt = ε)
return (S, T , D, ∅, ∅, ∅)

do DAES(S, T , D, I, t̄ . list(aelopt))
DAEL[[S, T , D, I, ε . aelopt]] = do DAES(S, T , D, I, ε . list(aelopt))

In presence of the prototype suffix “...”, the construction is rather more interesting.
If ` represents the number of C types explicitly included in such a prototype, then the
first ` arguments of the function are said to be fixed, while any remaining entries in
the list are said to represent variable arguments of the function call operation, whose
precise number may fluctuate between individual invocations of that C function. In
lambda calculus, such constructs are inherently inexpressible, since every lambda ab-
straction always specifies a predetermined set of variable bindings utilised within its
body. Accordingly, this aspect of the C language is most naturally modelled in Etude
by combining all variable arguments into a single structure-like object of an unspecified
layout, which is always appended to the ordinary portion of the argument list whenever
the underlying function prototype ends in the “...” suffix. Conveniently, this approach
also enables a very natural implementation of the “va_list” type in the Standard C Li-
brary that, ultimately, must accompany our completed C compiler, together with the
associated macros “va_start”, “va_arg” and “va_end” required by the C Standard.

5.7 EXPRESSIONS 179

In particular, any fixed arguments corresponding to the explicitly-typed prototype
entries represent ordinary argument assignments to temporary l-values of these types,
denoting a predetermined set of argument objects W1 and bindings β̄1, except that the
special “void” case is not applicable in such constructs. Further, a parameter-less
denotation of any remaining variable arguments is obtained in an absence of explicit
typing, producing a second set of temporary l-values W2 and corresponding assignment
bindings β̄2. In the entire operation, these variable arguments are then combined into
a single Etude object νv, whose structure is obtained from the union of their individual
envelopes. Each variable argument is placed in νv at a predetermined but unspecified
byte offset, as computed by the unspecified function L of the following Haskell type:

L [[.]] :: V ! (ν ! integer)

Intuitively, given a set of individual argument objects W2 derived from the function
call’s variable argument list, L(W2) maps every variable νk 2 dom(W2) to an offset nk

into the combined variable argument object νv, so that, in the denotation of the entire
operation, all of these temporary variables are replaced with a single variable νv, whose
envelope represents the union of the individual envelopes W2(νk)� nk. Further, in the
set of assignment bindings β̄2, every occurrence of such a variable νk is replaced by an
atom of the form “νv +O.Φ #nkZ.Φ”, so that all of these variables are effectively elimi-
nated from the program and, accordingly removed from the resulting item definition set
D. Formally, this rather complicated derivation is implemented in Haskell as follows:

DAEL[[S, T , D, I, t̄... . aelopt]] = do
(S1, T1, D1, V1, W1, β̄1) DAES(S, T , D, I, t̄ . take (length(t̄), list(aelopt)))

(S2, T2, D2, V2, W2, β̄2) DAES(S1, T1, D1, I, ε . drop(length(t̄), list(aelopt)))
(νv) ν(D2ndom(W2))
return (S2, T2, D2ndom(W2) [fνv:εg, V1 [V2,

W1 [fνv:
S

[W2(νk)� nk νk:nk L(W2)]g,
β̄1 ++ (β̄2/fνk:[[νv +O.Φ #nkZ.Φ]] νk:nk L(W2)g))

Although it may be argued that the above formalisation of the C function call semantics
represents an over-specification of the language, extensive experience with implemen-
tation of C compilers has shown the above approach (or minor variations thereof) to be
the only effective means of implementing variable argument lists on modern instruction
set architectures. This empirical evidence strongly suggests that the semantic of vari-
able argument lists are fundamentally connected to the so-called C calling convention
modelled above.

Nevertheless, the reader should keep in mind that, since the program equivalence
relation defined by the semantics of Etude in Chapter 4 is based only the sequence of the
system calls generated by programs, the above formalisation of function call operations
could, in principle, be proven equivalent to any other sensible definition, permitting
optimising C compilers to tailor the C calling convention to the specific needs of a
particular program’s structure.

180 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.7.3 Constant Expressions
A conditional expression whose result is always known at the time of translation is
known as a constant expression. In the C standard, this additional use of the expression
syntax is captured by the following trivial Haskell type definition:

constant-expression:
conditional-expression

Such expressions have a number of important applications within the C language. Their
precise meanings, as well as any constraints on the syntax of such constructs, depends
on the context in which a constant expression appears within the program. The follow-
ing sections contain a detailed discussion of five different classes of constant expres-
sions, known as integral constant expressions, null pointer constants, static initialiser
expressions, arithmetic constant expressions and address constants. Each of these syn-
tactic entities is described individually in Sections 5.7.3.1, 5.7.3.2, 5.7.3.3 and 5.7.3.4,
respectively.

Regardless of the precise nature of a particular constant expression e, every such
construct denotes an atomic value rather than a monadic Etude term. In certain contexts,
this atomic value must be reduced further into a simple numeric quantity, as depicted
by the following Haskell combinator:

V [[.]][[.]] :: (monad-fix M)) format ! atomν ! M(rational)

For every well-formed arithmetic constant expression e of an integral C type t, the
atomic denotation α of the constant e is always equivalent to the constant atomic form
“#[[V (α)]][[φ(t)]]”. Formally:

INTα :: 8 n :: integer, S, S0, T , T 0, D, D0, I, e, t, α)
[[INT(t) ^ glb(t) � n � lub(t)]] !
[[DACE(S, T , D, I . e)]] = [[S0, T 0, D0, t, α]] !
[[α]] � [[#n[[φ(t)]]]] !

[[V φ(t)(α) = n]]

Further, if t represents a floating type and α is equivalent to some rational constant atom
of the form “#[[(�1)s �m� r(φ(t))e � p(φ(t))]][[φ(t)]]”, then Vφ(t)(α) differs from α’s true
arithmetic value by less than r(φ(t))e � p(φ(t)) in magnitude. The C Standard imposes
no other requirements on the reduction of arithmetic constants, so that, in principle, it
may produce results more precise than those achievable during actual execution of the
program on any given floating point hardware. In Haskell, these relaxed constraints on
the definition of Vφ can be described as follows:

FLTα :: 8 s, m, e :: integer, S, S0, T , T 0, D, D0, I, e, t, α)
WF(α) !

[[FLT(t) ^ 0 � s � 1 ^ 0 � m < r(φ(t))p(φ(t)) ^ Emin(φ(t)) � e � Emax(φ(t))]] !
[[DACE(S, T , D, I . e)]] = [[S0, T 0, D0, t, α]] !

[[α]] � [[#[[(�1)s � m� r(φ(t))e � p(φ(t))]][[φ(t)]]]] !

[[(�1)s � m� r(φ(t))e � p(φ(t)) � V φ(t)(α) < r(φ(t))e � p(φ(t))]]

A typical implementation of this function is presented separately in Appendix C.

5.7 EXPRESSIONS 181

5.7.3.1 Integral Constant Expressions
An integral constant expression represents a value expression of an integral type, whose
precise result is always known at the time of translation. Such constructs are used ex-
tensively in Sections 5.8 and 5.9 to describe lengths of array types and “case” label
values. Accordingly, all such expressions always denote predetermined integer quanti-
ties, obtained from reduction of the corresponding Etude atoms by the Vφ combinator
described above. Formally, their denotations are constructed by the following Haskell
translation:

DICE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, integer)

Intuitively, these expressions must be always constructed entirely from integral con-
stants, floating constants applied to a cast operation, “sizeof” operations, casts of
integral constant expressions to another integral type, or else from well-formed appli-
cations of the C operators “+”, “-”, “~”, “!”, “*”, “/”, “%”, “<<”, “>>”, “<”, “>”,
“<=”, “>=”, “==”, “!=”, “&”, “^”, “|”, “&&”, “||” and “?:”, whose operands must
also constitute integral constant expressions and whose true arithmetic results must fall
within the range of values representable under the operation’s C type.

In particular, every well-formed integer, character and enumeration constant rep-
resents an integral constant expression, whose type and numeric value is derived di-
rectly from the constant’s lexical syntax by the process discussed earlier in Section 5.6
as follows:

DICE[[S, T , D, I . integer-constant]] = do
(t, n) DIC(integer-constant)
return (S, T , D, t, n)

DICE[[S, T , D, I . character-constant]] = do
(t, n) DCC(character-constant)
return (S, T , D, t, n)

DICE[[S, T , D, I . enumeration-constant]] = do
require (enumeration-constant 2 dom(S) ^ L(d) = [[const [[n(L(d))]]]])
return (S, T , D, T (d), n(L(d)))

where d = S(enumeration-constant)

Further, every well-formed application of the “sizeof” operator constitutes an inte-
gral constant expression of the “size_t” type, whose value is equal to the size of the
C type derived from the expression’s l-value, value or type name operand:

DICE[[S, T , D, I . sizeof e]] = do
(Se, Te, De, Ve, te, τe) DLV(S, T , D, I . e) DV(S, T , D, I . e)
require (OBJ(te))
return (Se, Te, Dendom(Ve), [[size_t]], S(te))

DICE[[S, T , D, I . sizeof (type-name)]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
require (OBJ(tt))
return (St, Tt, Dt, [[size_t]], S(tt))

182 CHAPTER 5: THE C PROGRAMMING LANGUAGE

More so, every cast operation of the form “(type-name)e” belongs to this semantic fam-
ily, provided that the specified type name represents an integral type and e constitutes
an integral constant expression or a floating constant. The value of such an expression
is obtained from the corresponding atom “φ 0

φ (#nφ)”, in which φ and φ 0 represent Etude
formats derived from the respective C types of the entity’s expression and type name
operands, while n depicts the integral constant denotation of e:

DICE[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, te, ne) DICE(St, Tt, Dt, I . e) DFCE(St, Tt, Dt, I . e)
require (INT(tt))
(n) V φ(tt)[[[[φ(tt)]][[φ(te)]] #ne[[φ(te)]]]]

return (Se, Te, De, tt, n)

in which the notation “DFCE(S, T , D, I . e)” obtains the meaning of an integral constant
expression formed from a floating constant as follows:

DFCE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, integer)

DFCE[[S, T , D, I . floating-constant]] = do (t, x) DFC(floating-constant)
return (S, T , D, t, dbxec)

DFCE[[S, T , D, I . (e)]] = do DFCE(S, T , D, I . e)
DFCE[[S, T , D, I . other]] = do reject

Similarly, the denotations of all parenthesised versions of an integral constant expres-
sion and all applications of the unary “+”, “-” and “~” operator to such an operand
constitute integral constant expressions with the following natural denotations:

DICE[[S, T , D, I . (e)]] = do DICE(S, T , D, I . e)
DICE[[S, T , D, I . +e]] = do (Se, Te, De, te, ne) DICE(S, T , D, I . e)

(n) V φ(ip(te))[[[[φ(ip(te))]][[φ(te)]](#ne[[φ(te)]])]]
return (Se, Te, De, ip(te), n)

DICE[[S, T , D, I . -e]] = do (Se, Te, De, te, ne) DICE(S, T , D, I . e)
(n) V φ(ip(te))[[�[[φ(te)]]([[φ(ip(te))]][[φ(te)]](#ne[[φ(te)]]))]]
return (Se, Te, De, ip(te), n)

DICE[[S, T , D, I . ~e]] = do (Se, Te, De, te, ne) DICE(S, T , D, I . e)
(n) V φ(ip(te))[[�[[φ(te)]]([[φ(ip(te))]][[φ(te)]](#ne[[φ(te)]]))]]
return (Se, Te, De, ip(te), n)

In the same vein, every well-formed application of the “*”, “/”, “%”, “+”, “-”, “<<”,
“>>”, “&”, “^” and “|” operator to a pair of integral constant operands belongs to this
semantic family. For conciseness, the denotations of all such applications are derived
from the corresponding binary Etude operator by the following common construction:

DBICE[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, type, integer)

DBICE[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, t1, n1) DICE(S, T , D, I . e1)
(S2, T2, D2, t2, n2) DICE(S1, T1, D1, I . e2)
(n) V φ(t1 t×+ t2)[[[[φ(t1 t×+ t2)]][[φ(t1)]](#n1[[φ(t1)]]) op[[φ(t1 t×+ t2)]] [[φ(t1 t×+ t2)]][[φ(t2)]](#n2[[φ(t2)]])]]
return (S2, T2, D2, t1 t×+ t2, n)

5.7 EXPRESSIONS 183

so that:

DICE[[S, T , D, I . e1 * e2]] = DBICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 / e2]] = DBICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 % e2]] = DBICE(S, T , D, I, [[. .]] . e1, e2)
DICE[[S, T , D, I . e1 + e2]] = DBICE(S, T , D, I, [[+]] . e1, e2)
DICE[[S, T , D, I . e1 - e2]] = DBICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 << e2]] = DBICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 >> e2]] = DBICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 & e2]] = DBICE(S, T , D, I, [[4]] . e1, e2)

DICE[[S, T , D, I . e1 ^ e2]] = DBICE(S, T , D, I, [[5]] . e1, e2)

DICE[[S, T , D, I . e1 | e2]] = DBICE(S, T , D, I, [[5]] . e1, e2)

Similarly, integral constant denotations of the relational and equality operators “<”,
“>”, “<=”, “>=”, “==” and “!=” are also derived from their Etude equivalents using
the V combinator, with the result always assuming the plain “int” type:

DRICE[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, type, integer)

DRICE[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, t1, n1) DICE(S, T , D, I . e1)
(S2, T2, D2, t2, n2) DICE(S1, T1, D1, I . e2)
(n) V φ(int)[[[[φ(t1 t×+ t2)]][[φ(t1)]](#n1[[φ(t1)]]) op[[φ(t1 t×+ t2)]] [[φ(t1 t×+ t2)]][[φ(t2)]](#n2[[φ(t2)]])]]
return (S2, T2, D2, [[int]], n)

In particular:

DICE[[S, T , D, I . e1 < e2]] = DRICE(S, T , D, I, [[<]] . e1, e2)
DICE[[S, T , D, I . e1 > e2]] = DRICE(S, T , D, I, [[>]] . e1, e2)
DICE[[S, T , D, I . e1 <= e2]] = DRICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 >= e2]] = DRICE(S, T , D, I, [[�]] . e1, e2)
DICE[[S, T , D, I . e1 == e2]] = DRICE(S, T , D, I, [[=]] . e1, e2)
DICE[[S, T , D, I . e1 != e2]] = DRICE(S, T , D, I, [[6=]] . e1, e2)

Finally, the remaining four logical and conditional forms of integral constant expres-
sions obtained from applications of the C operators “!”, “&&”, “||” and “?:” are for-
malised as follows:

DICE[[S, T , D, I . !e]] = do (Se, Te, De, te, ne) DICE(S, T , D, I . e)
return (Se, Te, De, [[int]], ne = 0)

DICE[[S, T , D, I . e1 && e2]] = do (S1, T1, D1, t1, n1) DICE(S, T , D, I . e1)
(S2, T2, D2, t2, n2) DICE(S1, T1, D1, I . e2)
return (S2, T2, D2, [[int]], n1 6= 0 ^ n2 6= 0)

DICE[[S, T , D, I . e1 || e2]] = do (S1, T1, D1, t1, n1) DICE(S, T , D, I . e1)
(S2, T2, D2, t2, n2) DICE(S1, T1, D1, I . e2)
return (S2, T2, D2, [[int]], n1 6= 0 _ n2 6= 0)

DICE[[S, T , D, I . e1 ? e2 : e3]] = do (S1, T1, D1, t1, n1) DICE(S, T , D, I . e1)
(S2, T2, D2, t2, n2) DICE(S1, T1, D1, I . e2)
(S3, T3, D3, t3, n3) DICE(S2, T2, D2, I . e3)
return (S3, T3, D3, t2 t×+ t3, if n1 6= 0 then n2 else n3)

DICE[[S, T , D, I . other]] = reject

184 CHAPTER 5: THE C PROGRAMMING LANGUAGE

which, intuitively, computes the meaning of these operations from an appropriate com-
parison of their operands’ integer values against the numeric constant 0. No other C
operator may appear in the syntax of integral constant expression entities.

5.7.3.2 Null Pointer Constants
Every well-formed integral constant expression with a zero value, as well as all casts
of such an expression into a pointer to the “void” type, are known as null pointer
constants. Formally, the denotations of all such entities are constructed by the following
simple Haskell derivation:

DNULL[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν)

DNULL[[S, T , D, I . (e)]] = DNULL(S, T , D, I . e)

DNULL[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, te, ne) DICE(St, Tt, Dt, I . e) DFCE(St, Tt, Dt, I . e)
(n) V φ(tt)[[[[φ(tt)]][[φ(te)]](#ne[[φ(te)]])]]
require (n = 0 ^ (INT(tt) _ (PTR(tt) ^ B(tt) = [[void]] ^ INT(te))))
return (Se, Te, De, tt, [[#0[[φ(te)]]]])

DNULL[[S, T , D, I . e]] = do
(Se, Te, De, te, ne) DICE(S, T , D, I . e)
require (ne = 0)
return (Se, Te, De, te, [[#0[[φ(te)]]]])

In many contexts, it is also convenient to devise a boolean predicate function “NULL”,
which, given some expression e and its lexical context (S, T , D, I), returns a true value
if and only if e represents a null pointer constant, without the need to construct the full
denotation of that expression. In Haskell, such predicate can be implemented trivially
as follows:

NULL[[.]] :: (S, S, D, I . expression) ! bool

NULL[[S, T , D, I . e]] = (DNULL(S, T , D, I . e) 6= ε)

which derives the null pointer denotation of e in the standard “Maybe” monad and
compares the resulting optional value against its monadic zero “Nothing”.

5.7.3.3 Static Initialiser Expressions
A further application of the constant expression syntax is found in the context of ini-
tialiser entities, whose precise structure and semantics are defined later in Section
5.8.12. When used as an initialiser for an object with a static linkage, an expression
must always assume one of the following four syntactic forms:

1 an arithmetic constant expression of a structure defined in Section 5.7.3.4, or
2 a null pointer constant, or
3 an address constant, described in Section 5.7.3.5, or
4 an application of the binary “+” or “-” operator to an address constant and an

integral constant expression.

5.7 EXPRESSIONS 185

Formally, the all such static initialiser expressions denote Etude atoms, whose values
are defined by the following Haskell construction:

DSIE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν)

DSIE[[S, T , D, I . (e)]] = do DSIE (S, T , D, I . e)
DSIE[[S, T , D, I . e1 + e2]] = do DACE [[S, T , D, I . e1 + e2]]

do DNULL [[S, T , D, I . e1 + e2]]
do DADDR[[S, T , D, I . e1 + e2]]
do (S1, T1, D1, t1, α) DADDR(S, T , D, I . e1)

(S2, T2, D2, t2, n) DICE (S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)))
return (S2, T2, D2, t1, [[α +[[φ(t1)]] #[[n� S(B(t1))]][[φ(t2)]]]])

do (S1, T1, D1, t1, n) DICE (S, T , D, I . e1)
(S2, T2, D2, t2, α) DADDR(S1, T1, D1, I . e2)
require (PTR(t2) ^ OBJ(B(t2)))
return (S2, T2, D2, t2, [[α +[[φ(t2)]] #[[n� S(B(t2))]][[φ(t1)]]]])

DSIE[[S, T , D, I . e1 - e2]] = do DACE [[S, T , D, I . e1 - e2]]
do DNULL [[S, T , D, I . e1 - e2]]
do DADDR[[S, T , D, I . e1 - e2]]
do (S1, T1, D1, t1, α) DADDR(S, T , D, I . e1)

(S2, T2, D2, t2, n) DICE (S1, T1, D1, I . e2)
require (PTR(t1) ^ OBJ(B(t1)))
return (S2, T2, D2, t1, [[α +[[φ(t1)]] #[[n��S(B(t1))]][[φ(t2)]]]])

DSIE[[S, T , D, I . e]] = do DACE (S, T , D, I . e)
do DNULL (S, T , D, I . e)
do DADDR(S, T , D, I . e)

An astute reader will observe that the denotation of such a constant expression may,
on occasions, represent an ill-formed Etude atom, so that the ultimate validity of C
initialiser expressions must be always determined by a further semantic scrutiny of the
resulting Etude program against a set of implementation-defined criteria outlined earlier
in Chapter 4.

5.7.3.4 Arithmetic Constant Expression
The family of arithmetic constant expressions, used to initialise static objects of an inte-
gral or floating C type, represents a slight relaxation of the integral constant expression
constraints. In particular, arithmetic constant expressions support all of the C operators
admitted into the earlier integral family, and, further, allow for their applications to ar-
bitrary constant operands of any well-formed arithmetic C type. Accordingly, a formal
definition of their denotations follows a structure similar to that of the previous defini-
tion described in Section 5.7.3.1 above, except that no specific restriction is imposed on
the use of floating point operand values and that the resulting denotation is represented
by a constant atomic value rather than a simple numeric quantity. Formally:

DACE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν)

In particular, every well-formed integer, character and enumeration constants represents
an arithmetic constant expression, whose type and atomic value is derived directly from

186 CHAPTER 5: THE C PROGRAMMING LANGUAGE

the constant’s lexical syntax by the process described earlier in Section 5.6:

DACE[[S, T , D, I . sizeof e]] = do
(Se, Te, De, Ve, te, τe) DLV(S, T , D, I . e) DV(S, T , D, I . e)
require (OBJ(te))
return (Se, Te, Dendom(Ve), [[size_t]], [[#[[S(te)]][[φ(size_t)]]]])

DACE[[S, T , D, I . sizeof (type-name)]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
require (OBJ(tt))
return (St, Tt, Dt, [[size_t]], [[#[[S(tt)]][[φ(size_t)]]]])

DACE[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, te, α) DACE(St, Tt, Dt, I . e)
require (AT(tt))
(x) V φ(tt)[[[[φ(tt)]][[φ(te)]](α)]]
return (Se, Te, De, tt, [[#x[[φ(tt)]]]])

DACE[[S, T , D, I . constant]] = do (t, x) DC(S . constant)
return (S, T , D, t, [[#x[[φ(t)]]]])

DACE[[S, T , D, I . +e]] = do (Se, Te, De, te, α) DACE(S, T , D, I . e)
(x) V φ(ip(te))[[[[φ(ip(te))]][[φ(te)]](α)]]
return (Se, Te, De, ip(te), [[#x[[φ(ip(te))]]]])

DACE[[S, T , D, I . -e]] = do (Se, Te, De, te, α) DACE(S, T , D, I . e)
(x) V φ(ip(te))[[�[[φ(te)]]([[φ(ip(te))]][[φ(te)]](α))]]
return (Se, Te, De, ip(te), [[#x[[φ(ip(te))]]]])

DACE[[S, T , D, I . ~e]] = do (Se, Te, De, te, α) DACE(S, T , D, I . e)
(x) V φ(ip(te))[[�[[φ(te)]]([[φ(ip(te))]][[φ(te)]](α))]]
return (Se, Te, De, ip(te), [[#x[[φ(ip(te))]]]])

DACE[[S, T , D, I . !e]] = do (Se, Te, De, te, α) DACE(S, T , D, I . e)
(x) V φ [[int]][[α =[[φ(te)]] #0[[φ(te)]]]]

return (Se, Te, De, [[int]], [[#x[[φ [[int]]]]]])

DACE[[S, T , D, I . e1 && e2]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)
(x) V φ [[int]][[(α1 6=[[φ(t1)]] #0[[φ(t1)]]) 4[[φ [[int]]]] (α2 6=[[φ(t2)]] #0[[φ(t2)]])]]
return (S2, T2, D2, [[int]], [[#x[[φ [[int]]]]]])

DACE[[S, T , D, I . e1 || e2]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)

(x) V φ [[int]][[(α1 6=[[φ(t1)]] #0[[φ(t1)]]) 5[[φ [[int]]]] (α2 6=[[φ(t2)]] #0[[φ(t2)]])]]
return (S2, T2, D2, [[int]], [[#x[[φ [[int]]]]]])

DACE[[S, T , D, I . e1 ? e2 : e3]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)
(S3, T3, D3, t3, α3) DACE(S2, T2, D2, I . e3)
(x) V φ [[int]](α1)

return (S3, T3, D3, t2 t×+ t3, if x 6= 0 then α2 else α3)

5.7 EXPRESSIONS 187

Otherwise, all well-formed applications of the binary “*”, “/”, “%”, “+”, “-”, “<<”,
“>>”, “&”, “^”, “|”, “<”, “>”, “<=”, “>=”, “==”, “!=” operators to constant arithmetic
expression operands and all parenthesised versions of such an expression also belong to
this semantic family. Their denotations are derived from the following familiar mapping
of these C operators to their Etude equivalents:

DACE[[S, T , D, I . e1 * e2]] = DBACE(S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 / e2]] = DBACE(S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 % e2]] = DIACE (S, T , D, I, [[. .]] . e1, e2)
DACE[[S, T , D, I . e1 + e2]] = DBACE(S, T , D, I, [[+]] . e1, e2)
DACE[[S, T , D, I . e1 - e2]] = DBACE(S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 << e2]] = DIACE (S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 >> e2]] = DIACE (S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 & e2]] = DIACE (S, T , D, I, [[4]] . e1, e2)

DACE[[S, T , D, I . e1 ^ e2]] = DIACE (S, T , D, I, [[5]] . e1, e2)

DACE[[S, T , D, I . e1 | e2]] = DIACE (S, T , D, I, [[5]] . e1, e2)
DACE[[S, T , D, I . e1 < e2]] = DRACE(S, T , D, I, [[<]] . e1, e2)
DACE[[S, T , D, I . e1 > e2]] = DRACE(S, T , D, I, [[>]] . e1, e2)
DACE[[S, T , D, I . e1 <= e2]] = DRACE(S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 >= e2]] = DRACE(S, T , D, I, [[�]] . e1, e2)
DACE[[S, T , D, I . e1 == e2]] = DRACE(S, T , D, I, [[=]] . e1, e2)
DACE[[S, T , D, I . e1 != e2]] = DRACE(S, T , D, I, [[6=]] . e1, e2)
DACE[[S, T , D, I . (e)]] = DACE(S, T , D, I . e)
DACE[[S, T , D, I . other]] = reject

assuming that the individual meanings of all binary arithmetic and relational operations
listed above are derived systematically from their Etude equivalents by the following
Haskell constructions:

DBACE[[.]], DIACE[[.]], DRACE[[.]] :: (monad-fix M))
(S, S, D, I, binary-op . expression, expression) ! M(S, S, D, type, atomν)

DBACE [[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)
(x) V φ(t1 t×+ t2)[[([[φ(t1 t×+ t2)]][[φ(t1)]](α1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](α2))]]
return (S2, T2, D2, t1 t×+ t2, [[#x[[φ(t1 t×+ t2)]]]])

DIACE [[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)
(x) V φ(t1 t×+ t2)[[([[φ(t1 t×+ t2)]][[φ(t1)]](α1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](α2))]]
require INT(t1) ^ INT(t2)
return (S2, T2, D2, t1 t×+ t2, [[#x[[φ(t1 t×+ t2)]]]])

DRACE[[S, T , D, I, op . e1, e2]] = do
(S1, T1, D1, t1, α1) DACE(S, T , D, I . e1)
(S2, T2, D2, t2, α2) DACE(S1, T1, D1, I . e2)
(x) V φ(t1 t×+ t2)[[([[φ(t1 t×+ t2)]][[φ(t1)]](α1)) op[[φ(t1 t×+ t2)]] ([[φ(t1 t×+ t2)]][[φ(t2)]](α2))]]
return (S2, T2, D2, [[int]], [[#x[[φ [[int]]]]]])

A careful reader will observe that the meaning of every well-formed arithmetic constant

188 CHAPTER 5: THE C PROGRAMMING LANGUAGE

always represents a valid Etude atom of the form “#xφ”, whose reduction is performed
internally by the compiler as part of the translation process, prior to an eventual execu-
tion of the translated program. This behaviour is explicitly mandated by the C standard
and provides for a potential discrepancy between the evaluation rules of floating point
operations in their ordinary and constant contexts, as discussed earlier in Section 5.6.

5.7.3.5 Address Constants
The final constant expression category, known as address constants, is used by the
language for representation of the initial values assigned to statically-linked pointer
variables. Intuitively, such expressions must represent function designators, l-values
that designate a statically-linked object or else pointers to such l-values. They may be
formed from almost arbitrary applications of the unary “&”, “*” operators, as well
as the “.”, “->”, array subscripts and pointer cast operations, provided that their
operands also represent address constants. Formally, this semantic family is defined
in Haskell as follows:

DADDR[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν)

In particular, such constants must be always formed from applications of the unary
operator “&” to a constant l-value object, or else by an implicit conversion of a constant
l-value of a function or an array type. Cast operations are also permitted, provided that
they convert a well-formed address or null pointer constant into another pointer type.
Formally:

DADDR[[S, T , D, I . (e)]] = DADDR(S, T , D, I . e)

DADDR[[S, T , D, I . (type-name)e]] = do
(St, Tt, Dt, tt) DTN(S, T , D, I . type-name)
(Se, Te, De, te, α) DADDR(St, Tt, Dt, I . e) DNULL(St, Tt, Dt, I . e)
require (PTR(tt))
return (Se, Te, De, tt, [[[[φ(tt)]][[φ(te)]](α)]])

DADDR[[S, T , D, I . &e]] = do
(Se, Te, De, te, α) DCLV(S, T , D, I . e)
require (:BF(te))
return (Se, Te, De, [[te*]], α)

DADDR[[S, T , D, I . e]] = do
(Se, Te, De, te, α) DCLV(S, T , D, I . e)
require (FUN(te) _ ARR(te))
return (Se, Te, De, pp(te), α)

Further, the set and denotations of constant l-values, which, intuitively, represent ob-
jects with an external, internal or static linkage, are formalised by the following Haskell
construction:

DCLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν)

In particular, every string literal and every variable bound to a designator with an
external, internal or static linkage form, as well as every parenthesised version of

5.7 EXPRESSIONS 189

another valid l-value constant always belongs to this semantic family, as captured by
the following three translation rules:

DCLV[[S, T , D, I . string-literal]] = do
(t, δ̄) DSC(string-literal)
return (S, T , D [fν(D):[[OBJ (δ̄) OF ([[ξ̄(t)]])]]g, t, ν(D))

DCLV[[S, T , D, I . x]] = do
require (x 2 dom(S) ^ SL(L(S(x))))
return (S, T , D, T (S(x)), ν(L(S(x))))

DCLV[[S, T , D, I . (e)]] = DCLV(S, T , D, I . e)

Further, a constant l-value may represent a member of a constant structure, union or
array object, obtained by a well-formed application of the direct member operator “.”
to a constant l-value operand, an application of the indirect member operator “->” to
an address constant, or else from an application of the array subscript operator “[]” to
an address constant and an integral constant expression:

DCLV[[S, T , D, I . e.x]] = do
(Se, Te, De, te, α) DCLV(S, T , D, I . e)
(m) m̄(te)(x)
require (SU(te) ^ x 2 dom(m̄(te)))
return (Se, Te, De, tq(te) [T (m), [[[[O(φ(T (m)))]]O.Φ(α) +O.Φ #[[O(m)]]Z.Φ]])

DCLV[[S, T , D, I . e->x]] = do
(Se, Te, De, te, α) DADDR(S, T , D, I . e)
(m) m̄(B(te))(x)
require (SU(B(te)) ^ x 2 dom(m̄(B(te))))
return (Se, Te, De, tq(B(te)) [T (m), [[[[O(φ(T (m)))]]O.Φ(α) +O.Φ #[[O(m)]]Z.Φ]])

DCLV[[S, T , D, I . e1[e2]]]

= do (S1, T1, D1, t1, α) DADDR(S, T , D, I . e1)
(S2, T2, D2, t2, n) DICE (S1, T1, D1, I . e2)
require (OBJ(B(t1)))
return (S2, T2, D2, B(t1), [[α +[[φ(t1)]] #[[n� S(B(t1))]]Z.Φ]])

do (S1, T1, D1, t1, n) DICE (S, T , D, I . e1)
(S2, T2, D2, t2, α) DADDR(S1, T1, D1, I . e2)
require (OBJ(B(t2)))
return (S2, T2, D2, B(t2), [[α +[[φ(t2)]] #[[n� S(B(t2))]]Z.Φ]])

Last but not least, constant l-values may be constructed by applying the unary “*”
operator to the value of a well-formed address constant:

DCLV[[S, T , D, I . *e]] = do (Se, Te, De, te, α) DADDR(S, T , D, I . e)
return (Se, Te, De, B(te), α)

DCLV[[S, T , D, I . other]] = reject

observing that, by definition, every such constant always represents a pointer to an l-
value, whose content may be described either by a single Etude atom or else a sum of
such an atom with an integer constant of the form “#nZ.Φ”, which makes it possible to
implement all such constants under every relocatable program representation found in
the industry.

190 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.8 Declarations
In C, the declaration syntax provides programs with a concrete means of introducing
new entities into a translation union, be it variables, C types or type tags. Further,
in Section 5.8.9 a subset of this syntax doubles as a source code representation of
C types, in the form of entities known as type names. Due to their vastly diverse
nature, the structure and semantics of C declarations follow a pattern more irregular
than that of any other syntactic entity in the language, which makes for an interesting
reading but does not help to simplify their formalisation. In the concrete syntax of the
language, most declarations begin with a group of declaration specifiers that are usually
followed by one or more initialised declarators. In particular, the canonical form of a
C declaration generally assumes the following structure:

declaration:
declaration-specifiers init-declarator-listopt ;

declaration-list :
declaration
declaration-list declaration

Under the semantic framework adopted in this work, every such construct is always
interpreted in the context of its current variable and tag scopes S and T , a set of item
definitions D and the current scope index I. Similarly to C expressions, its denotation
includes any required updates to S, T and D, together with a set of local variables V and
an initialiser term τ , which, intuitively, prepares the initial content of the corresponding
memory-resident object for declarations with automatic and register linkage forms and,
in all other cases, defaults to the trivial Etude term “RET ()”. Formally, these denotations
are derived by the following Haskell function:

DD[[.]] :: (monad-fix M)) (S, S, D, I . declaration-listopt) ! M(S, S, D, V , termν)

In particular, in a single declaration with at least one declarator provided by its idlopt

component, the list of declaration specifiers is split into three components s̄c, t̄q and t̄s
as described in Section 5.8.1 below. The later is then promptly converted into a single C
type tb, known as the declaration’s base type, using a simple algorithm defined later in
Section 5.8.3, merged with the associated list of type qualifiers t̄q and applied to all of
the supplied declarators in idl, eventually producing a collective meaning of the entire
construct as follows:

DD[[S, T , D, I . ds idl;]] = do
(s̄c, t̄q, t̄s) DDS(ds)
(S1, T1, D1, tb) DTS(S, T , D, I . t̄s)
(S2, T2, D2, V , τ) DIR(S1, T1, D1, I, s̄c, t̄q ++ tb . idl)
return (S2, T2, D2, V , τ)

If, however, no init-declarator-list is included in the syntax, then the construct rep-
resents a rather different kind of entity known as a tag declaration. Its declaration
specifiers are scrutinised by a dedicated function DTAG that is defined separately in

5.8 DECLARATIONS 191

Section 5.8.6. In Haskell:
DD[[S, T , D, I . ds;]] = do

(S0, T 0, D0, t) DTAG(S, T , D, I . ds)
return (S0, T 0, D0, ∅, [[RET ()]])

Last but not least, the denotations of two or more declarations can be naturally com-
bined by obtaining a union of their local variable sets Vk and, further, composing
their respective initialiser terms τ1, τ2 ... τn into a single Etude construct of the form
“LET () = τ1; LET () = τ2; ... τn”, so that initialisation of all objects declared earlier in
the program is always completed before proceeding with the translation of any follow-
ing declarations. Under this interpretation, an omitted list of declarations denotes an
empty set of local variables ∅ and a singular initialiser term of the form “RET ()”, as
captured by the following pair of translation rules:

DD[[S, T , D, I . dl d]] = do (S1, T1, D1, V1, τ1) DD(S, T , D, I . dl)
(S2, T2, D2, V2, τ2) DD(S1, T1, D1, I . d)
return (S2, T2, D2, V1 [V2, [[LET () = τ1; τ2]])

DD[[S, T , D, I . ε]] = do return (S, T , D, ∅, [[RET ()]])

5.8.1 Declaration Specifiers
In every C declaration of the form “ds idlopt;”, the list ds represents a sequence of
one or more declaration specifier entities, constructed from a mixture of three kinds
of constructs, known as storage class specifiers, type specifiers and type qualifiers,
respectively. The concrete syntax of such lists is captured naturally by the following
Haskell type:

declaration-specifiers:
storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

The three kinds of declaration specifiers are discussed individually in Sections 5.8.2,
5.8.3 and 5.8.7 later in this chapter. However, before their meaning can be analysed
by the compiler, different kinds of specifies must be segregated from each other, as
described by the following simple Haskell construction:

DDS[[.]] :: (monad-fix M))
(declaration-specifiersopt) !
M(fstorage-class-specifierg, ftype-qualifierg, ftype-specifierg)

In particular, a well-formed C declaration may only ever include at most one of each
particular storage class specifier, type qualifier and type specifier entity form. Further,
the precise order in which these entities appear in the program’s syntax is irrelevant to
the declaration’s semantics, so that DDS dissects an optional list of declaration specifiers
into three independent sets s̄c, t̄q and t̄s as follows:

DDS[[storage-class-specifier dsopt]] = do
(s̄c, t̄q, t̄s) DDS(dsopt)
require (storage-class-specifier /2 s̄c)
return (s̄c [fstorage-class-specifierg, t̄q, t̄s)

192 CHAPTER 5: THE C PROGRAMMING LANGUAGE

DDS[[type-specifier dsopt]] = do
(s̄c, t̄q, t̄s) DDS(dsopt)
require (type-specifier /2 t̄s)
return (s̄c, t̄q, t̄s [ftype-specifierg)

DDS[[type-qualifier dsopt]] = do
(s̄c, t̄q, t̄s) DDS(dsopt)
require (type-qualifier /2 t̄q)
return (s̄c, t̄q [ftype-qualifierg, t̄s)

DDS[[]] = return (∅, ∅, ∅)

5.8.2 Storage Class Specifiers
In the concrete syntax of the language, the five keywords “typedef”, “extern”,
“static”, “auto” and “register” are known as storage class specifiers:

storage-class-specifier :
typedef
extern
static
auto
register

Intuitively, such entities describe the linkage of a designator associated with some
variable x of the C type t, which is introduced by the surrounding declaration as follows:
1 All declarations with the “typedef” storage class specifier always have the

“type” linkage form.
2 Otherwise, if a declaration includes the “extern” storage class specifier, then x

has the same linkage as any visible declaration of that identifier with the file scope,
i.e., the linkage of an existing designator in S with a scope index of 0. If no such
declaration can be found, then x is assigned the external linkage form “extern x”.

3 If a declaration in the file scope includes the “static” storage class specifier,
then the identifier has the internal linkage form “intern x”.

4 However, if such a declaration appears in a nested scope with a non-zero scope
index, then the declared identifier is assigned the private linkage “private ν”, in
which the Etude variable ν is given a globally-unique name ν(D).

5 Likewise, if a declaration in a nested scope includes the “auto” or “register”
storage class specifier, then x is assigned, respectively the automatic or register
linkage form “auto ν” or “register ν”, using a similar globally-unique Etude
variable ν(D).

6 Further, such automatic linkage is also assigned to all declarations without any
storage class specifiers, provided that the construct appears in a nested scope and
that it does not assign a function type for the identifier.

7 On the other hand, a declaration without any storage class specifiers behaves ex-
actly as if the construction included the “extern” storage class specifier whenever
the entity appears within the file scope or if it designates a C function. In all other
cases, x is assigned the external linkage form “extern x”.

5.8 DECLARATIONS 193

No other combination of storage class specifiers may ever appear in a well-formed
C declaration. In particular, as a direct consequence of this definition, any given C
declaration can include at most one storage class specifier entity and no declaration that
appears in the file scope may contain the “auto” or “extern” storage class specifier
forms. In Haskell, the above rules can be formalised as follows:

DSC[[.]] :: (monad-fix M))
(S, S, D, I, type, identifier . [storage-class-specifier]) ! M(linkage)

DSC[[S, T , D, I, t, x . s̄c]]

s̄c = [[typedef]] = return [[type]]
s̄c = [[extern]] ^ (x 2 dom(S) ^ I (S(x)) = 0) = return L(S(x))
s̄c = [[extern]] ^ (x /2 dom(S) _ I (S(x)) 6= 0) = return [[extern x]]
s̄c = [[static]] ^ (I = 0) = return [[intern x]]
s̄c = [[static]] ^ (I 6= 0) = return [[private [[ν(D)]]]]
s̄c = [[auto]] ^ (I 6= 0) = return [[auto [[ν(D)]]]]
s̄c = [[register]] ^ (I 6= 0) = return [[register [[ν(D)]]]]
s̄c = [[]] ^ :FUN(t) ^ (I 6= 0) = return [[auto [[ν(D)]]]]
s̄c = [[]] ^ :FUN(t) ^ (I = 0) = return [[extern x]]
s̄c = [[]] ^ FUN(t) = DSC[[S, T , D, I, t, x . extern]]
otherwise = reject

5.8.3 Type Specifiers

In C, most simple types are represented by sets of entities known as type specifiers.
The C Standard defines nine type specifier keywords and three composite type specifier
structures, whose concrete syntax is captured collectively by the following grammar:

type-specifier :
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

The precise syntax and semantics of the “enum-specifier”, “struct-or-union-specifier”
and “typedef-name” type specifier forms is defined separately in Sections 5.8.4, 5.8.5
and 5.8.10 later in this chapter. Otherwise, every valid sorted list of such entities de-
notes a predetermined C type from Section 5.4, such that, intuitively, each meaningful
list of type specifiers is mapped to an abstract C type with a lexically-identical name,
except that all arithmetic types other than “char” and “int” are explicitly marked
with the “signed” or “unsigned” keyword and that “int” is generally excluded

194 CHAPTER 5: THE C PROGRAMMING LANGUAGE

from the names of “short” and “long” type forms. Formally, this correspondence is
captured by the following Haskell definition:

DTS[[.]] :: (monad-fix M)) (S, S, D, I . [type-specifier]) ! M(S, S, D, type)

DTS[[S, T , D, I . void]] = return (S, T , D, [[void]])
DTS[[S, T , D, I . char]] = return (S, T , D, [[char]])
DTS[[S, T , D, I . signed char]] = return (S, T , D, [[signed char]])
DTS[[S, T , D, I . unsigned char]] = return (S, T , D, [[unsigned char]])
DTS[[S, T , D, I . short]] = return (S, T , D, [[signed short]])
DTS[[S, T , D, I . short int]] = return (S, T , D, [[signed short]])
DTS[[S, T , D, I . signed short]] = return (S, T , D, [[signed short]])
DTS[[S, T , D, I . signed short int]] = return (S, T , D, [[signed short]])
DTS[[S, T , D, I . unsigned short]] = return (S, T , D, [[unsigned short]])
DTS[[S, T , D, I . unsigned short int]] = return (S, T , D, [[unsigned short]])
DTS[[S, T , D, I . ε]] = return (S, T , D, [[int]])
DTS[[S, T , D, I . int]] = return (S, T , D, [[int]])
DTS[[S, T , D, I . signed]] = return (S, T , D, [[signed int]])
DTS[[S, T , D, I . signed int]] = return (S, T , D, [[signed int]])
DTS[[S, T , D, I . unsigned]] = return (S, T , D, [[unsigned int]])
DTS[[S, T , D, I . unsigned int]] = return (S, T , D, [[unsigned int]])
DTS[[S, T , D, I . long]] = return (S, T , D, [[signed long]])
DTS[[S, T , D, I . long int]] = return (S, T , D, [[signed long]])
DTS[[S, T , D, I . signed long]] = return (S, T , D, [[signed long]])
DTS[[S, T , D, I . signed long int]] = return (S, T , D, [[signed long]])
DTS[[S, T , D, I . unsigned long]] = return (S, T , D, [[unsigned long]])
DTS[[S, T , D, I . unsigned long int]] = return (S, T , D, [[unsigned long]])
DTS[[S, T , D, I . float]] = return (S, T , D, [[float]])
DTS[[S, T , D, I . double]] = return (S, T , D, [[double]])
DTS[[S, T , D, I . long double]] = return (S, T , D, [[long double]])
DTS[[S, T , D, I . struct-or-union-specifier]] = DSUS (S, T , D, I . struct-or-union-specifier)
DTS[[S, T , D, I . enum-specifier]] = DENS (S, T , D, I . enum-specifier)
DTS[[S, T , D, I . typedef-name]] = DTDN(S, T , D, I . typedef-name)
DTS[[S, T , D, I . other]] = reject

5.8.4 Structure and Union Specifiers
A structure or union specifier consists of the keyword “struct” or “union”, fol-
lowed by an optional identifier and an optional list of structure declarations enclosed
in braces. At least one of the identifier and struct-declaration-list components must be
present, as described by the following set of Haskell data type definitions:

struct-or-union-specifier :
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

Every such structure or union specifier denotes a C type derived from its syntax and the
surrounding translation context using the following Haskell construction:

DSUS[[.]] :: (monad-fix M)) (S, S, D, I . struct-or-union-specifier) ! M(S, S, D, type)

5.8 DECLARATIONS 195

In particular, if the entity includes no identifier, then a new globally-unique type tag
“tag(D)” is introduced into the program, with the entire construct denoting a structure
or union type “struct-or-union [[tag(D)]] [[m̄]]”, in which the member list m̄ is derived
from the specifier’s list of structure declarations sdl, after annotating every member
mk 2 m̄ with an appropriate offset value as follows:

DSUS[[S, T , D, I . struct-or-union {sdl}]] = do
(S0, T 0, D0, m̄) DSD(S, T , D [ftag(D):εg, I . sdl)
require

V
[WF(mk) mk L(struct-or-union . m̄)]

return (S0, T 0, D0, [[struct-or-union [[tag(D)]] [[L(struct-or-union . m̄)]]]])

In particular, the notation “L(struct-or-union . m̄)” represents an application of the
following unspecified Haskell function L , which, intuitively, annotates every mem-
ber mk 2 m̄ with an appropriate offset value within the newly-introduced structure
or union type:

L [[.]] :: (struct-or-union . members) ! members

Although, in the process, L can insert new anonymous members into the list m̄, the
relative order of all named members and their C types will be always preserved by the
construction, with the possible exception of any bit field offset values appearing in the
original configuration of the list:

LAYOUT1 :: 8 su, m̄)
[[Z(mk) mk L(su . m̄), N (mk) 6= ε]] = [[Z(mk) mk m̄, N (mk) 6= ε]]

where Z(m) discards all offset information from a given member m as follows:

Z[[.]] :: member ! member

Z[[t x @ n]] BF(t) = [[[[tq(t) ++ ([[B(t)]]:[[W (t)]].0)]] x @ 0]]
otherwise = [[t x @ 0]]

Further, for every member found in the resulting list m̄ and a well-formed Etude object
atom α whose format describes the entire structure or union type in question, the sum
of the member’s offset with an appropriately-converted value of α is also guaranteed to
represent a meaningful object atom:

LAYOUT2 :: 8 su, ν , m̄, φ)
[[φ = φ [[su ν [[L(su . m̄)]]]]]] !
(8 n, m) WF[[#nφ]] ! [[m 2 L(su . m̄)]] !

WF[[[[O(φ(T (m)))]]φ (#nφ) +[[O(φ(T (m)))]] #[[O(m)]]Z.Φ]])

Finally, in the entire member list of every well-formed structure type, no two members
will be ever allocated to overlapping regions in the structure’s memory image. Specif-
ically, let A, B and C represent three sets, such that A consists of all the distinct byte
offsets allocated to some named member of m̄, B specifies all distinct member offsets
allocated to named bit field members and C includes every tuple (n, i) in which n repre-
sents the offset of some bit field member from m̄ and i represents one of the bit indices
associated with that bit field. Further, let S and W represent the total size of all named

196 CHAPTER 5: THE C PROGRAMMING LANGUAGE

non-bit field members and the total width of all bit field members found in the struc-
ture, respectively. Then, in every member set m̄ constructed by L [[struct . m̄]], the
cardinality of A must be equal to S + B � S(Ψ) and the cardinality of C must be equal
to W. Formally:

LAYOUT3 :: 8 m̄, A, B, S)
[[A = fO(mk) + i mk L [[struct . m̄]], i [0 ... S(T (mk))� 1], N (mk) 6= εg]]
[[B = fO(mk) mk L [[struct . m̄]], N (mk) 6= ε ^ BF(T (mk))g]] !
[[S =

P
[S(T (mk)) mk m̄, N (mk) 6= ε ^ :BF(T (mk))]]] !

[[A = S + B � S(Ψ)]]

LAYOUT4 :: 8 m̄, C, W)
[[C = f(O(mk), O(T (mk)) + j)

mk L [[struct . m̄]], j [0 ... W (T (mk))� 1], BF(T (mk))g]] !
[[W =

P
[W (T (mk)) mk m̄, BF(T (mk))]]] !

[[C = W]]

While the precise definition of L may, in principle, vary between individual compiler
implementations, Appendix C includes an almost-universally accepted design of this
function, in which individual members are always allocated to successive byte offsets
within the structure and adjacent bit field containers are merged together whenever
possible, in order to reduce the overall memory footprint of the entire construction.

In a well-formed C program, all elements of the resulting member list are subject
to a further semantic scrutiny by the following Haskell construction:

WF[[.]] :: member ! bool

In particular, every well-formed member must be associated with a non-negative offset
value and a well-formed object or bit field type. Further, each bit field member must
be either unnamed, or else it must specify a type with a non-zero width, since all bit
field entities of the form “t:0.n” are reserved for a rather specialised purpose discussed
later in this section. Finally, in all members, the sum of the member’s offset with
the size of its type must be no greater than the largest value representable under the
implementation-defined C type “ptrdiff_t”. Formally:

WF[[m]] = ((N (m) 6= ε ^ (OBJ(T (m)) _ (BF(T (m)) ^ W (T (m)) > 0))) _
(N (m) = ε ^ BF(T (m)) ^ W (T (m)) = 0)) ^

0 � O(m) � lub(ptrdiff_t)� S(T (m))

Otherwise, the meaning of a structure specifier whose syntax includes both an identifier
component x and a list of structure declarations sdl depends on the present binding of
x in the current tag scope T . If no tag binding for this identifier is visible in T , or if
the existing binding has been introduced in some outer scope of the program, then the
specifier behaves similarly to the above anonymous version of the construct, except
that, during processing of sdl, the tag name x is also bound to a designator with the type
linkage and an incomplete structure or union type tagged with the newly-introduced
unique tag variable “tag(D)”. At the end of the entire construct, this type is then
completed in the current scope with the list of members derived from the provided list

5.8 DECLARATIONS 197

of structure declarations and returned as part of the entity’s denotation. If, on the other
hand, an existing binding of x is already present in the innermost current scope T and if
that binding is associated with an incomplete structure or union type of the same kind
as that specified by the entity’s syntax, then the existing tag variable of x is completed
with the list of structure or union members derived from sdl. In all cases, the resulting
member list is laid out and validated using the L and WF functions described earlier:

DSUS[[S, T , D, I . struct-or-union x {sdl}]]

= do require (x /2 dom(T) _ I (T(x)) 6= I)
(S0, T 0, D0, m̄) DSD(S, T/fx:[[type struct-or-union [[tag(D)]] @ I]]g,

D [ftag(D):εg, I . sdl)
(t) [[struct-or-union [[tag(D)]] [[CM(t . L(struct-or-union . m̄))]]]]
require (INC(T (T 0(x)))) ^

V
[WF(mk) mk L(struct-or-union . m̄)]

return (C [[t . S0]], C [[t . T 0]], D0, t)

do require (x 2 dom(T) ^ I (T(x)) = I) ^
(SU(T (T(x))) ^ INC(T (T(x)))) ^ (su(T (T(x))) = struct-or-union)

(S0, T 0, D0, m̄) DSD(S, T , D, I . sdl)
(t) [[struct-or-union [[tag(T (T(x)))]] [[CM(t . L(struct-or-union . m̄))]]]]
require (INC(T (T 0(x)))) ^

V
[WF(mk) mk L(struct-or-union . m̄)]

return (C [[t . S0]], C [[t . T 0]], D0, t)

Observe that, since the list of structure declarations is processed directly in the scope
of the surrounding specifier, a programmer may be tempted to complete it before the
end of the entire list. Since the C Standard permits only a single complete definition
of a given type tag within a particular scope, any such attempts are foiled in the above
formalisation of structure specifiers by ensuring that the supplied tag name x remains
bound to an incomplete type at the end of its list of structure declarations.

Finally, a structure or union specifier without a declaration list refers simply to the
existing meaning of the designated tag name. If no such binding is visible in the current
scope, then the construct introduces a new incomplete structure or union type, tagged
with the unique variable “tag(D)”. Otherwise, it simply denotes the existing type of
x in T , provided that this type represents a structure or union of the same kind as that
requested in the entity’s syntax. Formally:

DSUS[[S, T , D, I . struct-or-union x]]

= do require (x /2 dom(T))
return (S, T [fx:[[type struct-or-union [[tag(D)]] @ I]]g,

D [ftag(D):εg, [[struct-or-union [[tag(D)]]]])

do require (x 2 dom(T) ^ SU(T (T(x))) ^ su(T (T(x))) = struct-or-union)
return (S, T , D, T (T(x)))

In the concrete syntax of the language, a structure declaration is always represented
by a non-empty sequence of type specifiers and qualifiers, that are followed by a list
of one or more structure declarators and concluded by the delimiter “;”. Formally,
such constructs denote a list of structure or union members derived from its individ-
ual declarators in the order of their appearance within the program, ensuring that no

198 CHAPTER 5: THE C PROGRAMMING LANGUAGE

two named members of a given structure or union are assigned the same identifier.
In Haskell:

struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

Similarly to the ordinary C declarations from Section 5.8, any type qualifiers and speci-
fiers associated with a particular element of the sequence are split into two homogenous
sets t̄q and t̄s, with the later used to derive a C type tb, using a mapping identical to that
applied in Section 5.8.3 to ordinary C declaration forms. In combination with the qual-
ifier set t̄q, tb serves as the base type in a derivation of the actual member entities from
the following list of structure declarators:

DSD[[.]] :: (monad-fix M)) (S, S, D, I . struct-declaration-list) ! M(S, S, D, members)

DSD[[S, T , D, I . sql sdl;]] = do
(t̄q, t̄s) DSQL(sql)
(S1, T1, D1, tb) DTS (S, T , D, I . t̄s)
(S2, T2, D2, m̄) DSR(S1, T1, D1, I, t̄q ++ tb . sdl)
return (S2, T2, D2, m̄)

DSD[[S, T , D, I . sdl sd]] = do
(S1, T1, D1, m̄1) DSD(S, T , D, I . sdl)
(S2, T2, D2, m̄2) DSD(S1, T1, D1, I . sd)
require (dom(m̄1) \ dom(m̄2) = ∅)
return (S2, T2, D2, m̄1 ++ m̄2)

The actual syntax and semantics of a structure declaration’s specifier-qualifier list are
identical to those of ordinary declaration specifiers described earlier in Section 5.8.1,
except that no storage class specifiers can ever appear in these constructs:

specifier-qualifier-list :
type-specifier specifier-qualifier-listopt

type-qualifier specifier-qualifier-listopt

In particular, such lists are always split into type specifier and qualifier sets by the
following definition analogous to the earlier formalisation of DDS:

DSQL[[.]] :: (monad-fix M))
(specifier-qualifier-listopt) ! M(ftype-qualifierg, ftype-specifierg)

DSQL[[type-specifier sqlopt]] = do
(t̄q, t̄s) DSQL(sqlopt)
require (type-specifier /2 t̄s)
return (t̄q, t̄s [ftype-specifierg)

DSQL[[type-qualifier sqlopt]] = do
(t̄q, t̄s) DSQL(sqlopt)
require (type-qualifier /2 t̄q)
return (t̄q [ftype-qualifierg, t̄s)

DSQL[[]] = return (∅, ∅)

5.8 DECLARATIONS 199

Every structure declarator, in turn, consists of an optional declarator with the syntax
defined later in Sections 5.8.8 and an optional constant expression, at least one of which
must always be present. Formally:

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator
declaratoropt : constant-expression

In this work, the meaning of all such structure declarators is captured by the following
Haskell definition:

DSR[[.]] :: (monad-fix M))
(S, S, D, I, type . struct-declarator-list) ! M(S, S, D, members)

In particular, a structure declarator without the “:e” suffix denotes a simple member
entity, whose name and type is derived from the declarator’s syntax by an algorithm DR

defined later in Section 5.8.8. In all cases, the result must represent an object type:

DSR[[S, T , D, I, tb . r]] = do
(S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
require (OBJ(t))
return (S0, T 0, D0, [[t x @ ?]])

On the other hand, a structure declarator of the form “r:e” denotes a bit field member,
whose name and base type t is derived from the declarator r and whose width is
specified by the integral constant expression e. In all well-formed C programs, this
base type must always represent some qualified or unqualified version of the “int”,
“signed int” or “unsigned int” type, with any type qualifiers stripped from t
and applied directly to the member’s own C type. Further, e must always specify a
positive integer no greater than the width of t in magnitude. Formally:

DSR[[S, T , D, I, tb . r : e]] = do
(S1, T1, D1, t, x) DR(S, T , D, I, tb . r)
(S2, T2, D2, te, n) DICE(S1, T1, D1, I . e)
require (unq(t) 2 f[[int]], [[signed int]], [[unsigned int]]g ^ 1 � n � W (t))
return (S2, T2, D2, [[[[tq(t) ++ [[[[unq(t)]]:n.?]]]] x @ ?]])

In addition, a degenerate bit field declarator of the form “:e” denotes an anonymous bit
field member with a C type constructed similarly to the above derivation, except that
the present variant of such entities also admits bit fields of a zero width:

DSR[[S, T , D, I, t . : e]] = do
(S0, T 0, D0, t, n) DICE(S, T , D, I . e)
require (unq(t) 2 f[[int]], [[signed int]], [[unsigned int]]g ^ 0 � n � W (t))
return (S0, T 0, D0, [[[[tq(t) ++ [[[[unq(t)]]:n.?]]]] @ ?]])

The reader should observe that, initially, the byte offset of every member and the bit
offset of every bit field type appearing in a structure declaration list is left unspecified

200 CHAPTER 5: THE C PROGRAMMING LANGUAGE

by the above definition. These parameters are only assigned proper integer values by
the L function described earlier in this section, once the complete list of all members
for the entity has been extracted from the enclosing structure or union specifier.

Finally, a comma-separated list of two or more structure declarators denotes a list
of members, derived in the order of their appearance within the program as follows:

DSR[[S, T , D, I, t . srl, sr]] = do
(S1, T1, D1, m̄1) DSR(S, T , D, I, t . srl)
(S2, T2, D2, m̄2) DSR(S1, T1, D1, I, t . sr)
require (dom(m̄1) \ dom(m̄2) = ∅)
return (S2, T2, D2, m̄1 ++ m̄2)

5.8.5 Enumeration Specifiers

In a concrete syntax of the language, an enumeration specifier is represented by the
keyword “enum”, followed by an optional identifier and an optional list of enumerators
enclosed in braces. At least one of the identifier and enumerator-list components must
be present in every such construct, as described by the following BNF grammar:

enum-specifier :
enum identifieropt { enumerator-list }
enum identifier

Similarly to structure and union specifiers, all such enumeration specifiers denote a C
type. Their denotations are derived by the following Haskell function:

DENS[[.]] :: (monad-fix M)) (S, S, D, I . enum-specifier) ! M(S, S, D, type)

In particular, if the specifier’s syntax includes a list of enumerators enl, then that entity
is used to derive a list of integer values n̄, using an algorithm DEN described later in
this section. The entire construct denotes an enumeration type of the form “enum t ν”,
in which ν is given a unique value “tag(D0)” and t represents some implementation-
defined integral type derived from n̄. For named specifiers of the form “enum x {enl}”,
the identifier x is also bound in the current tag scope T to a type designator with that
enumeration type, provided that no previous declaration of the corresponding tag name
x is visible in the innermost current scope of the entity:

DENS[[S, T , D, I . enum {enl}]] = do
(S0, T 0, D0, n̄) DEN(S, T , D, I . enl)
return (S0, T 0, D0 [ftag(D0):εg, [[enum [[TENL(n̄)]] [[tag(D0)]]]])

DENS[[S, T , D, I . enum x {enl}]] = do
(S0, T 0, D0, n̄) DEN(S, T , D, I . enl)
require (x /2 dom(T) _ I (T(x)) 6= I)
return (S0, T 0/fx:[[type [[enum [[TENL(n̄)]] [[tag(D0)]]]] @ I]]g, D0 [ftag(D0):εg,

[[enum [[TENL(n̄)]] [[tag(D0)]]]])

The C Standard does not impose any particular restriction on the base type of the result-
ing enumeration. In the present work, this type is derived from the list of integer values

5.8 DECLARATIONS 201

assigned to the construct’s individual enumerators by the following implementation-
defined Haskell function:

TENL[[.]] :: [integer] ! type

A careful reading of the C Standard reveals that TENL(n̄) must always represent a basic
integral type convertible into “signed int” under integral promotion:

ENUM :: 8 n̄) WF(n̄) ! [[TENL(n̄) 2 BIT ^ ip(TENL(n̄)) = [[signed int]]]]

On the other hand, enumeration specifiers without an explicit enumerator list must al-
ways refer to an existing tag name, that, in the current scope T , is bound to a designator
with an enumeration type. Such entities denote the C type of the associated designator
from T without affecting the surrounding translation context:

DENS[[S, T , D, I . enum x]] = do
require (x 2 dom(T) ^ ET(T (T(x))))
return (S, T , D, T (T(x)))

When present, the list of enumerators found in an enumeration specifier must consist of
one or more comma-separated enumerator entities, every one of which is formed from
an identifier and an optional constant expression known as the enumerator’s initialiser,
as represented by the following Haskell rendition of its concrete syntax:

enumerator-list :
enumerator
enumerator-list , enumerator

enumerator :
identifier
identifier = constant-expression

Every such enumerator introduces into the current scope S a new binding of the spec-
ified variable name to a designator with an appropriate constant linkage and the plain
“int” type, provided that no other binding of that identifier exists in S, or that the
previous binding has been introduced in some outer scope and that the integer value of
the identifier’s new linkage is representable under the “int” type. Further, the denota-
tion of an enumerator list includes a sequence of all integer values associated with the
linkages of any new constants introduced into the program by its translation, so that the
meaning of all C enumerators can be modelled by the following Haskell function:

DEN[[.]] :: (monad-fix M)) (S, S, D, I . enumerator-list) ! M(S, S, D, [integer])

In particular, for enumerators of the form “x = e”, e must represent an integral constant
expression, whose numeric value is used to form a linkage of the resulting designator:

DEN[[S, T , D, I . x = e]] = do
(S0, T 0, D0, t, n) DICE(S, T , D, I . e)
require (x /2 dom(S0) _ I (S0(x)) 6= I) ^ (glb[[int]] � n � lub[[int]])
return (S0/fx:[[const n int @ I]]g, T , D, [n])

202 CHAPTER 5: THE C PROGRAMMING LANGUAGE

DEN[[S, T , D, I . enl, x = e]] = do
(S1, T1, D1, n̄) DEN(S, T , D, I . enl)
(S2, T2, D2, t, n) DICE(S1, T1, D1, I . e)
require (x /2 dom(S2) _ I (S2(x)) 6= I) ^ (glb[[int]] � n � lub[[int]])
return (S2/fx:[[const n int @ I]]g, T2, D2, n̄ ++ [n])

Otherwise, if the enumerator consists entirely of an identifier without an explicit ex-
pression initialiser, then its linkage is assigned a value one greater than that of the last
enumerator preceding the current one in the specifier’s syntax, or 0 if such an entity
appears at the very beginning of the list. Formally:

DEN[[S, T , D, I . x]] = do
require (x /2 dom(S) _ I (S(x)) 6= I)
return (S/fx:[[const 0 int @ I]]g, T , D, [0])

DEN[[S, T , D, I . enl, x]] = do
(S0, T 0, D0, n̄) DEN(S, T , D, I . enl)
require (x /2 dom(S0) _ I (S0(x)) 6= I) ^ (glb[[int]] � last(n̄) + 1 � lub[[int]])
return (S0/fx:[[const [[last(n̄) + 1]] int @ I]]g, T 0, D0, n̄ ++ [last(n̄) + 1])

5.8.6 Tag Declarations
As mentioned at the beginning of Section 5.8, a C declaration whose syntax does not
include any declarator entities is known as a tag declaration. The list of specifiers in
every such construct must consist entirely of a single structure, union or enumeration
specifier entity. Formally, their meaning is derived by the following Haskell function:

DTAG[[.]] :: (monad-fix M)) (S, S, D, I . declaration-specifiers) ! M(S, S, D, type)

In particular, if the declaration assumes the form of “struct-or-union x”, in which x is
either undeclared in the current scope T , or else introduced only in some outer scope
of the program, then the construct always extend T with a new binding of x to a unique
incomplete structure or union type as follows:

DTAG[[S, T , D, I . struct-or-union x]] = do
require (x /2 dom(T) _ I (T(x)) 6= I)
return (S, T/fx:[[type struct-or-union [[tag(D)]] @ I]]g, D [ftag(D):εg,

[[struct-or-union [[tag(D)]]]])

Otherwise, a tag declaration must consist entirely of a single named structure or union
specifier whose syntax includes a list of structure declarations, or else an enumeration
specifier with a non-empty enumerator list, behaving exactly like any ordinary occur-
rence of such an entity described earlier in Sections 5.8.4 and 5.8.5:

DTAG[[S, T , D, I . struct-or-union x {sdl}]] = DSUS [[S, T , D, I . struct-or-union x {sdl}]]
DTAG[[S, T , D, I . enum xopt {enl}]] = DENS[[S, T , D, I . enum xopt {enl}]]
DTAG[[S, T , D, I . other]] = reject

Intuitively, tag declarations allow C programs to hide an existing declaration of a struc-
ture or union type, in order to replace them with a new complete or incomplete binding
of the same tag name. The reader should observe that the special behaviour of these
declaration forms is only applicable to structure specifiers, since, in C, enumeration
types are always completed upon their initial appearance within the program.

5.8 DECLARATIONS 203

5.8.7 Type Qualifiers
In a concrete syntax of the language, the qualification of all C types described earlier in
Section 5.4 is represented by a pair of type qualifier keywords featured in the following
Haskell definition:

type-qualifier :
const
volatile

type-qualifier-list :
type-qualifier
type-qualifier-list type-qualifier

The “type-qualifier-list” syntax corresponds naturally to Haskell lists of type qualifiers,
which, formally, can be derived from such entities using the following function:

DTQ[[.]] :: type-qualifier-listopt ! [type-qualifier]

DTQ[[]] = ∅

DTQ[[type-qualifier]] = [type-qualifier]
DTQ[[type-qualifier-list type-qualifier]] = DTQ(type-qualifier-list) ++ [type-qualifier]

The resulting list can be applied to an almost-arbitrary C type using one of the algo-
rithms described earlier in Section 5.4.4. However, as discussed in Section 5.4.3, the
reader should keep in mind that a single C type may be only qualified with at most
one of the four syntactic forms “const”, “volatile”, “const volatile” or
“volatile const”. In particular, redundant qualifications such as “const const”
are explicitly forbidden by the C Standard. However, an actual enforcement of these
rules is encapsulated within the type classification predicates from Section 5.4 and gen-
erally disregarded during the actual semantic analysis of C declarations.

5.8.8 Declarators
In C, declarators are used to introduce new object identifiers into the current variable
scope S. Formally, their syntax is depicted by the following set of three Haskell data
type definitions:

declarator :
pointeropt direct-declarator

direct-declarator :
identifier
(declarator)
direct-declarator [constant-expressionopt]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

pointer :
* type-qualifier-listopt

* type-qualifier-listopt pointer

In all cases, every occurrence of a given declarator r in a C program must be associated
with a list of zero or more type specifiers by the surrounding declaration. As already

204 CHAPTER 5: THE C PROGRAMMING LANGUAGE

mentioned in Section 5.8, these specifiers are used to construct the base type for the
declarator, which the entity refines systematically into its eventual denotation. Specifi-
cally, the denotation of every C declarator r consists of a C type and an identifier found
at the heart of its concrete syntax. Formally, these denotations are obtained using the
following translation function:

DR[[.]] :: (monad-fix M)) (S, S, D, I, type . declarator) ! M(S, S, D, type, identifier)

In particular, a simple declarator whose syntax is formed entirely from some identifier x
always denotes that identifier, assigning to it the derivation’s base type tb itself. Further,
a parenthesised declarator of the form “(r)” has the same denotation as its direct
declarator component r, while a pointer declarator of the form “pointer r” denotes
the same identifier and type as that depicted by r, in the context of a new base type
derived from its pointer entity as follows:

DR[[S, T , D, I, tb . x]] = return (S, T , D, tb, x)
DR[[S, T , D, I, tb . (r)]] = DR(S, T , D, I, tb . r)
DR[[S, T , D, I, tb . pointer r]] = DR(S, T , D, I, DP(tb . pointer) . r)

Specifically, the notation “DP(tb . * tqlopt)” represents a tql-qualified pointer to the
base type tb, while “DP(tb . * tqlopt p)” further refines that pointer in accordance with
the syntax of p, as captured by the following recursive algorithm:

DP[[.]] :: (type . pointer) ! type

DP[[t . * tqlopt pointer]] = DP(DTQ(tqlopt) ++ [[t*]] . pointer)
DP[[t . * tqlopt]] = DTQ(tqlopt) ++ [[t*]]

Intuitively, these rules imply that a C declaration of the form “int *x;” denotes the
plain “int” directly, while “ds *tql x;” denotes a tql-qualified pointer to the C type
derived from the list of declaration specifiers ds. On the other hand, an array declarator
of the form “r[eopt]” denotes an array of its element type tb, with a length described by
the optional integral constant expression eopt:

DR[[S, T , D, I, tb . r[eopt]]] = do
(Sr, Tr, Dr, t, x) DR(S, T , D, I, [[tb[nopt]]] . r)
(Se, Te, De, nopt) DALE(Sr, Tr, Dr, I . eopt)
return (Se, Te, De, t, x)

A a result, a declaration of the form “ds *tql x[];” represents an array of tql-qualified
pointers to the type derived from ds, while “ds (*tql x)[];” represents a tql-qualified
pointer to such an array. If no expression is included in the declarator’s syntax, then
the construct describes an incomplete array type of an unknown length. Otherwise, the
type has a length equal to the expression’s integer value, as captured by the following
Haskell derivation:

DALE[[.]] :: (monad-fix M)) (S, S, D, I . constant-expressionopt) ! M(S, S, D, integeropt)

DALE[[S, T , D, I . e]] = do
(S0, T 0, D0, t, n) DICE(S, T , D, I . e)
return (S0, T 0, D0, n)

DALE[[S, T , D, I . ε]] = return (S, T , D, ε)

5.8 DECLARATIONS 205

Last but not least, all declarators of the form “r(ptl)” and “r()” describe function types
that return the declarator’s base type tb. If the entity includes a parameter type list, then
this list is used to construct the function’s prototype. Otherwise, the result is a function
without a prototype and the identifier list featured in the declarator’s syntax must be
empty, since function declarators with non-empty identifier lists are valid only in the
context of a function definition considered later in Section 5.10.2:

DR[[S, T , D, I, tb . r(ptl)]] = do
(Sr, Tr, Dr, t, x) DR(S, T , D, I, [[tb(popt)]] . r)
(Dp, popt) DPTL(Sr, Tr, Dr, I . ptl)
return (Sr, Tr, Dp, t, x)

DR[[S, T , D, I, tb . r(xlopt)]] = do
(Sr, Tr, Dr, t, x) DR(S, T , D, I, [[tb()]] . r)
require (list(xlopt) = ∅)
return (Sr, Tr, Dr, t, x)

In the concrete syntax of the language, actual function prototypes are described by
entities known as parameter type lists. Intuitively, a parameter type list consists of a
comma-separated sequence of parameter declarations, every one of which is formed
from a list of declaration specifiers followed by a single declarator or an abstract
declarator entity described later in Section 5.8.9. The entire construct can be also con-
cluded with an optional “...” symbol. Alternatively, when no prototype information is
to be provided for a given function, the names of its arguments may be described sim-
ply by a comma-separated list of identifiers, although, as already mentioned, non-empty
identifier lists are only ever permitted in the syntax of function definitions scrutinised
separately in Section 5.10.2. Formally, both kinds of function annotations are depicted
by the following set of Haskell type definitions:

parameter-type-list :
parameter-list
parameter-list , ...

parameter-list :
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list :
identifier
identifier-list , identifier

where, for convenience, every identifier-list entity is generally treated as a Haskell list
of identifiers, derived from the entity’s syntax by the following recursive algorithm:

list[[.]] :: identifier-listopt ! [identifier]

list[[xl, x]] = list(xl) ++ [x]
list[[x]] = [x]
list[[]] = ∅

206 CHAPTER 5: THE C PROGRAMMING LANGUAGE

When present in a function declarator, a parameter type list always introduces a new
variable and tag scope into the program. Intuitively, this scope spans all of its parameter
declarations and is promptly discarded at the end of the list. Accordingly, the denota-
tions of such constructs consist entirely of the intended prototype p and an updated set
of item definitions D0, excluding the usual scope components S0 and T 0. In particular,
every parameter type list pl and its suffixed form “pl,...” denotes a prototype whose
type list is derived from the list of parameters pl and whose abstract syntax includes
the “...” suffix if and only if such suffix is also present in the actual source code of the
program. In Haskell, this derivation is represented by the following simple translation:

DPTL[[.]] :: (monad-fix M)) (S, S, D, I . parameter-type-listopt) ! M(D, prototypeopt)

DPTL[[S, T , D, I . pl]] = do
(S0, T 0, D0, t̄) DPL(S, T , D, I + 1 . pl)
return (D0, [[t̄]])

DPTL[[S, T , D, I . pl,...]] = do
(S0, T 0, D0, t̄) DPL(S, T , D, I + 1 . pl)
return (D0, [[t̄...]])

DPTL[[S, T , D, I . ε]] = return (D, [[]])

Every parameter declaration contributes the C type of a single parameter to the function
prototype under construction. Further, the identifier of every non-abstract parameter
declarator is bound in the current scope S to an appropriately-typed designator for a
variable object, whose linkage is obtained by the algorithm described earlier in Section
5.8.2. In all cases, the parameter must have a well-formed object, function or incom-
plete type, must not include any storage class specifies other than “register” and
its name must be either unbound in the current scope or else bound only in some outer
scope of the program. Formally:

DPL[[.]] :: (monad-fix M)) (S, S, D, I . parameter-list) ! M(S, S, D, types)

DPL[[S, T , D, I . ds r]] = do
(s̄c, t̄q, t̄s) DDS(ds)
(S1, T1, D1, tb) DTS(S, T , D, I . t̄s)
(S2, T2, D2, t, x) DR(S1, T1, D1, I, t̄q ++ tb . r)
(`) DSC(S2, T2, D2, I, pp(t), x . s̄c)
require (s̄c � fregisterg ^ (OBJ(t) _ FUN(t) _ INC(t))) ^

(x /2 dom(S2) _ I (S2(x)) 6= I)
return (S2/fx:[[` t @ I]]g, T2, D2/fν(`):εg, [t])

DPL[[S, T , D, I . ds aropt]] = do
(s̄c, t̄q, t̄s) DDS(ds)
(S1, T1, D1, tb) DTS(S, T , D, I . t̄s)
(S2, T2, D2, t) DAR(S1, T1, D1, I, t̄q ++ tb . aropt)
require (s̄c � fregisterg ^ (OBJ(t) _ FUN(t) _ INC(t)))
return (S2, T2, D2, [t])

DPL[[S, T , D, I . pl, pd]] = do
(S1, T1, D1, t̄1) DPL(S, T , D, I . pl)
(S2, T2, D2, t̄2) DPL(S1, T1, D1, I . pd)
return (S2, T2, D2, t̄1 ++ t̄2)

5.8 DECLARATIONS 207

5.8.9 Type Names

A type name has a structure similar to a declaration in which the declarator’s identifier
has been omitted from the concrete syntax, except that only one such declarator, said
to be abstract, may be present in a given type name entity and that no storage class
specifiers may appear within its declaration specifier list. Further, in a well-formed
C program, the abstract declarator is often omitted entirely from the syntax of such
constructs. Formally, these structures are depicted in Haskell as follows:

type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator :
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator :
(abstract-declarator)
direct-abstract-declaratoropt [constant-expressionopt]
direct-abstract-declaratoropt (parameter-type-listopt)

Conceptually, the meaning of all type names is derived by an algorithm similar to
that described in Section 5.8.8 for ordinary C declarators, except that their denotations
consist entirely of a C type, without an associated identifier entity:

DTN[[.]] :: (monad-fix M)) (S, S, D, I . type-name) ! M(S, S, D, type)

DTN[[S, T , D, I . sql aropt]] = do
(t̄q, t̄s) DSQL(sql)
(S1, T1, D1, tb) DTS (S, T , D, I . t̄s)
(S2, T2, D2, t) DAR(S1, T1, D1, I, t̄q ++ tb . aropt)
require (OBJ(t) _ FUN(t) _ INC(t))
return (S2, T2, D2, t)

In particular, a type name without an abstract declarator denotes directly the base type
of its derivation, while an abstract declarator consisting entirely of a pointer entity
describes an appropriate pointer to that base type. If such a pointer is also followed
by some other abstract declarator ar, then the entire construct has the denotation of
ar, obtained in the context of an adjusted base type derived from that pointer. Fi-
nally, a parenthesised abstract declarator of the form “(ar)” has the same denotation
as ar itself:

DAR[[.]] :: (monad-fix M)) (S, S, D, I, type . abstract-declaratoropt) ! M(S, S, D, type)

DAR[[S, T , D, I, tb . ε]] = return (S, T , D, tb)
DAR[[S, T , D, I, tb . pointer]] = return (S, T , D, DP(tb . pointer))
DAR[[S, T , D, I, tb . pointer ar]] = DAR(S, T , D, I, DP(tb . pointer) . ar)
DAR[[S, T , D, I, tb . (ar)]] = DAR(S, T , D, I, tb . ar)

Further, array and function types can be described by abstract declarators of the form
“aropt[eopt]” and “aropt(ptlopt)”, observing that no identifier list is ever admitted into

208 CHAPTER 5: THE C PROGRAMMING LANGUAGE

the later syntax. A derivation of their meanings proceeds in a manner analogous to that
of earlier non-abstract declarators with similar structures:

DAR[[S, T , D, I, tb . aropt[eopt]]] = do
(S1, T1, D1, t) DAR(S, T , D, I, [[t[nopt]]] . aropt)
(S2, T2, D2, nopt) DALE(S1, T1, D1, I . eopt)
return (S2, T2, D2, t)

DAR[[S, T , D, I, tb . aropt(ptlopt)]] = do
(S1, T1, D1, t) DAR(S, T , D, I, [[tb(popt)]] . aropt)
(D2, popt) DPTL(S1, T1, D1, I . ptlopt)
return (S1, T1, D2, t)

5.8.10 Type Definitions
As already mentioned in Section 5.5, an identifier with a type linkage is known as a
typedef name. In the concrete C grammar, such entities are depicted by the following
trivial syntax:

typedef-name:
identifier

A given typedef name x is considered to be well-formed only in the context of a variable
scope S which binds that identifier to a designator with the “type” linkage form. Such
constructs always denote the type of that designator:

DTDN[[.]] :: (monad-fix M)) (S, S, D, I . typedef-name) ! M(S, S, D, type)

DTDN[[S, T , D, I . x]] = do
require (x 2 dom(S) ^ L(S(x)) = [[type]])
return (S, T , D, T (S(x)))

Since typedef names share a single name space with ordinary C variables, yet generally
appear in vastly different context within the syntax of the language, they must be
distinguished from variable names by propagating certain scope information throughout
the lexical analysis of C programs. A complete formalisation of this well-known
technique is beyond the scope of the present work and an interested reader is referred
to the abundant literature on compiler construction for a further discussion of the topic.

5.8.11 Initialised Declarators
We are now ready to define the precise structure of initialised declarator lists that
appear in the syntax of every C declaration described at the beginning of this section.
Syntactically, every such list is represented by a comma-separated sequence of one or
more declarators. Each declarator in the sequence may be also followed by an optional
symbol “=” and an entity known as an initialiser. Formally:

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initialiser

5.8 DECLARATIONS 209

As described earlier in Section 5.8, the meaning of all such entities is modelled by an
initialiser term τ , a set of local variables V and the usual updated context components S0,
T 0 and D0. In particular, every initialised declarator extends the current scope S with a
binding of its identifier x to a designator with the declarator’s type and a linkage derived
from any storage class specifiers appearing in its syntax. Formally, a construction of
this designator is modelled by the following algorithm DX:

DX[[.]] :: (monad-fix M))
(S, S, D, I, [storage-class-specifier], type . identifier) ! M(designator)

DX[[S, T , D, I, s̄c, t . x]]

= do (`) DSC(S, T , D, I, t, x . s̄c)
require (x /2 dom(S) _ I (S(x)) 6= I)
return [[` t @ I]]

do (`) DSC(S, T , D, I, t, x . s̄c)
require (x 2 dom(S) ^ I (S(x)) = I ^ T (S(x)) � t ^ L(S(x)) = ` ^ GL(`))
return [[` [[T (S(x)) t t]] @ I]]

Intuitively, the above Haskell definition implies that, whenever a given variable name
x is introduced into the current scope S, it is generally assigned its declarator’s type t
and a linkage derived from that type in combination with any storage class specifiers
appearing in the declaration’s syntax, using the algorithm DSC defined earlier in Section
5.8.2. However, if the current scope S already includes a binding of that variable to a
designator with the innermost scope index I, then the new declaration of x must have a C
type compatible with that of its existing designator and an identical external or internal
linkage form. In this case, the new binding introduced by DX has a C type obtained by
a composition of t with the type of the existing designator S(x), as described earlier in
Section 5.4.12. Accordingly, the denotation of all well-formed initialised C declarators
can be modelled by the following translation:

DIR[[.]] :: (monad-fix M))
(S, S, D, I, [storage-class-specifier], type . init-declarator-list) !
M(S, S, D, V , termν)

The precise meaning of an initialised C declarator for some identifier x without an
explicit initialiser is determined by the designator d derived from the C type and storage
class of the surrounding declaration as follows:
1 If d has a type linkage, then the declarator may specify an arbitrary well-formed

object, function or incomplete type for its identifier. Such declarations never intro-
duce new variable bindings into the program’s set of item definitions D.

2 Otherwise, if d has a global linkage form and a function type, or else if the declara-
tion does not include an explicit “extern” storage class specifier and its designa-
tor describes a globally-linked entity of a well-formed object or incomplete type,
then its associated Etude variable ν(L(d)) is bound in the resulting set of item def-
initions D to an imported Etude item of the form “IMP x”, unless a previous binding
of that variable already exists in the program.

210 CHAPTER 5: THE C PROGRAMMING LANGUAGE

3 Further, if the entity’s syntax does not include an explicit “extern” storage class
specifier and if the designator d has a global linkage with an object type, then the
declaration constitutes a tentative definition for x, represented in the resulting set
of item definitions by a binding of its Etude variable to the tentative item “ε” and,
once again, leaving any existing bindings of that variable unchanged. Observe that
such declarations cannot specify an incomplete type for the identifier.

4 More so, if the declaration prescribes a private linkage for the identifier, then, in
the resulting set of item definitions, its Etude variable is bound to a default object
specification, in which every member is given the initial value of “0”. As for
tentative C definitions, all such privately-linked variables must have object types.

5 Finally, if the variable’s linkage has an automatic or register form “auto ν” or
“register ν”, then x must also assume a complete object type by the end of the
entire declaration. Its Etude variable ν is mapped in D to the tentative linkage form
“ε” and, in the resulting set of local variables V , to the envelope of its C type.

In all cases, the declaration’s current scope S is extended with a binding of x to the
constructed designator d and the associated initialiser term τ is given the trivial Etude
form “RET ()”. The set of local variables V is left empty if the declaration specifies a
static or type linkage form for the identifier. Formally:

DIR[[S, T , D, I, s̄c, tb . r]]

= do (S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
(d) DX(S0, T 0, D0, I, s̄c, t . x)
require (L(d) = [[type]] ^ (OBJ(T (d)) _ FUN(T (d)) _ INC(T (d))))
return (S0/fx:dg, T 0, D0, ∅, [[RET ()]])

do (S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
(d) DX(S0, T 0, D0, I, s̄c, t . x)
require (GL(L(d)) ^

(FUN(T (d)) _ (s̄c = [[extern]] ^ (OBJ(T (d)) _ INC(T (d))))))
return (S0/fx:dg, T 0, fν(L(d)):[[IMP x]]g/D0, ∅, [[RET ()]])

do (S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
(d) DX(S0, T 0, D0, I, s̄c, t . x)
require (GL(L(d)) ^ OBJ(T (d)) ^ s̄c 6= [[extern]])
return (S0/fx:dg, T 0, fν(L(d)):εg/D0, ∅, [[RET ()]])

do (S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
(d) DX(S0, T 0, D0, I, s̄c, t . x)
require (L(d) = [[private]] ^ OBJ(T (d)))
return (S0/fx:dg, T 0,

D0/fν(L(d)):[[OBJ ([[δ̄(T (d))]]) OF ([[ξ̄(T (d))]])]]g, ∅, [[RET ()]])

do (S0, T 0, D0, t, x) DR(S, T , D, I, tb . r)
(d) DX(S0, T 0, D0, I, s̄c, t . x)
require (L(d) 2 f[[auto]], [[register]]g ^ OBJ(T (d)))

return (S0/fx:dg, T 0, D0/fν(L(d)):εg, fν(L(d)):ξ̄(T (d))g, [[RET ()]])

5.8 DECLARATIONS 211

in which δ̄(t) represents the default data specification for an Etude object of the given
C type t, constructed by converting every element (n, φ , µ̄) from t’s envelope into a
datum of the form (n, φ , µ̄, #0φ):

δ̄[[.]] :: type ! dataν

δ̄[[t]] = f[[nk, φk, µ̄k, #0φk
]] [[nk, φk, µ̄k]] ξ̄(t)g

On the other hand, an initialised C declaration of the form “r = i” has a rather less
versatile semantics, since, in all such constructs, the newly-introduced identifier x must
be assigned a static, automatic or register linkage form and a C type that is complete by
the end of the initialiser i. If the declaration specifies a static linkage for the identifier,
then i must represent a static initialiser for the type of x, of the form scrutinised later in
Section 5.8.12.1. Any existing binding of the corresponding Etude variable in D must
have the tentative form “ε” or an imported form “IMP x”. Further, if the declaration
specifies a global linkage form for its identifier, then the entire construct must appear
in the file scope with the index of 0. The denotation of such an initialiser represents
an Etude object specification δ̄ which, in the resulting set of item definitions D, always
replaces any previous binding of the Etude variable x.

Otherwise, if the declaration specifies an automatic or register linkage for the
newly-introduced identifier, then i must assume the form of a dynamic initialiser de-
scribed in Section 5.8.12.2, whose meaning is represented by an Etude term that, intu-
itively, populates the corresponding memory-resident object upon its original introduc-
tion into the program’s address space. The associated Etude variable is always bound
to a tentative item “ε” in the resulting set of item definitions D and, in the associated set
of local variables V , it is described by an Etude envelope derived from the variable’s C
type. Formally:

DIR[[S, T , D, I, s̄c, tb . r = i]]

= do (Sr, Tr, Dr, tr, x) DR (S, T , D, I, tb . r)
(Si, Ti, Di, ti, δ̄) DSI (Sr, Tr, Dr, I, tr . i)
(d) DX(Si, Ti, Di, I, s̄c, ti . x)
require (SL(L(d)) ^ OBJ(T (d)) ^ (I = 0 _ :GL(L(d))) ^

(ν(L(d)) /2 dom(Di) _ Di(ν(L(d))) 2 fε, [[IMP x]]g))
return (Si/fx:dg, Ti, Di/fν(L(d)):[[OBJ (δ̄) OF ([[ξ̄(T (d))]])]]g, ∅, [[RET ()]])

do (Sr, Tr, Dr, tr, x) DR (S, T , D, I, tb . r)
(Si, Ti, Di, ti, τ) DDI(Sr, Tr, Dr, I, tr, ν(L(d)) . i)
(d) DX(Si, Ti, Di, I, s̄c, ti . x)
require (L(d) 2 f[[auto]], [[register]]g ^ OBJ(T (d)))

return (Si/fx:dg, Ti, Di/fν(L(d)):εg, fν(L(d)):ξ̄(T (d))g, τ)

Finally, when a single C declaration includes two or more initialised declarator enti-
ties, then the meanings of all such declarators are derived from a common base type
described by the preceding list of declaration specifiers. In the resulting unified deno-
tation, the local variable set V represents a union of all local variables introduced by

212 CHAPTER 5: THE C PROGRAMMING LANGUAGE

any automatic and register declarators in the list and the term τ evaluates these declara-
tors’ initialisers in the order of their appearance within the program, as captured by the
following Haskell construction:

DIR[[S, T , D, I, s̄c, tb . irl, ir]] = do
(S1, T1, D1, V1, τ1) DIR(S, T , D, I, s̄c, tb . irl)
(S2, T2, D2, V2, τ2) DIR(S1, T1, D1, I, s̄c, tb . ir)
return (S2, T2, D2, V1 [V2, [[LET () = τ1; τ2]])

5.8.12 Initialisation
Every initialiser appearing in a list of initialised declarators described above may rep-
resent either a single assignment expression, or else a comma-separated list of such
expressions enclosed in braces. In the C Standard, a concrete syntax of these entities is
captured by the following BNF grammar:

initialiser :
assignment-expression
{ initialiser-list }
{ initialiser-list , }

initialiser-list :
initialiser
initialiser-list , initialiser

Intuitively, an initialiser describes the original value of the corresponding memory-
resident Etude object upon its introduction into the program’s address space by the
associated C declarator. Before dwelling into the somewhat elaborate semantics of
these entities, it is, however, useful to begin their formal treatment with a few simple
auxiliary definitions.

First of all, an initialiser whose syntax consists entirely of a single expression,
optionally enclosed in braces “fg”, is known as an expression initialiser, while all ini-
tialisers with a concrete syntax of the form “{il}” or “{il,}” are said to be aggregate.
Further, an expression initialiser constructed from a single string literal is also distin-
guished as a string initialiser form. Formally, these three kinds of C initialisers are
identified by the following Haskell predicate functions:

EXPR [[.]], STR[[.]], AGGR[[.]] :: initialiser ! bool

EXPR [[assignment-expression]] = true
EXPR [[{assignment-expression}]] = true
EXPR [[{assignment-expression,}]] = true
EXPR [[other]] = false

STR [[string-literal]] = true
STR [[{string-literal}]] = true
STR [[{string-literal,}]] = true
STR [[other]] = false

AGGR[[{initialiser-list}]] = true
AGGR[[{initialiser-list,}]] = true
AGGR[[other]] = false

5.8 DECLARATIONS 213

In the following discussion, expression initialisers are generally converted into plain C
expressions with the help of the following Haskell coercion function:

[[.]] :: initialiser ! expression

[[assignment-expression]] = assignment-expression
[[{assignment-expression}]] = assignment-expression
[[{assignment-expression,}]] = assignment-expression

Similarly, a string initialiser forms can be converted into a plain string literal entity
using the following auxiliary definition:

[[.]] :: initialiser ! string-literal

[[string-literal]] = string-literal
[[{string-literal}]] = string-literal
[[{string-literal,}]] = string-literal

Further, to simplify the following semantic analysis of aggregate initialisers, it is usu-
ally convenient to convert their initialiser sequences into plain Haskell lists, as facili-
tated by the following simple recursive construction:

list[[.]] :: initialiser ! [initialiser]

list[[{il,}]] = list[[{il}]]
list[[{il, i}]] = list[[{il}]] ++ [i]
list[[{i}]] = [i]

If such a list is intended as a description of the initial value for a structure, union or array
object, its successive elements are assigned to the corresponding initialisable members
of that object. Formally, this member list is derived from the object’s C type t by the
construction m̄I(t), as described by the following simple algorithm:
1 If t represents a structure type, then m̄I(t) consists of all named members found in

the type’s member list m̄(t), with every such member further requalified with any
additional type qualifiers of t itself.

2 Otherwise, if t represents a union type, then the list includes only the very first
named member from m̄(t), observing that every complete union must, by construc-
tion, include at least one such member.

3 If, on the other hand, t represents an array type of some length n, then m̄I(t)
represents a sequence of n anonymous members, or else an infinite sequence if
t is an incomplete type. All of these members are assigned the same element type
of t and successive offset values equal to the respective multiples of that type’s
size, so that the kth element of such an array is always placed at the byte offset
k� S(B(t)) from the beginning of the entire object.

Formally:
m̄I[[.]] :: type ! members

m̄I[[t]] SU(t) ^ su(t) = [[struct]] = [mk mk tq(t) [m̄(t), N (mk) 6= ε]
SU(t) ^ su(t) = [[union]] = take(1, [mk mk tq(t) [m̄(t), N (mk) 6= ε])
ARR(t) ^ length(t) 6= ε = [[[[[B(t)]] @ [[k � S(B(t))]]]] k [0 ... length(t)� 1]]
ARR(t) ^ length(t) = ε = [[[[[B(t)]] @ [[k � S(B(t))]]]] k [0 ...]]

214 CHAPTER 5: THE C PROGRAMMING LANGUAGE

Using these seven auxiliary definitions, the meanings of all C initialiser forms can be
given a concise semantic definition presented in Sections 5.8.12.1 and 5.8.12.2 for the
static and dynamic variants of these entities, respectively.

5.8.12.1 Static Initialisers
As suggested earlier in Section 5.8.11, the meaning of every static C initialiser is
represented by an Etude data specification set, which determines the initial value of
a corresponding statically-linked object at the beginning of the program’s execution.
Further, under certain conditions discussed shortly, such initialisers may adjust the
C types of their associated declarators, which, accordingly, are also included in their
complete denotations. In particular, the meaning of every static initialiser form is
determined from its structure and the C type t of the associated designator d in the
following manner:

1 If t has a bit field type, then the initialiser must assume an expression form that
is derived from a single static initialiser expression e of an arithmetic type, as de-
scribed earlier in Section 5.7.3.3. The expression’s atomic denotation is converted
into the type t and packed using the familiar bit field constructor P into a single
datum (0, Ψ, µ̄, #0Ψ), in which Ψ is the standard bit field format and µ̄ represents
the set of access attributes appropriate for the declarator’s type.

2 Similarly, if t has any other arithmetic or pointer type, then the initialiser must
assume a static initialiser expression form, subject to the same typing constraints
as those described earlier in Section 5.7.2 for function argument assignments. Its
denotation consists of a single datum (0, φ , µ̄, φ 0

φ (α)), in which φ 0 and µ̄ represent
the format and access attributes of t, while α and φ are determined by the atomic
denotation of the initialiser’s expression and the Etude format of its unconverted
type, respectively.

3 Otherwise, a string initialiser can be used to prepare the initial content of a com-
plete or incomplete array type, provided that the array’s length, if known, is greater
or equal to one less then the length of the string literal’s type, and that both t and
the string literal itself represent arrays of character types, or else both depict ar-
rays with elements that are compatible with a qualified or unqualified version of
the implementation-defined type “wchar_t”, so that all of the literal’s characters
with the possible exception of its implicit NUL terminator can be accommodated
by the targeted object. In both cases, the resulting denotation consists of the data
specification set derived from the string literal’s syntax, except that, if the targeted
array object is longer than its initialiser, then any remaining elements of the array
are implicitly assigned the default data specification described earlier in Section
5.8.11. If the declarator has an incomplete type, then the initialiser also completes
that array with the length of the specified string literal.

4 In all other cases, if t represents a non-scalar object type or an array of an unknown
length, then its initialiser must always have an aggregate form, whose elements ī

5.8 DECLARATIONS 215

are assigned to the successive initialisable members of t, forming a set of data spec-
ifications δ̄ using an algorithm DSIL described later in this section. If t represents an
incomplete array type prior to initialisation, then, in the resulting denotation, that
type is completed with the length n equal to the number of t’s members initialised
by ī. Otherwise, ī must not specify more elements than those required for a com-
plete initialisation of t. If it specifies fewer elements than required, then, in δ̄, any
remaining members are assigned their default data specifications.

In Haskell, the above algorithm can be implemented concisely as follows:

DSI[[.]] :: (monad-fix M)) (S, S, D, I, type . initialiser) ! M(S, S, D, type, dataν)

DSI[[S, T , D, I, t . i]]

= do require (BF(t) ^ EXPR(i))
(S0, T 0, D0, t0, α) DSIE(S, T , D, I . i)
require (AT(t0))
return (S0, T 0, D0, t, [[(0, Ψ, [[µ̄(t)]], [[P [[t . #0Ψ, [[φ(t)]][[φ(t0

)]](α)]]]])]])

do require (AT(t) ^ :BF(t) _ (PTR(t))) ^ (EXPR(i))
(S0, T 0, D0, t0, α) DSIE(S, T , D, I . i)
require (AT(t) ^ AT(t0)) _

(PTR(t) ^ PTR(t0) ^ ((unq(B(t)) � unq(B(t0))) _
(VT(B(t0)) ^ (OBJ(B(t)) _ INC(B(t)))) _
(VT(B(t)) ^ (OBJ(B(t0)) _ INC(B(t0))))) ^

(tq(B(t0)) � tq(B(t)))) _
(PTR(t) ^ NULL(S, T , D, I . i))

return (S0, T 0, D0, t, [[(0, φ(t), µ̄(t), [[φ(t)]][[φ(t0

)]](α))]])

do require (STR(i) ^ ARR(t))
(ti, δ̄) DSC(i)
require ((CHR(B(t)) ^ CHR(B(ti))) _ (unq(B(t)) � B(ti) � [[wchar_t]])) ^

(length(t) = ε _ length(t) � length(ti)� 1)
return (S, T , D, CA(t, length(ti)),

δ̄ [
S

[δ̄(T (mk))� O(mk) mk drop(δ̄ , m̄I(CA(t, length(ti))))])

do require ((:SCR(t) ^ OBJ(t) _ ARR(t)) ^ AGGR(i))
(S0, T 0, D0, δ̄, n, ī 0) DSIL(S, T , D, I, m̄I(t) . list(i))
require (ī 0 = ∅)
return (S0, T 0, D0, CA(t, n),

P (δ̄ [
S

[δ̄(T (mk))� O(mk) mk drop(n, m̄I(CA(t, n)))]))

The actual completion of an array’s length is performed in the above definition using
the following natural Haskell construction:

CA[[.]] :: (type, integer) ! type

CA[[t, n]] (ARR(t) ^ length(t) = ε) = [[[[B(t)]][n]]]
otherwise = t

Further, in the above formalisation of static initialisers, all otherwise uninitialised mem-
bers of a structure, union or array type are assigned their correct default values by com-
puting a union of the set δ̄ derived from any explicitly specified initialisers for the object

216 CHAPTER 5: THE C PROGRAMMING LANGUAGE

with the default data specification sets δ̄(T (mk))� O(mk) for every remaining unini-
tialised but initialisable member mk. Intuitively, “δ̄� n” simply relocates every datum
(nk, φk, µ̄k, αk) 2 δ̄ to a new offset nk + n within the surrounding structure, union or
array, as depicted by the following list comprehension:

[[.]] � [[.]] :: dataν ! integer ! dataν

[[δ̄]]� [[n]] = f[[nk + n, φk, µ̄k, αk]] [[nk, φk, µ̄k, αk]] δ̄g

Finally, the initialisation algorithm must compact all initialisers for every group of bit
field members that, in δ̄, are placed by the structure layout algorithm L from Section
5.8.4 at the same offset into the entire object, into a single datum entity. In the above
definition of DSI, this process is represented by the notation “P (δ̄)”. In particular, if δ̄

contains two or more elements with the same format φ and byte offset value n, then,
in the compacted set of data specification P (δ̄), all such elements are combined into
a single tuple (n, φ , µ̄0, α 0), in which µ̄0 represents an intersection of the individual
access attribute sets assigned to each of these overlapping elements and α 0 depicts
a single Etude atom with a value derived by an implementation-defined construction
P (ᾱ). In this chapter, such atoms are introduced by the following Haskell function:

P [[.]] :: atomsν ! atomν

Although the precise semantics of this construct are left unspecified in the generic
fragment of the language, every implementation of a C compiler must ensure that,
for every well-formed bit field type tk 2 t̄ and atom αk � P [[tk . #0Ψ, α0

k]] 2 ᾱ, the
atom’s original value α0

k can be always retrieved from P (t̄ . ᾱ) using the standard bit
field extraction operation U(tk . P (t̄ . ᾱ)), provided that all types in t̄ specify non-
overlapping bit ranges. Formally:

PACKI :: 8 ᾱ, ᾱ0 t̄)
WF(ᾱ) ! WF(ᾱ0) !
[[length(ᾱ) = length(ᾱ0) = length(t̄)]] !
[[
S

[fO(tk) ... O(tk) + W (tk)� 1g tk t̄] =
P

[W (tk) tk t̄]]] !
(8 tk) [[tk 2 t̄]] ! [[BF(tk)]]) !
(8 αk, α0k, tk) [[(αk, α0k, tk) 2 ᾱ ᾱ0 t̄]] ! [[αk]] � [[P [[tk . #0Ψ, α0k]]]]) !
(8 αk, α0k, tk) [[(αk, α0k, tk) 2 ᾱ ᾱ0 t̄]] ! [[α0k]] � [[U[[tk . αk]]]])

Using this auxiliary definition, compaction of a well-formed Etude data specification
set can be formalised concisely as the following recursive algorithm:

P [[.]] :: dataν ! dataν

P [[δ̄]] (δ̄ = ∅) = ∅

otherwise = f[[n, φ , µ̄0, α 0]]g [P (δ̄0)

where [[n, φ , µ̄, α]] = min(δ̄)

µ̄0 =
T

[µ̄k [[nk, φk, µ̄k, αk]] δ̄, nk = n ^ φk = φ]

α 0 = P [αk [[nk, φk, µ̄k, αk]] δ̄, nk = n ^ φk = φ]

δ̄0 = f[[nk, φk, µ̄k, αk]] [[nk, φk, µ̄k, αk]] δ̄, nk 6= n _ φk 6= φg

5.8 DECLARATIONS 217

Last but not least, the actual meaning of an initialiser list ī for a given sequence of
aggregate members m̄ is represented by the following Haskell function:

DSIL[[.]] :: (monad-fix M))
(S, S, D, I, members . [initialiser]) ! M(S, S, D, dataν , integer, [initialiser])

DSIL[[S, T , D, I, m̄ . ī]]

= do require (m̄ = ∅ _ ī = ∅)

return (S, T , D, ∅, 0, ī)

do require (OBJ(T (m0)) ^ :SCR(T (m0)) ^ :AGGR(head(ī)))
(S1, T1, D1, δ̄1, n1, ī1) DSIL(S, T , D, I, m̄I(T (m0)) . ī)
(S2, T2, D2, δ̄2, n2, ī2) DSIL(S1, T1, D1, I, tail(m̄) . ī1)

return (S2, T2, D2, P (δ̄1 � O(m0)) [δ̄2, 1 + n2, ī2)

do (S1, T1, D1, t, δ̄1) DSI(S, T , D, I, T (m0) . head(ī))
(S2, T2, D2, δ̄2, n, ī 0) DSIL(S1, T1, D1, I, tail(m̄) . tail(ī))
return (S2, T2, D2, δ̄1 � O(m0) [δ̄2, 1 + n, ī 0)

where m0 = head(m̄)

Intuitively, the above inductive algorithm processes all members mk 2 m̄ in the order
of their appearance in the list, progressively applying one or more elements from ī as
an initialiser for that member. In particular, if mk represents a member of a non-scalar
object type and the list ī begins with a non-aggregate initialiser, then the construction
obtains as many successive elements from ī as required for all the initialisable members
of mk, using a recursive application of that initialisable member list to ī. Any initialisers
remaining in ī at the end of this process are then applied to the following members in m̄.
Otherwise, the very first element of ī must represent a complete well-formed initialiser
for the type of mk and that initialiser alone is applied to the member’s C type using the
algorithm DSI described earlier in this section. In all cases, the resulting denotation is
formed from a compacted union of appropriately-relocated data specification sets for all
explicitly-initialised members of m̄, together with the actual number of these members
and the list of any unused initialisers from ī. The algorithm terminates when either of
the two lists m̄ or ī has been exhausted. If the end of m̄ is reached first, then all members
have been initialised completely and the remaining elements of ī are made available for
use with any following elements of the surrounding structure or array; otherwise, if ī
was exhausted before the end of m̄ has been reached, then any remaining members of
the structure will be eventually assigned their default data specifications as part of the
earlier algorithm DSI.

5.8.12.2 Dynamic Initialisers

Last but not least, every well-formed dynamic C initialiser denotes a monadic Etude
term whose evaluation is intended to populate the initial content of some memory-
resident object located at a given address α within the program’s memory image. If
the initialiser has an expression form, then this term behaves as if that expression was

218 CHAPTER 5: THE C PROGRAMMING LANGUAGE

assigned to a function argument with a C type of the associated declarator, subject to
the same constraints as those discussed earlier in Section 5.7.2 for such assignments.
Otherwise, if an aggregate initialiser is used to initialise a non-scalar l-value, or if
a string initialiser is utilised in preparation of an appropriately-typed array object,
then the construct represents a dynamic aggregate initialiser and its semantics are
defined later in this section. The precise meaning of every dynamic initialiser form
is determined from the entity’s syntax and the type t of the associated C declarator by
the following algorithm:

1 If the surrounding C declarator has a non-bit field scalar type, then the initialiser’s
value is evaluated and stored in the l-value described by the parameter α , using the
familiar Etude constructor “SETI”. Observe that, in a well-formed C program, t will
never assume a bit field form.

2 Otherwise, if t represents a complete structure or union type and the initialiser has
a non-aggregate form of an expression whose type is compatible with a qualified or
unqualified variant of t, then the initialisation is performed using the construction
“setI (t . α) to (t0 . α 0)” discussed earlier in Section 5.7.2.

3 Finally, if t has a non-scalar type and the initialiser has an aggregate form, or else
if t represents an array and the initialiser depicts a single string literal entity, then
its dynamic aggregate meaning is derived using the algorithm DDAI defined later in
this section. Every such dynamic aggregate initialiser denotes a set of Etude data
specifications δ̄ similar to that derived earlier from static initialisers of the same
structure. In the resulting denotation, every datum (nk, φk, µ̄k, αk) 2 δ̄ is converted
into a binding of the form “() = SETI [[[O(φk)]][[φ(t)]](α) +[[O(φk)]]

#nkZ.Φ, µ̄k]φk
TO αk”,

which, intuitively, stores the value of αk in a memory-resident object found at an
offset nk into the address space region located at the address α . All such bindings
are then placed within a single Etude group, leaving the precise order of their
evaluation unspecified.

In the first two cases, the initialiser may represent an arbitrary C expression, so that all
temporary variables required for its evaluation must be introduced into the program’s
address space at the beginning of the construct and purged before proceeding with the
translation of any following entities in the program. In Section 5.7, all such temporary
objects were represented in an expression’s denotation by its local variable set V , so
that, following the principles from Section 4.6, the required list of object environment
extensions must be modelled in the initialiser’s denotation by a sequence of Etude terms
“NEW (ξ̄k)” for every envelope ξ̄k bound to some variable in V . Formally, this term
sequence is introduce by a scope constructor combinator C (V), which, intuitively, maps
every binding νk:ξ̄k 2 V to a partially-applied Etude term “LET νk = NEW (ξ̄k);” and
composes these terms into a single Etude construct using the list operator “�” defined
in Appendix A. Further, the dual scope destructor combinator D(V) purges all such
temporary objects from the program’s address space once they are no longer required

5.8 DECLARATIONS 219

for its execution, which, in Etude, is modelled by an analogous sequence of “DEL (ξ̄k)”
term forms, applied in the reverse order of the corresponding objects’ allocation, so
that the minimal requirements of the address space contraction operations are always
satisfied as described in Section 4.5. In Haskell, these two combinators are represented
by the following pair of functions:

C [[.]], D[[.]] :: V ! (termν ! termν)

C [[V]] = �[[[LET νk = NEW (ξ̄k);]] νk:ξ̄k V]

D[[V]] = �(reverse[[[LET () = DEL (ξ̄k);]] νk:ξ̄k V])

Using this pair of auxiliary definitions, the meaning of every well-formed dynamic C
initialiser can be formalised as follows:

DDI[[.]] :: (monad-fix M))
(S, S, D, I, type, atomν . initialiser) ! M(S, S, D, type, termν)

DDI[[S, T , D, I, t, α . i]]

= do require (SCR(t) ^ :BF(t) ^ EXPR(i))
(S0, T 0, D0, V , t0, τ) DV(S, T , D, I . i)
require (AT(t) ^ AT(t0)) _

(PTR(t) ^ PTR(t0) ^ ((unq(B(t)) � unq(B(t0))) _
((OBJ(B(t)) _ INC(B(t))) ^ VT(B(t0))) _
((OBJ(B(t0)) _ INC(B(t0))) ^ VT(B(t))))) _

(PTR(t) ^ NULL(S, T , D, I . i))
return (S0, T 0, D0, t,

[[[[C (V)]];
LET T1 = τ ;
LET () = SETI [α , [[µ̄(t)]]][[φ(t)]] TO ([[φ(t)]][[φ(t0

)]](T1));

[[D(V)]];
RET ()]])

do require (SU(t) ^ OBJ(t) ^ :AGGR(i))
(S0, T 0, D0, V , t0, τ) DV(S, T , D, I . i)
require (unq(t) � unq(t0))
return (S0, T 0, D0, t,

[[[[C (V)]];
LET T1 = τ ;
LET () = [[setI (t . α) to [[t0 . T1]]]];
[[D(V)]];
RET ()]])

do require (:SCR(t) ^ AGGR(i)) _ (ARR(t) ^ STR(i))
(S0, T 0, D0, t0, δ̄) DDAI(S, T , D, I, t . i)
(β̄) [[[() = SETI [[[O(φk)]][[φ(t)]](α) +[[O(φk)]] #nkZ.Φ, µ̄k]φk

TO αk]]

[[(nk, φk, µ̄k, αk)]] δ̄]

return (S0, T 0, D0, t0, [[LET β̄; RET ()]])

In particular, if a dynamic aggregate initialiser is used to populate an object of a scalar
C type, then the construction has a meaning identical to its earlier static initialiser
interpretation from Section 5.8.12.1, as epitomised by the algorithm DSI. Further, in the

220 CHAPTER 5: THE C PROGRAMMING LANGUAGE

present context, a dynamic string initialiser also behaves similarly to its earlier static
variant, except that the resulting object is never padded with the implicit “0” values,
even when such a string is used to populate a dynamically-allocated array object of
a length greater than itself, keeping in mind that the implicit NUL terminator is still
retained at the end of every string literal’s denotation. In every other form of a dynamic
aggregate initialiser, the list of all initialiser entities found in the construct’s syntax
is applied recursively to the object’s initialisable members using the algorithm DDIL

defined at the end of the present section. Formally:
DDAI[[.]] :: (monad-fix M))

(S, S, D, I, type . initialiser) ! M(S, S, D, type, dataν)

DDAI[[S, T , D, I, t . i]]

= do require (SCR(t))
DSI(S, T , D, I, t . i)

do require (STR(i) ^ ARR(t))
(ti, δ̄) DSC(i)
require ((CHR(B(t)) ^ CHR(B(ti))) _ (unq(B(t)) � B(ti) � [[wchar_t]])) ^

(length(t) = ε _ length(t) � length(ti)� 1)

return (S, T , D, CA(t, length(ti)), δ̄)

do require ((:SCR(t) ^ OBJ(t) _ ARR(t)) ^ AGGR(i))
(S0, T 0, D0, δ̄, n, ī 0) DDIL(S, T , D, I, m̄I(t) . list(i))
require (ī 0 = ∅)
return (S0, T 0, D0, CA(t, n),

P (δ̄ [
S

[δ̄(T (mk))� O(mk) mk drop(n, m̄I(CA(t, n)))]))

In particular, any aggregate initialiser forms that appear within the syntax of a dynamic
aggregate initialiser are translated identically to their static equivalents, except that their
individual members are processed recursively using the above function DDAI instead of
its earlier static variant DSI, in order to ensure that no default padding is ever inserted
into any string-initialised arrays embedded within the targeted object. Accordingly, the
actual translation of all such initialiser lists is formulated in Haskell as follows:

DDIL[[.]] :: (monad-fix M))
(S, S, D, I, members . [initialiser]) ! M(S, S, D, dataν , integer, [initialiser])

DDIL[[S, T , D, I, m̄ . ī]]

= do require (m̄ = ∅ _ ī = ∅)

return (S, T , D, ∅, 0, ī)

do require (OBJ(T (m0)) ^ :SCR(T (m0)) ^ :AGGR(head(ī)))
(S1, T1, D1, δ̄1, n1, ī1) DDIL(S, T , D, I, m̄I(T (m0)) . ī)
(S2, T2, D2, δ̄2, n2, ī2) DDIL(S1, T1, D1, I, tail(m̄) . ī1)

return (S2, T2, D2, P (δ̄1 � O(m0)) [δ̄2, 1 + n2, ī2)

do (S1, T1, D1, t, δ̄1) DDAI(S, T , D, I, T (m0) . head(ī))
(S2, T2, D2, δ̄2, n, ī 0) DDIL(S1, T1, D1, I, tail(m̄) . tail(ī))
return (S2, T2, D2, δ̄1 � O(m0) [δ̄2, 1 + n, ī 0)

where m0 = head(m̄)

5.9 STATEMENTS 221

5.9 Statements
Most of the computational structure of C programs is captured in the syntax of entities
known as statements. Statements represent both the most interesting and, semantically,
the most complex aspect of the C programming language, since they expose a number
of fundamental differences between the designs of typical imperative languages such as
C and the declarative paradigms of lambda calculi. It is a precise formal specification
of statement semantics to which we will now turn our attention.

In particular, every well-formed C statement may be classified into one of six
general forms, giving rise to the following Haskell definitions of their concrete syntax:

statement :
labelled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

labelled-statement :
identifier : statement
case constant-expression : statement
default : statement

compound-statement :
{ declaration-listopt statement-listopt }

expression-statement :
expressionopt ;

selection-statement :
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement :
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement

jump-statement :
goto identifier ;
continue ;
break ;
return expressionopt ;

Due to the peculiar sequential nature and scoping rules adopted by these entities, a rep-
resentation of their meanings in Etude is rather less straight forward than the one fea-
tured in our earlier semantic treatment of C expressions from Section 5.7. Fundamen-
tally, every group of consecutive C statements that begins with an optional statement
label and ends in an explicit or implicit jump construct depicts a logical entity known
as a basic block in the standard programming language nomenclature. Intuitively, such

222 CHAPTER 5: THE C PROGRAMMING LANGUAGE

blocks describe a group of machine instructions that are always executed in a prede-
termined purely-sequential manner by the program. For example, the following list of
C statements defines three basic blocks: “L1: s1; goto L2;”, “L2: s2; s3; goto L1;”
and “L3: s4; return;”:

L1: s1;
L2: s2;

s3;
goto L1;

L3: s4;
return;

In Etude, every such basic block is represented by a separate lambda abstraction, whose
parameter list includes all of the local variables visible to the corresponding set of
statements in a C program, although, strictly speaking, such functions represent ex-
tended basic blocks under conventional meaning of the term, since, in general they may
include multiple exit points or jumps. The set of all basic blocks derived from a par-
ticular C function is represented in the following translation by a finite map B, which
associates the Etude variable of each label with its local variable set V . Further, during
translation of all C statements, a finite map L maps all label identifiers visible in their
function scope to the corresponding Etude variables. More so, a finite map C contains
the mapping of all visible “case” labels to their associated integer values and, finally,
a set J maintains the collection of all label names actually utilised by some “goto”
statement within the function. Formally, these four structures assume the following
Haskell types:

B : ν ! V (basic block definitions)
L : identifier! ν (label definitions)
C: integeropt! ν (case label definitions)
J : fidentifierg (required label variables)

This somewhat elaborate context of C statements reflects the fact that, in C, constructs
such as “goto” may transcend the usual scoping structure of declarative programs. For
example, in the following nonsensical code fragment:

L1: int x = 1;
s1;
{

int x = 2;
s2;

L2: if (x) {
goto L1;

}
s3;

}
s4;
goto L2;

the two declarations of x introduce a pair of semantically-distinct objects, each allocated

5.9 STATEMENTS 223

conceptually at the beginning of its respective scope. Only the first x is visible to the
statements s1 and s4, while s2 and s3 see only the second. However, upon execution of
the jump “goto L1;” and at the end of the following statement s3, the first x reappears
in the current scope, so that its Etude counterpart must, somehow, be retained through-
out the entire program fragment, despite the preceding intermittent invisibility of the
corresponding C identifier. To complicate the matters further, the second x is actually
allocated twice in the above list of statements, first by the declaration “int x = 2;” and
then again by the jump “goto L2;”, which transcends the usual scoping structure and
brings the second x into scope without executing its proper declaration.

Accordingly, every control transfer to a basic block, whether represented explicitly
in the concrete syntax of a C program by one of the jump statements discussed later
in Section 5.9.6, or implied by a selection or iteration statement from Sections 5.9.4
and 5.9.5, is modelled uniformly by a tail call to the corresponding Etude function, as
constructed by the following Haskell derivation of its meaning:

J [[.]] :: (B, V . ν) ! termν

J [[B, V . ν]] = [[[[D(Vndom(B(ν)))]]; [[C (B(ν)ndom(V))]]; ν ([[dom(B(ν))]])]]

so that the notation “J (B, V . ν)” depicts a jump to a C label associated with the Etude
variable ν , provided that V represents the set of all local C variables visible at the
beginning of that label, with every such variable mapped to the Etude envelope of its
respective C type, and the finite map B binds the Etude variables associated with all
labels defined in the surrounding C function to their individual local variable sets.

Intuitively, the resulting Etude term begins by purging from the current address
space any local variables in V that do not exist in the scope of the targeted label ν ,
using the scope destruction operation D(Vndom(B(ν))) described earlier in Section
5.8.12.2. Next, all local definitions visible to ν but missing from the caller’s scope
are introduced using the scope constructor C (B(ν)ndom(V)), effectively recreating the
C scope current at the point where the label denoted by ν was actually introduced
into the program. Finally, the actual tail call or jump operation is modelled by a
function application with a list of arguments that are lexically identical to the sorted
list of all the local variables visible at the point of ν’s definition, since, under the
translation described in this chapter, the meaning of each locally-defined C object
is always depicted by a predetermined Etude variable whose atomic value remains
invariant throughout the entire execution of a given C function.

Accordingly, the meanings of all C statements are always derived in a semantic
context that consists of thirteen individual components S, T , D, I, B, L, V , tr, ts, νr, νc,
νb and τκ, where S, T , D and I represent the usual current variable and tag scopes, set
of item definitions and scope index. In addition, the two finite maps B and L describe
the complete set of all basic blocks and label identifiers of the surrounding C function,
retaining the same invariant values throughout the translation of a particular function’s
body. Finally, the remaining seven components V , tr, ts, νr, νc, νb and τκ, further refine

224 CHAPTER 5: THE C PROGRAMMING LANGUAGE

the statement’s semantic context as follows:

1 V represents the set of all local Etude variables visible to the statement under
translation, with each such variable mapped to the envelope of its declared C type.

2 tr depicts the returned type of the surrounding C function. If this type is not
“void”, then the first variable from the associated V set is always bound to a
memory-resident object destined to hold the function’s returned value.

3 ts specifies the optional selection type of the controlling expression e in the inner-
most surrounding statement of the form “switch (e)s”. It is used in determi-
nation of the precise numeric values assigned to any “case” labels encountered
during translation. This component is omitted from the statement’s semantic con-
text during analysis of entities that appear outside of any “switch” statements,
whereby its value is represented by the symbol “ε” described in Appendix A.

4 νr represents the return label variable, bound to an implicit basic block that is
targeted by all “return” statements within the current C function.

5 νc specifies the optional continuation label, bound to the basic block targeted by
any “continue” statement forms within the current innermost iteration state-
ment. If no such statement exists, νc is given the value of “ε”.

6 Similarly, νb specifies the optional break label, bound to the basic block targeted by
any “break” statement forms within the current innermost “switch” or iteration
statement, once again defaulting to “ε” if no such statement exists in the program.

7 Finally, τκ represents the continuation term, intuitively equal to the combined
denotation of all C statements that, in the program’s lexical syntax, follow the one
currently under translation. Its presence reflects the fact that the structure of a C
statement alone is generally insufficient to determine the basic block to which the
entity belongs. Consider, for example, the following program fragment:

L1: s1;
{

s2;
L2: s3;
}
s4;

which, conceptually, defines two basic blocks “L1: s1; s2;” and “L2: s3; s4;”.
Unfortunately, there is no simple way for s4 to known that it belongs to the label
L2, or for the compound statement “s2; L2: s3;” to discover that it spans two basic
blocks, neither of which is actually complete within that statement. In order to
resolve all such complications in a uniform manner, the denotation of every C
statement is systematically composed with its respective continuation term and
shoved into the set of item definitions D as soon as the boundary of a complete
basic block to which the statement belongs has been discovered by the compiler.
Specifically, in the above example, the continuation terms of s1, s2 and s3 represent
the denotations of s2, “goto s3;” and s4, respectively.

5.9 STATEMENTS 225

The actual denotations derived from all C statements consist of the usual updated
current scopes S and T , the set of item definitions D, as well as five statement-specific
components B0, L0, C0, J0 and τ , which, intuitively, fulfil the following individual rôles:

1 The set of new basic block definitions B0 represents a strict subset of the basic
block definitions B from the statement’s context, consisting precisely of those
basic block definitions that have been introduced into the program by the statement
under semantic scrutiny. Intuitively, a union of all such sets B0

s for all statements s
appearing within the lexical syntax of a given C function represents the complete
value of the context component B supplied to every one of these statements, in
recognition of the fact that, in C, a jump to a given basic block often precedes that
block’s actual appearance within the program’s concrete syntax.

2 Similarly, the set of new named label definitions L0 represents the subset of L
contributed to the surrounding C function by the statement being scrutinised. Each
label is mapped in L0 to the Etude variable of the corresponding basic block.

3 Further, the set of case label definitions C0 maps all case labels introduced by the
current statement to the Etude variables of their respective basic blocks. Every
such label is represented in the domain of C0 either by its concrete integer value,
or else by the symbol “ε” for labels introduced by the “default” statement form
described later in Section 5.9.1.

4 To facilitate correct diagnostics of “goto” statements, the set of all label identifiers
that are actually accessed by some explicit jump within the currently-examined
program fragment is returned in the statement’s denotation as the component J0.
The reader should observe that the value of J0 is only ever examined later in Section
5.10.2, once the entire C function has been processed, since, until that time, the
complete set of all defined label cannot be known to the compiler.

5 Finally, the Etude term τ represents the actual computation performed by the cur-
rent statement, which, as already mentioned earlier, implicitly incorporates its con-
tinuation term τκ. Further, as shown in Section 5.9.1, the meanings of all labelled
statement forms such as “x:s1”, “case e:s2” and “default:s3” are defined as
implicit jumps to their respective basic blocks. The actual Etude terms derived
from s1, s2 and s3 are always incorporated into the bodies of the corresponding
Etude functions and are never returned as part of the actual term denotations of
their surrounding labelled statement entities.

Formally, these denotations are derived by the following Haskell construction:

DS[[.]] :: (monad-fix M))
(S, S, D, B, L, V , I, type, typeopt, ν , νopt, νopt, termν . statement-listopt) !
M(S, S, D, B, L, C, J, termν)

observing that this definition is naturally extended to encompass meanings of entire
statement lists. For the sake of presentation, the actual definition of DS is presented
separately for each statement form in the following seven sections.

226 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.9.1 Labelled Statements

In C, all constructs of the form “x:s”, “case e:s” and “default:s” are known
collectively as labelled statements. Every such entity consists of an arbitrary nested
statement s, further associated with an annotation known as a label, which may be
fashioned from an identifier x, a construct of the form “case e”, or the “default”
keyword. Conceptually, every labelled statement introduces a new basic block into the
program, which, in the eventual Etude module, is represented by a function of the form
“λν̄.τ”, whose parameter list ν̄ is formed from the domain of the statement’s set of
local variables V and whose body is equal to the denotation of the nested statement s.
As already mentioned earlier, the denotation of s already incorporates its continuation
term τκ and, accordingly, constitutes a complete body of that basic block.

The new function item is always contributed to the set of item definitions D and
returned as part of the statement’s denotation. Further, the corresponding unique Etude
variable ν(D) is added to the set of new basic block definitions B0, whereby it is bound
to the statement’s set of local variables V . The actual Etude term derived from the
statement represents a simple jump to the new basic block, as depicted by the Haskell
construction “J (B, V . ν(D))” defined earlier.

Further, if the statement’s label consists entirely of a single identifier x, then x must
not appear among the label names Ls derived from its nested statement s. In the resulting
denotation, the identifier x is added to Ls, with a binding to the newly-introduced basic
block variable ν(D). In Haskell:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . x: s]] = do
(D0) D [fν(D):[[λ[[dom(V)]].τs]]g
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(S, T , D0, B, L, V , I, tr, ts, νr, νc, νb, τκ . s)
require (x /2 dom(Ls))
return (Ss, Ts, Ds, Bs [fν(D):Vg, Ls [fx:ν(D)g, Cs, Js, J (B, V . ν(D)))

On the other hand, in a labelled statement of the form “case e:s”, the C expression e
must always represent an integral constant, whose numeric value n is converted into the
type of the surrounding switch statement ts and, in the resulting set of case definitions
C0, mapped to the newly-introduced basic block variable ν(D). Every such statement
must be always embedded within some “switch” construct, which, in the following
Haskell definition, is asserted by requiring the selection type ts to have some concrete
value other than “ε”. As for identifier labels, the converted value of n must not appear
in the set Cs that has been derived from the construct’s nested statement s:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . case e: s]] = do
require (ts 6= ε)
(D0) D [fν(D):[[λ[[dom(V)]].τs]]g
(Se, Te, De, t, n) DICE(S, T , D0, I . e)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(Se, Te, De, B, L, V , I, tr, ts, νr, νc, νb, τκ . s)
(n0) V φ(ts)[[[[φ(ts)]][[φ(t)]](#n[[φ(t)]])]]
require (n0 /2 dom(Cs))
return (Ss, Ts, Ds, Bs [fν(D):Vg, Ls, Cs [fn0:ν(D)g, Js, J (B, V . ν(D)))

5.9 STATEMENTS 227

Finally, every construction of the form “default:s” must also appear within the
context of an enclosing “switch” statement. In the resulting set of case labels C0, the
new basic block is represented by the distinguished case label “ε”, which, once again,
cannot appear among the labels of its nested statement s. Formally:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . default: s]] = do
require (ts 6= ε)
(D0) D [fν(D):[[λ[[dom(V)]].τs]]g
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(S, T , D0, B, L, V , I, tr, ts, νr, νc, νb, τκ . s)
require (ε /2 dom(Cs))
return (Ss, Ts, Ds, Bs [fν(D):Vg, Ls, Cs [fε:ν(D)g, Js, J (B, V . ν(D)))

5.9.2 Compound Statements or Blocks
Multiple C statements are often combined into a single compound statement, which, in
the concrete syntax of the language, is represented by an optional list of declarations
followed by a list of zero or more statements, with the entire construct enclosed in
braces. Every such compound statement “{dlopt slopt}” introduces a new current scope
into the program, whose index I is one greater than that of its surrounding semantic
context. Further, the context of the statement list slopt is extended with the set of
local variable definitions Vd introduced by any non-static declarations from dlopt. The
resulting Etude term begins by introducing into the program’s address space all of
these newly-defined local variables, as depicted by the the scope constructor C (Vd).
Next, the underlying local objects are populated with their desired initial contents by
evaluating the initialiser term τd derived from the declaration list dlopt. Finally, the
actual computational meaning τs of the supplied statement list slopt is evaluated. An
appropriate scope destructor D(Vd) is also prefixed to the continuation term of slopt, in
order to ensure that all of the Etude objects local to the new scope are purged from the
program’s address space upon completion of the statement’s execution. Formally, this
denotation is represented in Haskell as follows:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . {dlopt slopt}]] = do
(Sd, Td, Dd, Vd, τd) DD(S, T , D, I + 1 . dlopt)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs)

 DS(Sd, Td, Dd, B, L, V [Vd, I + 1, tr, ts, νr, νc, νb, [[[[D(Vd)]]; τκ]] . slopt)
return (S, T , Ds, Bs, Ls, Cs, Js, [[[[C (Vd)]]; LET () = τd; τs]])

The reader should observe that the new variable and tag scopes do not persist past the
end of the construct, so that the resulting denotation includes the original values of its
prevailing current scopes S and T , instead of those derived from the statement list slopt.

5.9.3 Expression and Null Statements
Any C expression can be also turned into an expression statement by appending a semi-
colon to its concrete syntax. Further, the actual expression component can be omitted
entirely from such constructs, in which case the entity is said to represent the null state-
ment form “;”. Regardless of its precise syntax, every expression statement denotes a
simple Etude term of the form “C (Ve); LET () = τe; D(Ve); τκ”, in which τe represents

228 CHAPTER 5: THE C PROGRAMMING LANGUAGE

the void denotation of its optional expression component. Intuitively, this denotation
evaluates that void denotation, after introducing any required temporary variables into
the program’s address space, which are promptly discarded before proceeding with ex-
ecution of the continuation term τκ. Formally:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . eopt]] = do
(Se, Te, De, Ve, τe) DE(S, T , D, I . eopt)
return (Se, Te, De, ∅, ∅, ∅, ∅, [[[[C (Ve)]]; LET () = τe; [[D(Ve)]]; τκ]])

In other words, expression statements never introduce any new labels or local variables
into the program, so that the B0, L0, C and J components of their denotations always
represent the empty set ∅. The fact that the continuation term usually pertains to an ex-
pression which is only encountered much later in the translation process is immaterial,
since Haskell’s lazy evaluation mechanism is perfectly capable of alluding to events
that are yet to come. In particular, the continuation term is always incorporated, but
never actually constructed until the C statement from which it is to be derived has been
encountered in the program, deemed well-formed and processed by the compiler.

This simple definition underpins the entire expressive power of the continuation
term approach to the specification of C statements pursued in this work. In particular,
given that C expressions are the sole means provided by the language for representation
of all non-trivial computations in a program, the above inclusion of the continuation
term τκ in their denotations ensures that every other form of a C statement always
denotes an Etude term which implicitly incorporates the remainder of a basic block to
which the statement belongs. As we have already seen in Section 5.9.1, this basic block
is contributed to the constructed Etude program by the translation of its introducing
label and, thereafter, it is always referenced solely through tail calls (or jumps) to the
Etude variable associated with that label.

5.9.4 Selection Statements

The language recognises three kinds of selection statements, often referred to as the
“if”, “if-else” and “switch” statement forms. Conceptually, all three variants
of a selection statement represent a fork in the program’s control flow graph, whereby
only some subset of the statement’s nested components are evaluated as determined
dynamically during the construct’s execution.

Upon completion of its evaluation, every selection statement always proceeds with
the reduction of its continuation term τκ. In order to avoid replication of τκ on every
possible execution path through the program, all of the following denotations introduce
into the statement’s set of item definitions D0 a new basic block ν(D0) with the body
of “λν̄.τκ”, in which ν̄ includes all of the local variables visible at the beginning of the
construct. During translation the entity’s nested statements, their continuation terms are
systematically replaced with a simple jump to this new basic block, as depicted by the
standard notation “J (B, V . ν(D0))” described earlier in this section.

5.9 STATEMENTS 229

The parenthesised C expression which appears in the syntax of every selection
statement and most of the iteration statement forms described later in Section 5.9.5 is
known as the entity’s controlling expression. Formally, such expressions must always
represent values of a scalar C type. Their denotations are evaluated in a scope delimited
by the usual constructor and destructor terms C (Ve) and D(Ve), where Ve is the set
of temporary variables introduced by the expression. They always deliver the result
obtained from comparison of the expression’s value for inequality with the constant
“0” of an appropriate C type, as depicted by the following translation of these entities:

DCTRL[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, termν)

DCTRL[[S, T , D, I . e]] = do
(S0, T 0, D0, V , t, τ) DV(S, T , D, I . e)
require (SCR(t))
return (S0, T 0, D0, [[[[C (V)]]; LET T1 = τ ; [[D(V)]]; RET (T1 6=[[φ(t)]] #0[[φ(t)]])]])

In particular, every selection statement of the form “if (e) s” represents the Etude
term “LET T1 = τe; IF T1 THEN τs ELSE τ0κ”, in which τe and τs depict the respective de-
notations of the controlling expression e and the nested statement s, while ν(Ds) denotes
a unique basic block variable bound to the construct’s continuation term τκ. In other
words, such statements evaluate s if and only if e has a non-zero value. Formally:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . if (e) s]] = do
(τ0κ) J (B, V . ν(Ds))
(Se, Te, De, τe) DCTRL(S, T , D, I . e)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(Se, Te, De, B, L, V , I, tr, ts, νr, νc, νb, τ0κ . s)
return (Ss, Ts, Ds [fν(Ds):[[λ[[dom(V)]].τκ]]g, Bs [fν(Ds):Vg, Ls, Cs, Js,

[[LET T1 = τe; IF T1 THEN τs ELSE τ0κ]])

Similarly, a selection statement of the form “if (e) s1 else s2” evaluates either of
the two nested statements s1 or s2, whenever its controlling expression e has a non-
zero or zero value, respectively. Formally, the resulting denotation represents an Etude
term of the form “LET T1 = τe; IF T1 THEN τ1 ELSE τ2”, in which τe, τ1 and τ2 depict
the respective denotations of e, s1 and s2. Similarly to the earlier “if” statement form,
τκ is saved in the body of a new basic block ν(D2) and the continuation terms of both
nested statements are replaced with a jump to that block. In Haskell:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . if (e) s1 else s2]] = do
(τ0κ) J (B, V . ν(D2))
(Se, Te, De, τe) DCTRL(S, T , D, I . e)
(S1, T1, D1, B1, L1, C1, J1, τ1) DS(Se, Te, De, B, L, V , I, tr, ts, νr, νc, νb, τ0κ . s1)
(S2, T2, D2, B2, L2, C2, J2, τ2) DS(S1, T1, D1, B, L, V , I, tr, ts, νr, νc, νb, τ0κ . s2)
require (dom(L1) \ dom(L2) = ∅ ^ dom(C1) \ dom(C2) = ∅)
return (S2, T2, D2 [fν(D2):[[λ[[dom(V)]].τκ]]g,

B1 [B2 [fν(D2):Vg, L1 [L2, C1 [C2, J1 [J2,
[[LET T1 = τe; IF T1 THEN τ1 ELSE τ2]])

The reader should observe that the two nested statements appearing in such constructs
must derive non-overlapping sets L0 and C0, in order to ensure that all statement and
case labels always remain unique within their respective scopes.

230 CHAPTER 5: THE C PROGRAMMING LANGUAGE

On the other hand, selection statements of the form “switch (e) s” have a rather
different semantic interpretation. In every such construct, the controlling expression e
must assume an integral type that, after integral promotion, will serve as the selection
type ts throughout translation of the nested statement s. The entire construct represents
a multi-way jump, which, in Etude, can be modelled by a term of the following form:

IF T1 =φ n1 THEN J [[B, V . ν1]]
ELSE IF T1 =φ n2 THEN J [[B, V . ν2]]

...
ELSE IF T1 =φ nk THEN J [[B, V . νk]]
ELSE J [[B, V . νd]]

in which n1 ... nk are the integer values of all “case” labels introduced by the nested
statement s, ν1 ... νk represent the Etude variables bound to these labels’ respective
basic blocks and νd depicts a designated basic block bound to the special “ε” label
introduced by the statement’s “default” label, or else the basic block of its contin-
uation statement τκ if no such label is present in the syntax of s. The Etude variable
νd also doubles as the break label within s, so that all “break;” statements included
within the syntax of s represent a jump to that basic block under their later interpreta-
tion in Section 5.9.6. The return and continuation labels νr and νc are not affected by
these constructs. Formally, the denotation of every “switch” statement is represented
by the following Haskell translation:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . switch (e) s]] = do
(τ0κ) J (B, V . ν(Ds))
(τ̊) [[�[[[IF T2 =[[φ(ip(te))]] #nk[[φ(ip(te))]] THEN [[J (B, V . νk)]] ELSE]] nk:νk Cs]]]

(Se, Te, De, Ve, te, τe) DV(S, T , D, I . e)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs)

 DS(Se, Te, De, B, L, V , I, tr, ip(te), νr, νc, ν(Ds), τ0κ . s)
require (INT(te))
return (Ss, Ts, Ds [fν(Ds):[[λ[[dom(V)]].τκ]]g, Bs [fν(Ds):Vg, Ls, ∅, Js,

[[[[C (Ve)]];
LET T1 = τe;
LET T2 = [[φ(ip(te))]][[φ(te)]](T1);
[[D(Ve)]];
τ̊;
J (B, V . (fε:ν(Ds)g/Cs)(ε))]])

Observe that the case labels of s remain confined within their innermost surrounding
“switch” statement, so that the resulting set C0 is always emptied by the above
definition, regardless of the precise form assumed by a given “switch” statement.

5.9.5 Iteration Statements
The language also defines three forms of iteration statements or loops, commonly
known as the “while”, “do-while” and “for” statement forms, respectively. Every
such construct evaluates its nested statement repeatedly for as long as its controlling
expression retains a non-zero value. Each iteration statement introduces at least two

5.9 STATEMENTS 231

new basic blocks into the program, associated with the implicit continuation and break
labels νc and νb that serve as a target for all occurrences of the jump statement forms
“continue;” and “break;” within its syntax, as described later in Section 5.9.6.

In particular, if L1 and L2 are two otherwise-unused label identifiers and if “...”
represents the remainder of the current basic block, then an iteration statement of the
form “while (e)s” evaluates its nested statement s zero or more times, corresponding
loosely to the following control flow structure, except that no new scope is introduced
for its nested statement s:

L1: if (e) {
s;
goto L1;

}
else {

goto L2;
}

L2: ...

Any occurrences of the “continue;” and “break;” statement forms within the
above code fragment represent jumps to the respective labels L1 and L2, which, in the
following Haskell translation, is modelled by setting the continuation and break labels
νc and νb to the globally-unique Etude variables ν(D) and ν(Ds) associated with these
labels during analysis of the loop body s. The selection type ts is not affected by these
constructs. Formally:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . while (e) s]] = do
(ν0c) ν(D)
(ν0b) ν(Ds)
(τ`) [[LET T1 = τe; IF T1 THEN τs ELSE [[J (B, V . ν0b)]]]]
(τ0`) J (B, V . ν0c)
(Se, Te, De, τe) DCTRL(S, T , D [fν0c:[[λ[[dom(V)]].τ`]]g, I . e)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(Se, Te, De, B, L, V , I, tr, ts, νr, ν0c, ν0b, τ0` . s)
return (Ss, Ts, Ds [fν0b:[[λ[[dom(V)]].τκ]]g, Bs [fν0c:V , ν0b:Vg, Ls, Cs, Js, τ0`)

Similarly, the iteration statement “do s while (e);” evaluates s one or more times
until the controlling expression e attains the value of “0”. In other words, the control
structure of these statements can be described roughly by the following code fragment:

L1: s;
L2: if (e) {

goto L1;
}
else {

goto L3;
}

L3: ...

where, once again, the three identifiers L1, L2 and L3 represent otherwise-unused ba-
sic block variables, with L1 and L3 also doubling as the continuation and break la-

232 CHAPTER 5: THE C PROGRAMMING LANGUAGE

bels during translation of the loop body s, as required for a proper translation of any
“continue;” and “break;” statements appearing within it:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . do s while (e);]] = do
(νi) ν(D)
(ν0c) ν(Ds)
(ν0b) ν(De)
(τ`) [[LET T1 = τe; IF T1 THEN [[J (B, V . νi)]] ELSE [[J (B, V . ν0b)]]]]
(τ0`) J (B, V . ν0c)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs)

 DS(S, T , D [fνi:[[λ[[dom(V)]].τs]]g, B, L, V , I, tr, ts, νr, ν0c, ν0b, τ0` . s)
(Se, Te, De, τe) DCTRL(Ss, Ts, Ds [fν0c:[[λ[[dom(V)]].τ`]]g, I . e)
return (Se, Te, De [fν0b:[[λ[[dom(V)]].τκ]]g,

Bs [fνi:V , ν0c:V , ν0b:Vg, Ls, Cs, Js, J (B, V . νi))

Finally, every iteration statement of the form “for (eopt1; e2; eopt3)s” always be-
gins with an evaluation of the optional expression eopt1, which, similarly to the earlier
“while” statement forms, is followed by zero or more iterations over the loop body
“s;eopt3;”, subject to the controlling expression e2 retaining a non-zero value. Like
“do-while” statements, every “for” construct introduces three new basic blocks into
the program and arranges them into the following control flow structure:

eopt1;
L1: if (e2) {

s;
goto L2;

}
else {

goto L3;
}

L2: eopt3;
goto L1;

L3: ...

in which the continuation and break labels are represented by the later unique identifiers
L2 and L3. Formally, the meanings of all “for” statements are described in Haskell by
the following translation semantics:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . for (eopt1; e2; eopt3)s]] = do
(νi) ν(D1)
(ν0c) ν(D2)
(ν0b) ν(Ds)
(τ`) [[LET T1 = τ2; IF T1 THEN τs ELSE [[J (B, V . ν0b)]]]]
(τ0`) J (B, V . ν0c)
(τc) [[[[C (V3)]]; LET () = τ3; [[D(V3)]]; J (B, V . νi)]]
(S1, T1, D1, V1, τ1) DE(S, T , D, I . eopt1)
(S2, T2, D2, τ2) DCTRL(S1, T1, D1 [fνi:[[λ[[dom(V)]].τ`]]g, I . e2)
(S3, T3, D3, V3, τ3) DE(S2, T2, D2/fν0c:[[λ[[dom(V)]].τc]]g, I . eopt3)
(Ss, Ts, Ds, Bs, Ls, Cs, Js, τs) DS(S3, T3, D3, B, L, V , I, tr, ts, νr, ν0c, ν0b, τ0` . s)
return (Ss, Ts, Ds [fν0b:[[λ[[dom(V)]].τκ]]g, Bs [fνi:V , ν0c:V , ν0b:Vg, Ls, Cs, Js,

[[[[C (V1)]]; LET () = τ1; [[D(V1)]]; J (B, V . νi)]])

5.9 STATEMENTS 233

Finally, if the controlling expression e2 is omitted from the syntax of a given “for”
statement, then the entity behaves as if an implicit controlling expression with a con-
stant non-zero value was inserted into the program by compiler:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . for (eopt1;; eopt3)s]]
= DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . for (eopt1; 1; eopt3)s]]

A close inspection of the control-flow graph constructed by the above translation of
iteration statements reveals that the nested statement s in the “do-while” constructs is
always evaluated at least once for every appearance of such an entity on the program’s
execution path. In all other iteration statements, however, evaluation of s is subject to
the controlling expression e having a non-zero value at the beginning of the construct.
As we shall soon discover in Section 5.9.6, in all three cases, the ordinary sequence of
events may be also interrupted by explicit jumps to the continuation and break labels
introduced by these entities, as represented in the concrete syntax of the language by the
two jump statement forms “continue;” and “break;” that are specially reserved
for that purpose.

5.9.6 Jump Statements
Finally, the class of jump statements includes four simple syntactic forms known re-
spectively as the “goto”, “continue”, “break” and “return” statements. The
first three of these have trivial translations into Etude, with every statement of the form
“goto x;” representing a jump to a named label bound in the surrounding function
scope L to the specified identifier x. For the purposes of later error diagnostics, x is also
included in the returned set of referenced labels J0. On the other hand, every C state-
ment of the form “continue;”, “break;” and “return;” represents an explicit
jump to the corresponding continuation, break or return label νc, νb or νr. Such jumps
are well-formed only if that label is actually included in the statement’s context, i.e., if
it does not have the omitted value “ε”. Formally:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . goto x;]] = do
return (S, T , D, ∅, ∅, ∅, fxg, J (B, V . L(x)))

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . continue;]] = do
require (νc 6= ε)
return (S, T , D, ∅, ∅, ∅, ∅, J (B, V . νc))

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . break;]] = do
require (νb 6= ε)
return (S, T , D, ∅, ∅, ∅, ∅, J (B, V . νb))

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . return;]] = do
return (S, T , D, ∅, ∅, ∅, ∅, J (B, V . νr))

On the other hand, a “return e;” statement whose syntax includes some C expression
e is only admissible within C functions whose returned type tr represents an object
other than an array. Such statements precede the jump to νr with an assignment of e’s
value to a temporary l-value bound to the least entry in the function’s local variable

234 CHAPTER 5: THE C PROGRAMMING LANGUAGE

set V . In particular, the supplied C expression e represents a dynamic initialiser for
that temporary l-value, whose denotation DDI[[S, T , D, I, tr, min(dom(V)) . (e)]] was
described earlier in Section 5.8.12.2. In Haskell:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . return e;]] = do
(Se, Te, De, te, τe) DDI[[S, T , D, I, tr, min(dom(V)) . (e)]]
require (OBJ(tr) ^ :ARR(tr))
return (Se, Te, De, ∅, ∅, ∅, ∅, [[LET () = τe; [[J (B, V . νr)]]]])

A careful reader will observe that none of the above five labelled statement forms ever
mentions the continuation term τκ within their denotations. In fact, any computations
that follow an unconditional jump in a C function can never be evaluated during or-
dinary execution of a well-formed C program, so that, in effect, the remainder of any
basic block which includes such a jump statement is deemed unreachable and, as such,
it is discarded by the above translations of these constructs.

5.9.7 Lists of Statements

To complete our formalisation of C statements, we must also specify the translation se-
mantics of entire statement lists. Formally, the concrete syntax of such lists is depicted
by the following BNF grammar:

statement-list :
statement
statement-list statement

Although, in this work, the denotations of all C statements are described by a sin-
gle function DS that always operates on an entire statement list, in reality, sequences
of multiple statemnets can only ever appear within the compound statement forms de-
scribed earlier in Section 5.9.2. In all other contexts, such lists are formed by an implicit
coercion of a singular statement form, whose presence, however, is always hidden in
the presentation for the sake of conciseness.

Intuitively, a list of the form “s1 s2” always evaluates both of its statements in the
order of their appearance within the program. Formally, its denotation is equal to the
meaning τ1 of the first statement s1, taken in the context of a continuation term τ2

derived from the following statement s2, which, in turn, is supplied the continuation
term τκ of the entire construction, provided that the sets of new label entities introduced
by each statement in the list remain disjoint from each other. In Haskell:

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . sl s]] = do
(S1, T1, D1, B1, L1, C1, J1, τ1) DS(S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τ2 . sl)
(S2, T2, D2, B2, L2, C2, J2, τ2) DS(S1, T1, D1, B, L, V , I, tr, ts, νr, νc, νb, τκ . s)
require (dom(L1) \ dom(L2) = ∅ ^ dom(C1) \ dom(C2) = ∅)
return (S2, T2, D2, B1 [B2, L1 [L2, C1 [C2, J1 [J2, τ1)

DS[[S, T , D, B, L, V , I, tr, ts, νr, νc, νb, τκ . ε]] = return (S, T , D, ∅, ∅, ∅, ∅, τκ)

The reader should observe that, under the above translation, an empty statement list
denotes simply its own continuation term τκ.

5.10 EXTERNAL DEFINITIONS 235

5.10 External Definitions
Traditionally, large C programs are generally developed as a collection of separate
source files, every one of which corresponds, intuitively, to a single Etude module of the
form described earlier in Section 4.7. Formally, such independent units of compilation
are represented in the C grammar by syntactic entities known as translation units,
which, in concrete terms, consist of one or more external declarations, as captured
by the following Haskell definition of their syntax:

translation-unit :
external-declaration
translation-unit external-declaration

The precise syntax and semantics of the individual external declarations in a translation
union are discussed separately in Section 5.10.1, whereby a list of such entities, taken
in the context of an initially empty current scopes and item definition set ∅, is used to
derive the complete scopes S and T , the set of item definitions D and the initialiser term
τ for the entire translation unit.

Once all external declarations in a given source file have been processed, any ten-
tative definitions “ε” remaining in D for Etude variables that, in the ultimate scope S
current at the end of the translation unit, are associated with a designator of a static
linkage form, are converted into specification of an implicitly-initialised C object, i.e.,
into an Etude item definition of the form “OBJ (δ̄k) OF (ξ̄k)”, in which δ̄k and ξ̄k repre-
sent the default data specification and envelope derived from the variable’s C type, as
described earlier in the respective Sections 5.8.11 and 5.4.6.

Once this adjustment has been performed for all tentative definitions in the trans-
lation unit, the collective denotation of its external declarations can be used to derive
a complete Etude module of the form “MODULE τ EXPORT ξ̄ WHERE ῑ”, in which the
module initialiser τ represents the composition of the individual declaration initialisers
derived from all the external declarations in the unit.

Intuitively, the module’s export set ξ̄ includes the bindings of all variables intro-
duced into the translation unit with an external linkage form, other than those which
are simply imported from some other source file of the entire program. In particular,
for every identifier-like Etude variable x that, in the ultimate scope S current at the end
of translation, is assigned a designator with an external linkage and, in the associated
set of item definitions D, is associated with any Etude item form other than “IMP x”, the
resulting set ξ̄ will contain a binding of x to its own name.

Further, the item set ῑ of the resulting module consists of all the static definitions
introduced by the translation unit, including those bound to the imported item forms
“IMP x”, but excluding any tentative definitions for objects with a non-static linkage.
Keeping in mind that, throughout this chapter, all such tentative definitions were distin-
guished in D by bindings to the special symbol “ε”, ῑ consists simply of all the bindings
(νk:ιk) 2 D in which ιk 6= ε.

236 CHAPTER 5: THE C PROGRAMMING LANGUAGE

In Haskell, the entire algorithm can be depicted quite naturally as follows:

DTU[[.]] :: (monad-fix M)) translation-unit ! M(moduleν)

DTU[[tu]] = do
(S, T , D, V , τ) DEDL(∅, ∅, ∅ . tu)

(D0) D/f[[[[ν(L(gk))]] = OBJ ([[δ̄(T (gk))]]) OF ([[ξ̄(T (gk))]])]]
xk:gk S, SL(L(gk)) ^ D(ν(L(gk))) = εg

(ξ̄) f[[xk = xk]] xk :gk S, L(gk) = [[extern]] ^ D0(xk) 6= [[IMP xk]]g
(ῑ) f[[νk = ιk]] νk:ιk D, ιk 6= εg
require (V = ∅ ^

V
[D0(ν(L(gk))) 6= [[IMP xk]] (xk:gk) S, L(gk) = [[intern]]])

return [[MODULE τ EXPORT ξ̄ WHERE ῑ]]

The reader should observe that the set of local variable definitions V derived from the
external C declarations must always remain empty and that, by the end of every source
file, all internally-linked entities must include a proper object definition somewhere
within their surrounding translation unit, so that no C variable x with an internal linkage
in S should be bound in D to the imported item form “IMP x”.

5.10.1 External Declarations

In a C program, every external declaration constitutes either an ordinary declaration
construct, whose syntax and semantics were the subject of Section 5.8, or else a new
kind of entity known as a function definition, whose meaning will be described shortly
in Section 5.10.2. In Haskell, this dual syntax of external C declarations can be captured
by the following BNF grammar:

external-declaration:
function-definition
declaration

Formally, the translation of a C source file into Etude is performed by threading the
supplied current scope and item definition set through all of its external declarations,
in the order of their appearance within the program, also composing the individual
initialiser terms τk derived from each declaration into a monadic sequence of the form
“LET () = τ1; LET () = τ2; ... LET () = τn;”. In Haskell:

DEDL[[.]] :: (monad-fix M)) (S, S, D . translation-unit) ! M(S, S, D, V , termν)

DEDL[[S, T , D . edl ed]] = do
(S1, T1, D1, V1, τ1) DEDL(S, T , D . edl)
(S2, T2, D2, V2, τ2) DEDL(S1, T1, D1 . ed)
return (S2, T2, D2, V1 [V2, [[LET () = τ1; τ2]])

DEDL[[S, T , D . function-definition]] = DFD(S, T , D . function-definition)
DEDL[[S, T , D . declaration]] = DD(S, T , D, 0 . declaration)

recalling that all three of the finite maps S, T and D supplied in the context of an
external declaration will be empty at the beginning of every translation unit. The reader
should also observe that, in every standard and well-formed C program, all external
declarations will, by construction, always produce the trivial initialiser term “RET ()”,

5.10 EXTERNAL DEFINITIONS 237

so that the resulting initialiser for an entire Etude module produced the program’s
translation will always remain semantically indistinguishable from a single “RET ()”
term. During a subsequent linking stage of compilation, this term will be replaced with
a call to the program’s designated “main” function, although all of the relevant details
of that replacement remain beyond the scope of the present work. Accordingly, the
declaration initialisers are retained under the above translation only in the interest of its
forward compatibility with any future extensions to the C Standard.

5.10.2 Function Definitions

A new function is always introduced into a C program by an entity known as a function
definition, whose concrete syntax is defined by the following Haskell data type:

function-definition:
declaration-specifiersopt declarator declaration-listopt compound-statement

In other words, every function definition consists of a C declaration with a single
declarator and no initialisers, together with a compound statement known as the func-
tion body. The list of declaration specifiers may be omitted from the syntax if no
particular specifiers are applicable to the function being defined. The compound state-
ment may be also preceded by an optional list of declarations, intended to refine the
meanings of any function arguments in an absence of an explicit prototype in the
associated declarator.

The derivation of a function definitions’ formal meaning bootstraps the entire state-
ment translation process presented earlier in Section 5.9. Accordingly, the construction
DFD[[S, T , D . dsopt r dlopt s]] has a somewhat esoteric formulation, which is best de-
scribed informally by the following algorithm:

1 First of all, the construct’s list of declaration specifiers is used to derive the storage
class s̄c, qualification t̄q and base type tb for the function’s designator, using the
standard algorithms DDS and DTS defined earlier in Sections 5.8.1 and 5.8.3.

2 Next, a meaning of the following declarator r is established using the algorithm
DFR described later in this section. Besides the usual C type t and identifier x found
in the denotations of ordinary C declarators, this algorithm also derives the set of
argument names x̄2 from the construct’s identifier list whenever such a list appears
in the syntax, as well as an additional pair of scopes S0 and T 0 current at the end of
any prevailing parameter type list in r.

3 Further, the new function is introduced into its declarator’s scope S2 with a binding
of the identifier x to a designator d, derived from the storage class s̄c and the C
type of the specified declarator r using the algorithm DX defined earlier in Section
5.8.11. In the associated set of item definitions D2, the variable x is also bound to
an Etude function, whose parameter list and term represent, respectively, the set of
all local variables V3

0 visible to the compound statement s and the actual denotation
τ of that statement, as derived is steps 5 and 6 of the present algorithm.

238 CHAPTER 5: THE C PROGRAMMING LANGUAGE

4 Now, the list of parameter declarations dlopt is processed using the algorithm DPDL,
in the context of the parameter scopes S0 and T 0 derived from r. The resulting deno-
tation includes a new set of identifiers x̄3, formed precisely from those parameters
to the new function whose C types are declared by dlopt, together with the set of all
local variables V3 that have been associated with these parameters.

5 Once dlopt has been analysed, all identifiers from x̄2 that are still left without a local
declaration are introduced into the program as automatically-linked entities of the
plain “int” type. Further, the initial set of all local variables V3

0 visible upon entry
into the newly-created C function is defined as a union of all local variables V2

declared in the parameter type list of the declarator r, together with the set V3 of
those that are declared by dlopt and, finally, any variables introduced by the implicit
“int” bindings of the otherwise undeclared parameters from x̄2.

6 Having completed these preparatory tasks, we are now ready to scrutinise the
function’s body statement s, which is processed directly using the algorithm DS

defined earlier in Section 5.9. The statement’s function scope L is determined by
the set of all label identifiers derived from s itself. Similarly, the collection of all
basic block definitions B available throughout the construct’s translation is set to
contain all of the basic blocks B0 introduced by the function’s body, together with
an additional exit block ν(D4) that is appended to both B and D4 with a trivial
definition of “λ[[dom(V3

0)]].RET ()”. Intuitively, this block represents the exit point
from the entire function and, during translation of s, it is made available to the
statement as a binding of its return label νr. A jump to that label also serves as the
statement’s continuation term τκ. Finally, the function’s returned type tr is set to
the base type of the designator r, while the continuation and break labels νc and νb

and the selection type ts are left with their default values of “ε”.
7 In every well-formed function definition, the resulting designator d must have a

static linkage, with a C type of a function returning either an object type other than
an array, or else a qualified or unqualified version of the “void” type. Further,
at most one of the parameter type lists and parameter declaration components can
be ever supplied in a single function definition, so that, if the declarator r specifies
a non-empty function prototype for the new entity, then the associated declaration
list dlopt must always remain empty. The set of all label names J that are actually
referenced by s must also represent a subset of its function scope L, in order to
ascertain that all “goto” statements in the program refer to valid statement labels.
Last but not least, the set of case labels C derived from the function’s body must be
empty by the end of the entire construct, so that no “case” label may ever appear
outside of a well-formed “switch” statement.

8 Finally, in the denotation of the entire function definition, the local scope of s is
discarded and the returned Etude term is given the trivial form “RET ()”, in order
to facilitate its incorporation into a larger list of external declarations as described
earlier in Section 5.10.1.

5.10 EXTERNAL DEFINITIONS 239

In Haskell, these translation semantics of C functions can be formalised as follows:

DFD[[.]] :: (monad-fix M)) (S, S, D . function-definition) ! M(S, S, D, V , termν)

DFD[[S, T , D . dsopt r dlopt s]] = do
(s̄c, t̄q, t̄s) DDS(dsopt)
(S1, T1, D1, tb) DTS(S, T , D, 0 . t̄s)
(S2, S0, T2, T 0, D2, V2, t, x, x̄2) DFR(S1, T1, D1, t̄q ++ tb . r)
(d) DX(S2, T2, D2, 0, s̄c, t . x)
(S2

0) S2/fx:dg
(D2

0) D2/fx:[[λ[[dom(V3
0)]].τ]]g

(S3, T3, D3, V3, x̄3) DPDL(S2
0 /S0, T2/T 0, D2

0 . dlopt)
(S3

0) S3/fxk:[[auto νk int @ 1]] (xk:νk) (x̄2nx̄3) [ν(D3)...]g
(D3

0) D3 [fν(L(S3
0 (xk))):ε xk x̄2nx̄3g

(V3
0) V2 [V3 [fν(L(S3

0 (xk))):ξ̄(T (S3
0 (xk))) xk x̄2nx̄3g

(S4, T4, D4, B, L, C, J, τ)
 DS(S3

0 , T3, D3
0 , B0, L, V3

0 , 1, B(T (d)), ε, ν(D4), ε, ε, J (B0, V3
0 . ν(D4)) . s)

(D4
0) D4/fν(D4):[[λ[[dom(V3

0)]].RET ()]]g
(B0) B [fν(D4):V3

0 g
require (SL(L(d))) ^

(FUN(T (d)) ^ ((OBJ(B(T (d))) ^ :ARR(B(T (d)))) _ VT(B(T (d))))) ^
(x̄3 � x̄2) ^
(J � dom(L)) ^ (C = ∅)

return (S2
0 , T2, D4

0 , ∅, [[RET ()]])

In every such construct, the function’s type must be specified directly in r, rather
than through a type name in the associated list of declaration specifiers. In order
to capture this requirement formally, it is convenient to introduce a notion of simple
declarators, whose concrete syntax must be formed either from a single identifier, or
else from a parenthesised version of such a declarator. In Haskell, these constructs are
characterised by the following derivation, and their denotations consist solely of the
specified identifier itself:

DSR[[.]] :: (monad-fix M)) (declarator) ! M(identifier)

DSR[[(r)]] = DSR(r)
DSR[[x]] = return (x)
DSR[[other]] = reject

With the help of this auxiliary definition, the meaning of all declarators appearing
within a function definition can be described by the following algorithm DFR, akin to its
earlier variant DR that, in Section 5.8.8 was used to scrutinise the semantics of ordinary
C declarators:

DFR[[.]] :: (monad-fix M))
(S, S, D, type . declarator) ! M(S, S, S, S, D, V , type, identifier, fidentifierg)

In particular, like DR, DFR proclaims every nested declarator “(r)” to represent a simple
semantic equivalent of r itself and all declarators of the form “pointer r” to assume the
meaning of r under the new pointer base type DP(tb . pointer), in which tb depicts the
prevailing base type of the entire construction. On the other hand, declarators consisting

240 CHAPTER 5: THE C PROGRAMMING LANGUAGE

entirely of a single identifier are never permitted in the present context:

DFR[[S, T , D, tb . (r)]] = DFR(S, T , D, tb . r)
DFR[[S, T , D, tb . pointer r]] = DFR(S, T , D, DP(tb . pointer) . r)
DFR[[S, T , D, tb . x]] = reject

Further, array declarators of the form “r[eopt]” denote the array type “tb[nopt]”, in
which the element type tb is equal to the construct’s base type, identically to the earlier
ordinary applications of this syntax:

DFR[[S, T , D, tb . r[eopt]]] = do
(Sr, S0, Tr, T 0, Dr, V , t, x, x̄) DFR(S, T , D, [[tb[nopt]]] . r)
(Se, Te, De, nopt) DALE(Sr, Tr, Dr, 0 . eopt)
return (Se, S0, Te, T 0, De, V , t, x, x̄)

The peculiar nature of function declarators only becomes apparent in constructs of the
form “r(ptl)” and “r(xlopt)”.

In particular, if the supplied declarator r that accompanies a non-empty parameter
type list ptl consists entirely of an optionally-parenthesised identifier x (in other words,
if it depicts a simple declarator), then the construction itself determines the actual type
of the C function being defined. Accordingly, its denotation consists of the declarator’s
identifier x, the function type “tb(p)” whose prototype p is derived from the parameter
type list ptl and a local variable set formed from all of the Etude variables introduced by
ptl, with an addition of a designated Etude object intended for storage of the function’s
return value. In V , this object is bound to the unique local variable ν(D) with an en-
velope derived from the function’s returned type tb, using the construction ξ̄R(ν(D), tb)
described later in the present section. The identifier set x̄ returned by such entities is
left empty, while the prototype scopes S0 and T 0 consist precisely of those variables and
type tags that have been introduced into the program locally by the parameter type list
ptl. In all other cases, declarators of this form are processed identically to their ordinary
usage from Section 5.8.8, deriving the meanings of their direct declarators r under the
adjusted base type “tb(popt)”. Formally:

DFR[[S, T , D, tb . r(ptl)]]

= do (x) DSR(r)
(S0, T 0, D0, V , p) DFPTL(S, T , D [fν(D):εg . ptl)
return (S, fxk:S0 (xk) xk dom(S0), I (S0 (xk)) = 1g,

T , fxk:T 0(xk) xk dom(T 0), I (T 0(xk)) = 1g,
D0, V [ξ̄R(ν(D), tb), [[tb(p)]], x, ∅)

do (Sr, S0, Tr, T 0, Dr, V , t, x, x̄) DFR(S, T , D, [[tb(popt)]] . r)
(Dp, popt) DPTL(Sr, Tr, Dr, 0 . ptl)
return (Sr, S0, Tr, T 0, Dp, V , t, x, x̄)

Similarly, a function declarator of the form “r(xlopt)”, in which xlopt represents a list
of zero or more identifiers and r constitutes a simple declarator, denotes the list of
identifiers x̄ derived from the syntax of xlopt, the declarator’s name x, the type of a
function “tb()” without any prototype information and a singular set of local variables

5.10 EXTERNAL DEFINITIONS 241

formed entirely from the result object ξ̄R(ν(D), tb), that is bound to a globally-unique
Etude variable ν(D). The prototype scopes S0 and T 0 are always left empty by such
declarators. In all such constructs, the identifier list xlopt must represent a proper set, so
that any particular identifier may appear at most once in a given list of parameter names
and, further, none of these identifiers may redeclare an existing typedef name that, in the
current scope S, is bound to a designator with a type linkage. Otherwise, such entities
are treated in a fashion analogous to that prescribed for their ordinary usage in Section
5.8.8, so that the identifier list xlopt must be left empty whenever r does not represent a
simple declarator. In Haskell:

DFR[[S, T , D, tb . r(xlopt)]]

= do (x) DSR(r)
require (length(list(xlopt)) = list(xlopt)) ^V

[xk /2 dom(S) _ (I (S(xk)) 6= 1 ^ L(S(xk)) 6= [[type]]) xk list(xlopt)]

return (S, ∅, T , ∅, D [fν(D):εg, ξ̄R(ν(D), tb), [[tb()]], x, list(xlopt))

do (Sr, S0, Tr, T 0, Dr, V , t, x, x̄) DFR(S, T , D, [[tb()]] . r)
require (list(xlopt) = ∅)
return (Sr, S0, Tr, T 0, Dr, V , t, x, x̄)

The restriction on redeclaration of typedef names within identifier lists has been im-
posed in the C Standard in order to resolve subtle syntactic ambiguity in the published
BNF grammar of the language. In the present work, this constraint serves no other use-
ful purpose and it is included in the above translation only for the sake of completeness.

In both cases, the collection of additional objects that are introduced implicitly
into the resulting set of local variables for storage of the function’s return value is
determined by its returned type t, as represented by the notation “ξ̄R(ν , t)”. In most
cases, ξ̄R produces a singleton set, consisting of a single variable binding that associates
ν with the Etude envelope derived from the C type t, provided that the function returns
an object type other than an array. However, if t represents a qualified or unqualified
version of the “void” type, then no returned variable is introduced into the local scope,
so that ξ̄R[[ν , void]] always produces the empty set ∅:

ξ̄R[[.]] :: (ν , type) ! V

ξ̄R[[ν , t]] OBJ(t) ^ :ARR(t) = fν :ξ̄(t)g
VT(t) = ∅

Every list of parameter types appearing within a function declarator is processed simi-
larly to the ordinary usage of such constructs described earlier in Section 5.8.8, except
that, in the present context, these entities also derive the set of all Etude variables as-
sociated with the individual parameters of the new function, in addition to the actual
prototype information. Formally, this new interpretation of such lists is characterised
by the following Haskell function:

DFPTL[[.]] :: (monad-fix M)) (S, S, D . parameter-type-list) ! M(S, S, D, V , prototype)

242 CHAPTER 5: THE C PROGRAMMING LANGUAGE

If such a list consists entirely of a single storage class specifier “void”, then the
resulting set of local variables V is left empty. Otherwise, the meaning of such entities
is determined from their parameter lists pl, using the algorithm DFPL described shortly:

DFPTL[[S, T , D . void]] = return (S, T , D, ∅, [[void]])

DFPTL[[S, T , D . pl]] = do
(S0, T 0, D0, V , t̄) DFPL(S, T , D . pl)
return (S0, T 0, D0, V , [[t̄]])

DFPTL[[S, T , D . pl, ...]] = do
(S0, T 0, D0, V , t̄) DFPL(S, T , D . pl)
return (S0, T 0, D0, V , [[t̄...]])

In particular, every parameter declaration found in a function definition must specify
a distinct identifier x that is unique within its scope, so that abstract declarators are
not permitted in such constructs, except for the special “void” case mentioned earlier.
Further, the declaration’s syntax must not include any storage class specifiers other
than “register” and the semantics of its declarator must assign to x a C type t that
is complete after pointer promotion. The construct extends its current scope S with
a binding of x to a designator with the unadjusted type t and a linkage derived from
the supplied storage class s̄c using the usual algorithm DSC defined in Section 5.8.2.
The formal denotation of such parameters always includes a set of local variables V
that binds individual parameter variables to Etude envelopes of their pointer-promoted
types. In Haskell:

DFPL[[.]] :: (monad-fix M)) (S, S, D . parameter-list) ! M(S, S, D, V , types)

DFPL[[S, T , D . ds r]] = do
(s̄c, t̄q, t̄s) DDS(ds)
(S1, T1, D1, tb) DTS(S, T , D, 1 . t̄s)
(S2, T2, D2, t, x) DR(S1, T1, D1, 1, t̄q ++ tb . r)
(`) DSC(S2, T2, D2, 1, pp(t), x . s̄c)
require (s̄c � fregisterg ^ OBJ(pp(t)) ^ (x /2 dom(S2) _ I (S2(x)) 6= 1))

return (S2/fx:[[` t @ 1]]g, T2, D2/fν(`):εg, fν(`):ξ̄(pp(t))g, [t])

DFPL[[S, T , D . pl, pd]] = do
(S1, T1, D1, V1, t̄1) DFPL(S, T , D . pl)
(S2, T2, D2, V2, t̄2) DFPL(S1, T1, D1 . pd)
return (S2, T2, D2, V1 [V2, t̄1 ++ t̄2)

DFPL[[S, T , D . ds aropt]] = reject

On the other hand, if the function definition’s declarator includes an identifier list
instead of parameter types, then the names of all function arguments are determined
by those identifiers and their C types are described by a list of zero or more ordinary
C declarations that follow the declarator in the concrete syntax of the entire definition.
Conceptually, all of these declarations are injected into the program at the beginning of
the scope associated with the function’s compound statement, in a manner similar to the
earlier ordinary applications of the declaration syntax scrutinised in Section 5.8, except

5.10 EXTERNAL DEFINITIONS 243

that, in the present context, no declaration may include any storage class specifiers other
than “register” and that every element of the list must specify at least one initialised
declarator, so that tag declarations are explicitly disallowed within such lists:

DPDL[[.]] :: (monad-fix M)) (S, S, D . declaration-listopt) ! M(S, S, D, V , fidentifierg)

DPDL[[S, T , D . ds irl;]] = do
(s̄c, t̄q, t̄s) DDS(ds)
require (s̄c � fregisterg)
(S1, T1, D1, tb) DTS(S, T , D, 1 . t̄s)
(S2, T2, D2, V , x̄) DPRL(S1, T1, D1, s̄c, t̄q ++ tb . irl)
return (S2, T2, D2, V , x̄)

DPDL[[S, T , D . dl d]] = do
(S1, T1, D1, V1, x̄1) DPDL(S, T , D . dl)
(S2, T2, D2, V2, x̄2) DPDL(S1, T1, D1 . d)
return (S2, T2, D2, V1 [V2, x̄1 [x̄2)

DPDL[[S, T , D . ε]] = return (S, T , D, ∅, ∅)
DPDL[[S, T , D . ds;]] = reject

Each initialised declarator of such a construct has a meaning similar to that of an anal-
ogous parameter declaration with the same identifier and C type, except that this type
is not contributed to the prototype of the newly-defined function. Explicit initialisers
are always disallowed in the syntax of function definitions, so that the semantics of this
final construct in the C grammar can be described by the following simple translation:

DPRL[[.]] :: (monad-fix M))
(S, S, D, [storage-class-specifier], type . init-declarator-list) !
M(S, S, D, V , fidentifierg)

DPRL[[S, T , D, s̄c, tb . r]] = do
(Sr, Tr, Dr, t, x) DR(S, T , D, 1, tb . r)
(`) DSC(Sr, Tr, Dr, 1, pp(t), x . s̄c)
require (OBJ(pp(t)) ^ (x /2 dom(Sr) _ I (Sr(x)) 6= 1))

return (Sr/fx:[[` t @ 1]]g, Tr, Dr/fν(`):εg, fν(`):ξ̄(pp(t))g, fxg)

DPRL[[S, T , D, s̄c, tb . irl, ir]] = do
(S1, T1, D1, V1, x̄1) DPRL(S, T , D, s̄c, tb . irl)
(S2, T2, D2, V2, x̄2) DPRL(S1, T1, D1, s̄c, tb . ir)
return (S2, T2, D2, V1 [V2, x̄1 [x̄2)

DPRL[[S, T , D, s̄c, tb . r = i]] = reject

With this final definition, we have now attained a complete formal description of the
C programming language. Although arguably obtuse at times, our translation of C
programs into Etude is no more difficult to absorb than any other semantic notation,
while carrying the additional benefit of a fully-usable compiler implementation, whose
correctness is guaranteed by its automatic derivation from the same source as that used
to describe the behaviour of all C programs to the eventual users of the system.

244 CHAPTER 5: THE C PROGRAMMING LANGUAGE

5.11 Extended Example
Much can be said about the translation of C programs described on the previous 124
pages. The reader should, by now, be aware that the DTU algorithm defined in Section
5.10 specifies both the semantic meaning of an entire translation unit in a C program
and a compiler for that unit that targets some unspecified Etude implementation, such as
the one described later in Chapter 6 and Appendix C. When applied to some translation
unit tu in the context of an exception monad akin to the one represented by the standard
Haskell type “Maybe”, DTU(tu) always derives an Etude module m that captures the
unit’s precise meaning, or else returns the monad’s exceptional value “fail” if tu fails to
satisfy some of the constraints imposed on its syntax by the C Standard. If desired, the
precise reason for rejection of tu could be easily incorporated into that “fail” value.
In fact, such diagnostic messages are already present in the actual Haskell source
code from which this presentation has been prepared and they are only hidden in its
typesetting for the sake of conciseness.

By its very nature, the semantic translation captured in Section 5.10 by the function
DTU can only handle translation units that, in Haskell, are represented as well-defined
finite data structures. For example, the translation process would always diverge if the
undefined Haskell value “?” or some infinitely-recursive list of syntactic entities was
to be embedded somewhere within tu. Due to the inherent unsolvability of the halting
problem, there is very little that can be done to alleviate this limitation of the intentional
compiler design technique pursued in this work. Fortunately, in real life, all translation
units are produced by a parser from their finite textual representations and, accordingly,
in practice, they will never contain such rogue entities.

Nevertheless, it seems advisable to formalise the precise termination guarantees for
our compiler. Under the extended Haskell type system from Chapter 3, this criteria can
be can described concisely by the following trivial theorem, which, intuitively, states
that, for every well-defined C translation unit tu, the Etude module produced by its
translation DTU(tu) is likewise guaranteed to be well-formed:

TU :: 8 tu) WF(tu) ! WF(DTU(tu) :: moduleopt)

assuming that the default definition of the property “WF:: translation-unitopt ! V” has
been derived implicitly from the structure of the Haskell type “translation-unitopt”, in
accordance with the algorithm described in Section 3.6, which ensures that the value of
tu does not contain any infinite or otherwise undefined components embedded within
its syntax and, further, observing that the exceptional value “Nothing” of the Haskell
monad “Maybe” is always well-formed under every such implicitly-derived definition
of that property.

A detailed proof of this theorem is left as an exercise for the reader. Strictly speak-
ing, it is not required for a simple establishment of the linear correctness property for
our compiler, since, under its definition in Chapter 2, that property is only concerned
with those compiler inputs that result in a meaningful Etude program after transla-

5.11 EXTENDED EXAMPLE 245

tion. A detailed formulation of this proof is complicated by the translation’s reliance
on partial Haskell functions, circular definitions and outright-infinite data structures.
Nevertheless, it is my belief that a substantial progress in the area could be made with
the aid of capable termination checkers such as AProVE [Giesl 04], which is already
geared towards analysis of Haskell programs.

In the meantime, let us conclude our treatment of C with a detailed translation of
a realistic C program into its Etude representation. In particular, let us consider the
following textbook implementation of the quick sort algorithm in C:

void swap(int *a, int *b) {
int t = *a;
*a = *b;
*b = t;

}

void sort(int a[], int i, int j) {
if (j > i + 1) {

int p = a[i], l = i + 1, r = j;
while (l < r) {

if (a[l] <= p) {
++l;

}
else {

swap(&a[l], &a[--r]);
}

}
swap(&a[--l], &a[i]);
sort(a, i, l);
sort(a, r, i);

}
}

From this input, the algorithm DTU derives the following Etude module:

MODULE

LET () = ();
RET ()

EXPORT

“iswap” = swap
“sort” = sort

WHERE

swap = λV2, V3. ...
V5 = λV2, V3. ...
sort = λV7, V8, V9. ...
V13 = λV7, V8, V9, V10, V11, V12. ...
V16 = λV7, V8, V9, V10, V11, V12. ...
V17 = λV7, V8, V9, V10, V11, V12. ...
V26 = λV7, V8, V9. ...
V27 = λV7, V8, V9. ...

which exports precisely the two externally-linked C functions swap and sort, bound

246 CHAPTER 5: THE C PROGRAMMING LANGUAGE

internally to Etude variables of the same names. The constructed module initialiser
represents a sequence of two trivial Etude terms “RET ()” contributed to the program
by the pair of external declarations in the above translation unit. Given a simple
transformation of the program derived from the algebraic semantics of Etude terms
described in Section 4.6, this initialiser could be easily reduced into a single “RET ()”
construct, but, for the sake of conciseness, all such optimisations are avoided by our
compiler at the present time.

The set of item definitions in the constructed module contains the bindings of swap
and sort to their corresponding Etude functions, together with a specification of six
additional functions V5, V13, V16, V17, V26 and V27 that serve as denotations of the
individual basic blocks in the program. Their parameter lists reflect the variable scopes
current at the beginning of the corresponding labelled statements and their actual bodies
are discussed systematically throughout the remainder of this section.

In particular, the definition of swap introduces two basic blocks swap and V5 into
the module, corresponding to the function’s entry and exit points, respectively. The ac-
tual Etude functions used to represent these basic blocks accept two parameter variables
V2 and V3, which correspond to the respective parameter declarations “int *a” and
“int *b”. Observe that, since the C function swap has the return type of “void”, the
parameter list of its Etude translation does not include a result object, so that the vari-
able V1 reserved for that purpose by DTU does not appear in the following Etude code:

swap = λV2, V3.

First of all, swap begins with a translation of the C declaration “int t”. Under the
MMIX architecture defined in Chapter 6 and the corresponding C implementation from
Appendix C, all objects of this C type are associated with the Etude format “Z.32”,
so that this declaration is translated into the term “NEW (0, Z.32)” and bound to a
new Etude variable V4, which will henceforth represent its C counterpart t within the
program, observing that the object’s envelope does not include any access attributes,
since t has an unqualified type:

LET V4 = NEW (0, Z.32);

In the resulting monadic sequence, this declaration is followed immediately by an Etude
depiction of its initialiser “t = *a”:

LET () = LET T1 = LET T1 = LET T1 = V2;
GET [T1]O.62;

GET [T1]Z.32;
LET () = SETI [V4]Z.32 TO (Z.32Z.32(T1));
RET ();

The innermost “LET ... GET” term form of this construct obtains the value of the argu-
ment a, as depicted by the Etude variable V2, which, under the MMIX architecture, is
assigned the standard object format “O.62” common to all integer pointers. Next, the
surrounding “LET ... GET” implements the indirection operation “*a” and, finally, the

5.11 EXTENDED EXAMPLE 247

following “LET ... SETI” populates the memory-resident object t with an actual result of
that operation. Throughout the entire construction, every intermediate result is stored
in the same temporary Etude variable T1.

Next comes the Etude rendition of the assignment operation “*a = *b”, whose
translation follows a similar structure to that of the initialiser described above, observ-
ing, however, that, in the present construct, the two operands of “=” are placed in the
same Etude “LET” group, in order to capture the unspecified aspect of their evaluation
order. Specifically, the following term binds the l-value “*a” to its Etude counterpart
T1, the value of “*b” to T2 and, finally, saves the result of converting “*a” into the type
of the targeted object as the temporary Etude variable T3:

LET () = LET T1 = LET T1 = LET T1 = V2;
GET [T1]O.62,

T2 = LET T1 = LET T1 =V3;
GET [T1]O.62;

GET [T1]Z.32;
LET T3 = Z.32Z.32(T2);
LET () = SET [T1]Z.32 TO T3;
RET (T3);

RET ();

In the same manner, the next expression statement “*b = t” is depicted by a “LET”
structure of the following form:

LET () = LET T1 = LET T1 = LET T1 = V3;
GET [T1]O.62,

T2 = LET T1 = V4;
GET [T1]Z.32;

LET T3 = Z.32Z.32(T2);
LET () = SET [T1]Z.32 TO T3;
RET (T3);

RET ();

Before returning to the caller, the function purges its local variable t from the program’s
address space using a term of the form “DEL (ξ̄)”, in which ξ̄ is the same envelope as that
applied by the corresponding “NEW (ξ̄)” term earlier within the function. Observe that
Etude is perfectly capable of figuring out that the operation pertains to the most-recently
introduced object, which, in this case, represents the function’s sole contribution to its
address space, i.e., the required variable t:

LET () = DEL (0, Z.32);

Once the original address space current upon the original entry into swap has been
restored, we can proceed with a jump to the function’s exit block V5, as depicted by
the following tail call, whose argument list is constructed from all of the remaining
variables in the current scope, i.e, the two function arguments a and b:

V5(V2, V3)

248 CHAPTER 5: THE C PROGRAMMING LANGUAGE

Like every such exit block in the program, an actual body of the Etude function V5

consists entirely of the trivial Etude term “RET ()”, that, in effect, leaves the continua-
tion passing structure of the function’s control-flow graph and returns immediately to
its original caller:

V5 = λV2, V3.
RET ()

A translation of the sort function is rather more complicated. In its Etude represen-
tation, the three parameter variables a, i and j are depicted by V7, V8 and V9. Once
again, since this C function has a “void” type, the variable V6 reserved for its returned
object is left unused in the program:

sort = λV7, V8, V9.

First of all, sort begins with a trivial Etude term “RET ()” derived from the empty list
of declarations hidden at the beginning of its body statement:

LET () = ();

It then proceeds with an evaluation of the controlling expression “j > i + 1” found in its
outermost “if” statement, using a nested “LET” structure akin to the earlier depiction
of the assignment operations in swap:

LET T1 = LET T1 = LET T1 = LET T1 = V9;
GET [T1]Z.32,

T2 = LET T1 = LET T1 =V8;
GET [T1]Z.32,

T2 = #1Z.32;
RET ((Z.32Z.32(T1)) +Z.32 (Z.32Z.32(T2)));

RET ((Z.32Z.32(T1)) >Z.32 (Z.32Z.32(T2)));
RET (T1 6=Z.32 #0Z.32);

Once T1 has been set to the desired condition, its value is applied in the actual “if”
statement as follows. In the “true” branch, we begin with a declaration of the three
integer variables p, l and r found at the top of the corresponding compound statement,
which will henceforth be represented by V10, V11 and V12, respectively:

IF T1 THEN

LET V10 = NEW (0, Z.32);
LET V11 = NEW (0, Z.32);
LET V12 = NEW (0, Z.32);

Next, the new memory-resident object p that is specified by the first of these variables
V10 must be populated with its initialiser expression “a[i]”:

LET () = LET () = LET () = LET T1 = LET T1 = LET T1 = V7,
T2 = LET T1 =V8;

GET [T1]Z.32;
RET (T1 +O.62

((Z.64Z.32(T2)) �Z.64 #4Z.64));
GET [T1]Z.32;

LET () = SETI [V10]Z.32 TO (Z.32Z.32(T1));
RET ();

5.11 EXTENDED EXAMPLE 249

In the above term, the reader will doubtless notice the meticulous depiction of the
pointer arithmetic performed by the initialiser, recalling that all array subscript oper-
ations such as “a[i]” are essentially rendered equivalent to “*((a)+i)” by their
translation in Section 5.7. Under that interpretation, the l-value examined by the above
initialiser is depicted by the Etude expression “T1 +O.62 ((Z.64Z.32(T2)) �Z.64 #4Z.64)”
which, intuitively, increments the value of the pointer a that is stored in T1 by the
product of the integer i (or T2), converted into the standard integer format “Z.64” and
multiplied by the size of the pointer’s referenced type, equal to 4 bytes on the MMIX
architecture.

Similarly, the C variable l, which masquerades as V11 in the constructed Etude
module, is initialised to “i + 1”:

LET T1 = LET T1 = LET T1 = V8;
GET [T1]Z.32,

T2 = #1Z.32;
RET ((Z.32Z.32(T1)) +Z.32 (Z.32Z.32(T2)));

LET () = SETI [V11]Z.32 TO (Z.32Z.32(T1));
RET ();

Finally, the variable r (or V12) is assigned the value of j as requested by the source
program:

LET T1 = LET T1 = V9;
GET [T1]Z.32;

LET () = SETI [V12]Z.32 TO (Z.32Z.32(T1));
RET ();

The unusually-deep nesting structure of these initialisers is a direct result of the means
by which the denotations of individual initialiser expressions are composed into a
single Etude term during their translation in Section 5.8.11. In particular, given two
initialisers with the meaning of τ1 and τ2, the collective denotation of the surrounding
declarator list would have the form of “LET () = τ1; τ2”, although the reader should not
be overly alarmed by this complexity, given that even the simplest of all optimising
compilers would break no sweat when asked to reduce the resulting structure back into
its pleasantly-flat representation.

Once all three of our local variables have been assigned their correct initial values,
we are ready to proceed with a call to the body of the translated “while” loop, whose
basic block is bound below to the Etude variable V13, supplying it with all six local
variables visible in the current scope, i.e., a, i, j, p, l and r:

V13(V7, V8, V9, V10, V11, V12)

Otherwise, in the implied “else” branch of the above “if” statement, control is sim-
ply transferred to the conditional’s exit block V26, whose local scope consists entirely
of the three function arguments a, i and j:

ELSE

V26(V7, V8, V9)

250 CHAPTER 5: THE C PROGRAMMING LANGUAGE

The actual body of the loop found at the heart of swap is represented in Etude by the
following function:

V13 = λV7, V8, V9, V10, V11, V12.

which, predictably, begins with an evaluation of the controlling expression “l < r”
from the corresponding “while” statement:

LET T1 = LET T1 = LET T1 = LET T1 =V11;
GET [T1]Z.32,

T2 = LET T1 =V12;
GET [T1]Z.32;

RET ((Z.32Z.32(T1)) <Z.32 (Z.32Z.32(T2)));
RET (T1 6=Z.32 #0Z.32);

If that expression has a true value, we can proceed with an evaluation of the loop’s
nested statement. Once again, that statement begins with an empty set of declaration
initialisers that are translated into the trivial Etude term “RET ()”:

IF T1 THEN

LET () = ();

Here, the first task on the program’s agenda is an evaluation of the controlling expres-
sion “a[l] <= p” from the “if” statement embedded within the loop’s body:

LET T1 = LET T1 = LET T1 = LET T1 = LET T1 = V7,
T2 = LET T1 =V11;

GET [T1]Z.32;
RET (T1 +O.62

((Z.64Z.32(T2)) �Z.64 #4Z.64));
GET [T1]Z.32,

T2 = LET T1 = V10;
GET [T1]Z.32;

RET ((Z.32Z.32(T1)) �Z.32 (Z.32Z.32(T2)));
RET (T1 6=Z.32 #0Z.32);

If true, this expression prompts a reduction of the unary increment operation “++l”, as
represented by the following predictable “LET” structure:

IF T1 THEN

LET () = LET T1 = LET T1 = V11,
T2 = #1Z.32;

LET T3 = GET [T1]Z.32;
LET T4 = T3 +Z.32 (Z.32Z.32(T2));
LET () = SET [T1]Z.32 TO T4;
RET (T4);

RET ();

Once the value of l has been updated, we simply proceed with a jump to the exit block
V16 of the current selection statement, retaining all six of the C variables a, i, j, p, l
and r from its surrounding scope:

V16(V7, V8, V9, V10, V11, V12)

5.11 EXTENDED EXAMPLE 251

Otherwise, the program allocates a pair of internal pointer variables V14 and V15, whose
Etude format “O.64” corresponds directly to the C type “int *”, as required for storage
of the argument values during the upcoming call to the swap function:

ELSE

LET V14 = NEW (0, O.62);
LET V15 = NEW (0, O.62);

The actual address of that function is then placed into the temporary variable T1:

LET () = LET T1 = swap,

and the temporary argument object V14, which corresponds to the function’s initial
operand a, is populated with its required value of “&a[l]”:

() = LET T1 = LET T1 = V7,
T2 = LET T1 = V11;

GET [T1]Z.32;
RET (T1 +O.62 ((Z.64Z.32(T2)) �Z.64 #4Z.64));

SETI [V14]O.62 TO (O.62O.62(T1)),

Similarly, the second argument V15 is set to “&a[--r]”:

() = LET T1 = LET T1 = V7,
T2 = LET T1 = V12,

T2 = #1Z.32;
LET T3 = GET [T1]Z.32;
LET T4 = T3 �Z.32 (Z.32Z.32(T2));
LET () = SET [T1]Z.32 TO T4;
RET (T4);

RET (T1 +O.62 ((Z.64Z.32(T2)) �Z.64 #4Z.64));
SETI [V15]O.62 TO (O.62O.62(T1));

at which point we are ready to perform the actual function application:

T1(V14, V15);

Next, we wrap up the representation of the current expression statement by purging the
temporary variables V15 and V14 from the program’s address space, in the reverse order
of their earlier introduction by the corresponding “NEW” terms:

LET () = DEL (0, O.62);
LET () = DEL (0, O.62);

Finally, we can conclude the entire “if” statement with a jump to its exit block V16,
once again retaining the entire scope of the surrounding statement:

V16(V7, V8, V9, V10, V11, V12)

Otherwise, the loop’s controlling expression “l < r” must have a false value and,
accordingly, we can leave the “while” statement immediately with a jump to its exit
block V17 that is rendered in Etude as follows:

ELSE

V17(V7, V8, V9, V10, V11, V12)

252 CHAPTER 5: THE C PROGRAMMING LANGUAGE

As already mentioned, the Etude variable V16 is bound to the exit block of the inner
“if” statement in the body of swap, which simply transfers control back to the begin-
ning of the loop, as represented by the following tail call to the corresponding Etude
function V13:

V16 = λV7, V8, V9, V10, V11, V12.
V13(V7, V8, V9, V10, V11, V12)

On the other hand, the loop’s own exit block V17 continues as follows:

V17 = λV7, V8, V9, V10, V11, V12.

First, we need to allocate a pair of new Etude variables V18 and V19 for the impending
call to the C function swap:

LET V18 = NEW (0, O.62);
LET V19 = NEW (0, O.62);

As per the original C program, their values are initialised to “&a[--l]” and “&a[i]”.
The actual call is then performed by the application term “T1(V18, V19)”:

LET () = LET T1 = swap,
() = LET T1 = LET T1 = V7,

T2 = LET T1 = V11,
T2 = #1Z.32;

LET T3 = GET [T1]Z.32;
LET T4 = T3 �Z.32 (Z.32Z.32(T2));
LET () = SET [T1]Z.32 TO T4;
RET (T4);

RET (T1 +O.62 ((Z.64Z.32(T2)) �Z.64 #4Z.64));
SETI [V18]O.62 TO (O.62O.62(T1)),

() = LET T1 = LET T1 = V7,
T2 = LET T1 = V8;

GET [T1]Z.32;
RET (T1 +O.62 ((Z.64Z.32(T2)) �Z.64 #4Z.64));

SETI [V19]O.62 TO (O.62O.62(T1));
T1(V18, V19);

At the end of the entire expression statement, these temporary variables are no longer
required and, accordingly, they are purged from the program’s address space, ignoring
the fact that they could be easily reused in a subsequent call to sort:

LET () = DEL (0, O.62);
LET () = DEL (0, O.62);

Next comes a translation of the expression statement “sort(a, i, l);”, for which
we reserve the three Etude variables V20, V21 and V22, observing that the first argument
of sort represents a pointer, but the other two have the integer format “Z.32”:

LET V20 = NEW (0, O.62);
LET V21 = NEW (0, Z .32);
LET V22 = NEW (0, Z .32);

5.11 EXTENDED EXAMPLE 253

The actual function call operation “sort(a, i, l)” is then performed by the follow-
ing sequence of Etude assignments and application terms:

LET () = LET T1 = sort,
() = LET T1 = V7;

SETI [V20]O.62 TO (O.62O.62(T1)),
() = LET T1 = LET T1 = V8;

GET [T1]Z.32;
SETI [V21]Z.32 TO (Z.32Z.32(T1)),

() = LET T1 = LET T1 = V11;
GET [T1]Z.32;

SETI [V22]Z.32 TO (Z.32Z.32(T1));
T1(V20, V21, V22);

Once again, the three argument objects V22, V21 and V20 are quietly discarded at the end
of that expression statement, in the proper reverse order of their earlier allocation:

LET () = DEL (0, Z .32);
LET () = DEL (0, Z .32);
LET () = DEL (0, O.62);

Similarly, the second call to swap with the argument list of “(a, r, i)” is translated
into the following monadic sequence:

LET V23 = NEW (0, O.62);
LET V24 = NEW (0, Z .32);
LET V25 = NEW (0, Z .32);

LET () = LET T1 = sort,
() = LET T1 = V7;

SETI [V23]O.62 TO (O.62O.62(T1)),
() = LET T1 = LET T1 = V12;

GET [T1]Z.32;
SETI [V24]Z.32 TO (Z.32Z.32(T1)),

() = LET T1 = LET T1 = V8;
GET [T1]Z.32;

SETI [V25]Z.32 TO (Z.32Z.32(T1));
T1(V23, V24, V25);

LET () = DEL (0, Z .32);
LET () = DEL (0, Z .32);
LET () = DEL (0, O .62);

At this point, all that remains in the program is the purging from its address space of the
three C variables p, l and r, which are about to leave the scope of the inner compound
statement in the body of sort:

LET () = DEL (0, Z.32);
LET () = DEL (0, Z.32);
LET () = DEL (0, Z.32);

Finally, we are ready to conclude the outer “if” statement in sort with a jump to its
exit block V26:

V26(V7, V8, V9)

254 CHAPTER 5: THE C PROGRAMMING LANGUAGE

where the actual implementation of that exit block is depicted in Etude by a trivial jump
to the exit block V27 of the entire sort function:

V26 = λV7, V8, V9.
V27(V7, V8, V9)

Last but not least, the exit block of swap itself simply returns to its ultimate caller:

V27 = λV7, V8, V9.
RET ()

Perhaps the most striking feature of the above translation is its extraordinary verbosity,
whereby a mere 15 lines of C has been converted into a whooping 182 lines of Etude
term definitions. Unfortunately, such code explosion is all but unavoidable under trans-
lation of a high-level language akin to C into a low-level program representation such
as Etude, in which all of the computational complexities imposed by the underlying
instruction set architecture must be exposed with an excruciating amount of detail.

In this work, the problem of loquacity is further aggravated by our omission of even
the simples optimising program transformations, which could be easily applied to the
above Etude modules. For example, if we chose to propagate trivial atomic bindings
such as “LET ν̄ = ᾱ; τ” into the body term τ , eliminate redundant operations such as
automorphic conversions of the form “φ φ (α)” that specify identical source and target
formats and flatten the program’s deep nesting of “LET” statements, then the above
module would be reduced to less then a half of its present length. It would also be
easy to demonstrate that all such optimisations preserve the algebraic model of Etude
defined earlier in Chapter 4 and, accordingly, to detach them from the actual translation
semantics of the C programming language.

However, when it comes to a reasoning about the actual properties of individual
C programs, the formal model presented in this chapter should, in principle, be able
to facilitate arbitrary verification tasks for all C programs that are well-formed under
the portable subset of the language. When combined with the additional information
derived from its MMIX specialisation in Chapter 6 and Appendix C, even programs that
rely on various implementation-defined behaviours can be analysed successfully. While
it is certainly true that, due to the great amount of detail introduced by the translation,
most non-trivial verification tasks would require a sensible engineering regime and,
more likely than not, some degree of automation from appropriate tools, the relative
directness with which the individual C constructs have been mapped onto their Etude
counterparts ensures that such tools and practices can, in principle, be devised entirely
within the formal framework presented in this work.

6

GENERATING
CODE

CHAPTER 6: GENERATING CODE 257

Errors using inadequate data are much less
than those using no data at all.

— Charles Babbage (1792–1871)

Ultimately, the elementary purpose of every compiler is a representation of its input
programs in the designated target language, a rôle that has been traditionally assigned
to a portion of its implementation known as a back end. It is this final stage of the entire
translation process to which I will now turn the reader’s attention.

A satisfactory formal verification of a compiler’s back end poses some non-trivial
challenges beyond those already encountered in the previous two chapters. Usually,
the rôle of the target language is assumed by an instruction set architecture of some
computational hardware such as ARM, MIPS, SPARC or x86. In these languages,
programs are represented universally by sequences of primitive entities known as in-
structions, every one of which is encoded into a bit pattern known variously as a byte or
a word, depending on its precise size and semantics. Accordingly, the structure of typ-
ical target programs differs significantly from their rendition under languages such as
C or Etude, which offer a vastly disparate abstraction of variables, objects and control
flow structures. These fundamental differences already pose a substantial challenge for
the design of a robust translation system, but even if we could somehow overcome all
such difficulties, the task of establishing correctness for a compiler’s back end remains
complicated by a number of further issues.

First, of all, in the final stage of translation, we cannot readily assume the approach
from Chapter 5, whereby the source language was defined through a mapping of its syn-
tactic constructs onto the compiler’s intermediate program representation. It would be
futile to attempt a definition of Etude in terms of any given instruction set architecture,
since most users would shiver at the thought of their programs having incomparable
meanings on different computers. It would be equally risky to attack the problem using
conventional extensional techniques, given that a formal establishment of an equiva-
lence between the disparate semantic models of these two computational paradigms
would require a precise definition of the targeted system, which few architectures are
prepared to provide in the real world. In the interest of relevance, it would be vastly
preferable to retain the view of the compiler’s target as a formal language rather than an
algebra, refraining from a direct operational description of the behaviours exhibited by
its machine instructions and, instead, formulating their semantic interpretation through
a translation into some other well-understood calculus of computable functions, similar
in spirit to the one described in Chapter 5 for our source language C.

258 CHAPTER 6: GENERATING CODE

As demonstrated earlier in Chapter 2, if the translation semantics of both the source
and the target language can be rendered as a pair of total functions ρ and ψ that share
a common codomain in the form of the compiler’s intermediate program representa-
tion, then a correctness of the entire translation system rests on a single equivalence
judgement ρ � ψ̂ �ψ = ρ , known as the principle of linear correctness, in which ψ̂

represents the actual code generation function of the translation system. For the present
compiler, this judgement is established formally in Section 6.4, together with a formal
definition of the translation function ψ̂ . The actual semantics ψ of our target architec-
ture are described separately in Section 6.2, while a suitable rendition of ρ has been
already provided in Chapter 5, in the form of the function DTU, which maps all valid C
programs to their Etude counterparts.

In order to sidestep any religious debates on the relative merits of various popular
instruction set architectures such as SPARC or x86, in this chapter I choose to focus
on a translation of Etude programs into the MMIX architecture, which was designed
for the specific purpose of presenting low-level assembly programs [Knuth 05]. The
instruction set of MMIX provides a very realistic sample of the typical computational
facilities supported by its industrial counterparts and, in principle, the architecture
could be easily rendered into an efficient hardware implementation. Nevertheless, the
unparalleled uniformity of all MMIX instruction forms greatly simplify the following
discussion, which permits us to focus on the actual academic issues at hand instead of
the peculiarities of some given computational system.

6.1 The MMIX Architecture
The MMIX instruction set architecture describes a simple yet capable von Neumann
machine, in which both programs and data are stored within the same 64-bit virtual
address space. The upper half of that address space, i.e., the set of all memory lo-
cations with negative address values, is reserved for use by the operating system and
remains inaccessible to all ordinary programs of the kind scrutinised in this chapter.
The remaining 63 bits of every virtual address are subdivided as follows:

seg0 offset
6163 0

The 2-bit field seg selects one of four 261-byte segments numbered 0, 1, 2 and 3,
which, by convention, are dedicated to the program’s code, data, heap and hardware-
maintained data stack, respectively. The 61-bit offset field is used to specify the precise
location of every memory-resident object stored within one of these segments. In
particular, an n-byte object stored in bytes o, o + 1 ... o + n� 1 of a given segment
s can be found under the address of 261s + o. The MMIX architecture utilises the big-
endian addressing convention, so that the eight most significant bits of such an object
are always placed at the address 261s + o.

6.1 THE MMIX ARCHITECTURE 259

Besides this random-access memory, MMIX also provides 256 individual general
purpose registers with names of the form $0, $1, $3 and so on. Every one of these
registers is capable of storing a single word of data formed from a sequence of 64
bits. Depending on its context, such word may be interpreted variously as a natural
number n in the range 0 � n < 264, a signed integer z in the range �263 � z < 263,
or else as a double precision floating point quantity of the form defined in the IEEE
Standard for Binary Floating-Point Arithmetic [IEEE 754]. Further, the architecture
defines 32 special purpose registers, although only one of these, namely the remainder
register rR, is relevant to a translation of ordinary C programs. Most of the other 31
special purpose registers are reserved for various uses by the operating system and are
not discussed further in this work. The architecture follows in the RISC tradition of
MIPS and SPARC, in that most of its arithmetic instructions are designed to operate
only on values stored in general purpose registers, with all other data storage facilities
made accessible only through appropriate load and store instructions, which facilitate
movement of information between general purpose registers and their special purpose
counterparts or the program’s address space.

Every MMIX instruction is represented uniformly by a 32-bit unsigned integer
value, whose binary encoding is organised into four 8-bit fields as follows:

OP X Y Z
32 081624

In particular, the OP field stored in bits 24 to 31 is known as the instruction’s opcode.
Intuitively, it selects one of the 256 possible MMIX instruction forms such as addition
and multiplication, which happen to be assigned the respective opcode numbers 32
and 24. The remaining fields X, Y and Z contain up to three 8-bit operands for the
instruction. In most cases, each of these operands selects one of the 256 general purpose
registers $0 ... $255 described earlier, which, in the following discussion, is represented
symbolically by the notations “$X”, “$Y ” and “$Z” for the X, Y and Z operands,
respectively. Typically, the register $X is used to store the operation’s actual result,
while $Y and $Z represent two input values for the instruction. For some opcodes,
however, one or more of these three fields may be interpreted directly as an immediate
operand, in which case its value is always taken to depict an unsigned numeric constant
n in the range 0 � n � 255.

Although, in real-life, every MMIX program is ultimately represented as a binary
object that describes its initial address space configuration and memory image, for the
sake of exposition, the following discussion is restricted to an analysis of a simpler
symbolic representation of such programs, whereby an abstract syntax of the individual
object files, from which that memory image will be eventually assembled by the sys-
tem’s linker, is rendered as a symbolic MMIX module. In particular, every such module
is represented by a structure of the form “LET S TEXT T DATA D IN σ0”, assembled
from the entry symbol σ0 and three finite maps S, T and D, known as the module’s

260 CHAPTER 6: GENERATING CODE

symbol table, text and data segments, respectively. For simplicity, in this work all data
segments are represented directly by a set of Etude item bindings, so that, in the follow-
ing discussion, we will not concern ourselves with the trivial but tedious details of their
translation. On the other hand, the text segment of an MMIX module contains the ac-
tual instructions of the program, grouped together into sets known as sections, that will
be eventually inserted into the address space of a complete program at various locations
chosen in an unspecified manner by the system’s linking algorithm. Until then, the pre-
cise addresses of all segments are represented by abstract variables known as symbols.
Formally, every symbol is depicted either by some integer label “#n”, or else by the dis-
tinguished value “LOC”, reserved for a somewhat specialised purpose described later
in Section 6.4. The module’s symbol table S maps any of its symbols that are exported
or imported by the module to appropriate Haskell string values that serve as these sym-
bols’ external names during the later linking process. In Haskell, the structure of all
symbolic MMIX modules can be represented by the following BNF grammar:

MMIX-module:
LET MMIX-symbols TEXT MMIX-text DATA MMIX-data IN MMIX-symbol

MMIX-symbols:
MMIX-symbol! string

MMIX-text :
MMIX-symbol! MMIX-section

MMIX-section:
[MMIX-instr]

MMIX-data:
MMIX-symbol! itemMMIX-var

MMIX-symbol:
integer
LOC

The actual content of every text section is depicted simply by a list of symbolic MMIX
instructions. Every such instruction consists of its opcode, followed by the three
operand fields X, Y and Z and an optional symbol. The entire construct is generally
written as “OP X, Y, Z @ σopt”, except that the “@” keyword is usually omitted for
conciseness whenever the instruction’s syntax does not include a symbol component.
The value of each operand field is depicted simply by a numeric representation of its
binary encoding, so that the abstract syntax of all symbolic instructions can be captured
in Haskell using the following data type definition:

MMIX-instr :
MMIX-opcode integer , integer , integer @ MMIX-symbolopt

In a binary representation of MMIX modules, symbolic annotations are traditionally
stored separately from the actual instruction stream as relocation records. However,
since their direct incorporation into the “MMIX-instr” type provides for a much more
eloquent depiction of the architecture’s semantics in Section 6.2, in this work I omit

6.1 THE MMIX ARCHITECTURE 261

all details of such binary representations of MMIX instructions, with an understanding
that their typical implementation could be easily formalised if deemed necessary at
some future time.

Last but not least, values of the individual MMIX opcodes are always depicted in
the symbolic representation by their standard mnemonics such as “ADDU” and “MULU”.
Formally, the complete list of all such MMIX mnemonics figures in the following
definition of the Haskell type “MMIX-opcode”:

MMIX-opcode: one of

TRAP FCMP FUN FEQL FADD FIX FSUB FIXU
FLOT FLOATI FLOTU FLOTUI SFLOT SFLOTI SFLOTU SFLOTUI
FMUL FCMPE FUNE FEQLE FDIV FSQRT FREM FINT
MUL MULI MULU MULUI DIV DIVI DIVU DIVUI

ADD ADDI ADDU ADDUI SUB SUBI SUBU SUBUI
2ADDU 2ADDUI 4ADDU 4ADDUI 8ADDU 8ADDUI 16ADDU 16ADDUI
CMP CMPI CMPU CMPUI NEG NEGI NEGU NEGUI
SL SLI SLU SLUI SR SRI SRU SRUI

BN BNB BZ BZB BP BPB BOD BODB
BNN BNNB BNZ BNZB BNP BNPB BEV BEVB
PBN PBNB PBZ PBZB PBP PBPB PBOD PBODB
PBNN PBNNB PBNZ PBNZB PBNP PBNPB PBEV PBEVB

CSN CSNI CSZ CSZI CSP CSPI CSOD CSODI
CSNN CSNNI CSNZ CSNZI CSNP CSNPI CSEV CSEVI
ZSN ZSNI ZSZ ZSZI ZSP ZSPI ZSOD ZSODI
ZSNN ZSNNI ZSNZ ZSNZI ZSNP ZSNPI ZSEV ZSEVI

LDB LDBI LDBU LDBUI LDW LDWI LDWU LDWUI
LDT LDTI LDTU LDTUI LDO LDOI LDOU LDOUI
LDSF LDSFI LDHT LDHTI CSWAP CSWAPI LDUNC LDUNCI
LDVTS LDVTSI PRELD PRELDI PREGO PREGOI GO GOI

STB STBI STBU STBUI STW STWI STWU STWUI
STT STTI STTU STTUI STO STOI STOU STOUI
STSF STSFI STHT STHTI STCO STCOI STUNC STUNCI
SYNCD SYNCDI PREST PRESTI SYNCID SYNCIDI PUSHGO PUSHGOI

OR ORI ORN ORNI NOR NORI XOR XORI
AND ANDI ANDN ANDNI NAND NANDI NXOR NXORI
BDIF BDIFI WDIF WDIFI TDIF TDIFI ODIF ODIFI
MUX MUXI SADD SADDI MOR MORI MXOR MXORI

SETH SETMH SETML SETL INCH INCMH INCML INCL
ORH ORMH ORML ORL ANDNH ANDNMH ANDNML ANDNL
JMP JMPB PUSHJ PUSHJB GETA GETAB PUT PUTI
POP RESUME SAVE UNSAVE SYNC SWYM GET TRIP

In this definition, all opcodes are listed in the order of their actual numeric values,
so that “TRAP” represents opcode 0, “FCMP” stands for the numeric value of 1 and
so on, up to “TRIP”, which depicts the final opcode value 255. In order to focus the
present discussion on its primary topic of compiler design, rather than the often esoteric

262 CHAPTER 6: GENERATING CODE

semantics of the MMIX architecture, I restrict the present study to a small subset of
all valid MMIX instructions. Specifically, only the 50 opcodes whose mnemonics
are emphasised in the above definition of “MMIX-instr” are ever mentioned in the
remainder of this chapter or assigned a precise semantic interpretation. Further, even
though the architecture defines a very capable set of exception handling facilities, for
simplicity I assume that all exceptions have been invariably disabled for the entire
duration of a program’s execution, so that any invalid arithmetic operations can be
always assumed to deliver their predictable default values. More so, I take for granted
that the processor has been configured permanently with the default IEEE rounding
mode for all floating point operations, also computing any denormalised results to
their maximum available precisions. The ensuing semantics of the selected 50 MMIX
instruction forms are presented with meticulous detail in the following section.

6.2 Semantics of MMIX
In this work, the meanings of all MMIX programs are described through their transla-
tion into Etude, as defined by a Haskell function DM. In particular, the semantic sig-
nificance of a symbolic module “LET S TEXT T DATA D IN σ0” is represented by the
Etude construct “MODULE τ EXPORT ξ̄ WHERE ῑ”, in which the initialiser term τ rep-
resents an application of the Etude function derived from a jump to the start symbol
σ0, the export list ξ̄ is extracted from the MMIX symbol table S and the set of item
definitions ῑ is derived from the module’s data, symbol and text segments as follows:

DM[[.]] :: MMIX-module ! moduleMMIX-var

DM[[LET S TEXT T DATA D IN σ0]]

= [[MODULE τ EXPORT ξ̄ WHERE ῑ]]
where τ = [[σ0.0(π)]]

ξ̄ = f(S(σk):σk.0) σk dom(S), σk 2 (dom(T) [dom(D))g
ῑ = f(σk.0:IMP [[S(σk)]]) σk dom(S), σk /2 (dom(T) [dom(D))g
[f(σk.0:D(σk)) σk dom(D)g
[f(σk.0:DI(σk.nk . ιk)) σk dom(T), (ιk:nk) T(σk) [0, 4 ...]g

In particular, the resulting export list ξ̄ includes a subset of the module’s symbol table
S, corresponding to those symbols from the domain of S whose bindings are provided
locally by the associated data or text segment. On the other hand, every undeclared
symbol σk 2 dom(S) is introduced into the constructed module’s set of item definitions
ῑ with a binding to an imported Etude item “IMP x”, in which x represents the sym-
bol’s external name as specified in S. Further, ῑ also includes the bindings of all object
items defined in the supplied data segment D. Finally, it is also extended with a set of
function items derived from the text segment T . In particular, each instruction found
at some byte offset n into one the text sections σk in the entire source module mate-
rialises in ῑ as a binding of the MMIX variable “σk.4n” to an Etude function derived
from the instruction’s syntax by an algorithm DI defined throughout the remainder
of the present section.

6.2 SEMANTICS OF MMIX 263

In the resulting program representation, all Etude variables are depicted universally
by values of the following Haskell type:

MMIX-var :
$ integer
rR
MMIX-symbol . integer

Intuitively, variables of the form “$N” are used to denote the 256 general purpose reg-
isters provided by every MMIX processor, while the “σ.n” constructs depict symbolic
memory locations, or names assigned to various forms of Etude item definitions. Every
such variable consists of an MMIX symbol σ that must be associated with some relo-
catable segment of the surrounding module, together with an integer n that represents
a byte offset into that segment’s memory-resident image. Finally, a designated symbol
“rR” represents the architecture’s remainder register mentioned earlier in Section 6.1.

As implied by the above definition of DM, every MMIX instruction denotes a
separate Etude function that is bound to a symbolic variable “σ.4n”, derived from
the instruction’s location within the program’s eventual address space. The body of
such a function represents a monadic term that captures the instruction’s operational
behaviour. Strictly speaking, only the “TRAP” instruction, which is mapped to an Etude
system call operation, as well as all of the memory access operations such as “LDOUI”
and “STOUI”, must be represented by monadic term forms, since all other instructions
always denote terms that are reducible to pure atomic expressions lifted into the term
monad using a trivial “RET” construct. Nevertheless, for the sake of exposition, we will
treat all MMIX instructions equally in the following translation.

Further, in the interest of consistency, the denotation of every MMIX instruction
accepts the same list of parameters, which includes every conceivable general purpose
register $N, as well as the remainder register rR. For conciseness, in the following pre-
sentation this parameter list will be always represented collectively by the notation “π”,
which can be presented with a formal mandate by the following Haskell construction:

π :: parametersMMIX-var

π = [$0 ... $255] ++ [rR]

Given the above definition, a jump to a text segment address denoted by some Etude
variable ν can be depicted simply as an Etude tail call of the form “ν (π)”. In a purely-
sequential MMIX program, such jumps are performed implicitly at the end of every
machine instruction. Specifically, if a given instruction is located at some memory
address “σ.n”, then the following instruction is generally represented by the Etude
variable “σ.[[n + 4]]”, so that the denotations of most MMIX instructions end in an
Etude application term of the form “[[σ.n� 4]](π)”, in which the notation “ν � n”
adjusts the existing offset value of the symbolic variable ν by n bytes as follows:

[[.]]� [[.]] :: MMIX-var ! integer ! MMIX-var

[[σ.n]]� [[m]] = [[σ.[[n + m]]]]

264 CHAPTER 6: GENERATING CODE

In particular, the precise semantics of a given MMIX instruction ι that is located at some
variable address ν within the program’s address space is represented by the notation
“DI(ν . ι)”, which maps every such instruction to an appropriate Etude function with
an equivalent operational behaviour. Formally, the algorithm DI is defined by a Haskell
construction of the following type:

DI[[.]] :: (MMIX-var . MMIX-instr) ! functionMMIX-var

Most simple MMIX operations such as “ADDU $X, $Y, $Z” denote Etude functions
of the form “λπ .LET $X = $Y opφ $Z; [[ν � 4]](π)”, in which “opφ” represents an ap-
propriate binary Etude operator and format. In all cases, φ will be set to one of the three
standard arithmetic formats “N.64”, “Z.64” or “R.64”, as appropriate for the instruc-
tion’s interpretation of its operand and result values. In particular, this simple semantic
translation is adopted directly by the following thirteen MMIX instruction forms:

DI[[ν . FADD X, Y, Z]] = [[λπ .LET $X = $Y + R.64 $Z; [[ν � 4]](π)]]
DI[[ν . FSUB X, Y, Z]] = [[λπ .LET $X = $Y � R.64 $Z; [[ν � 4]](π)]]
DI[[ν . FMUL X, Y, Z]] = [[λπ .LET $X = $Y � R.64 $Z; [[ν � 4]](π)]]
DI[[ν . FDIV X, Y, Z]] = [[λπ .LET $X = $Y � R.64 $Z; [[ν � 4]](π)]]
DI[[ν . ADDU X, Y, Z]] = [[λπ .LET $X = $Y + N.64 $Z; [[ν � 4]](π)]]
DI[[ν . SUBU X, Y, Z]] = [[λπ .LET $X = $Y � N.64 $Z; [[ν � 4]](π)]]
DI[[ν . MULU X, Y, Z]] = [[λπ .LET $X = $Y � N.64 $Z; [[ν � 4]](π)]]
DI[[ν . AND X, Y, Z]] = [[λπ .LET $X = $Y 4N.64 $Z; [[ν � 4]](π)]]
DI[[ν . XOR X, Y, Z]] = [[λπ .LET $X = $Y 5N.64 $Z; [[ν � 4]](π)]]
DI[[ν . OR X, Y, Z]] = [[λπ .LET $X = $Y 5N.64 $Z; [[ν � 4]](π)]]
DI[[ν . SLU X, Y, Z]] = [[λπ .LET $X = $Y �N.64 $Z; [[ν � 4]](π)]]
DI[[ν . SRU X, Y, Z]] = [[λπ .LET $X = $Y �N.64 $Z; [[ν � 4]](π)]]
DI[[ν . SR X, Y, Z]] = [[λπ .LET $X = $Y �Z.64 $Z; [[ν � 4]](π)]]

The reader should observe that, by convention, opcodes whose mnemonics begin with
“F” always represent rational or floating point operations, while all remaining instruc-
tion forms interpret their arguments as integer values. A few MMIX mnemonics are
also supplied in pairs of the form “XXX ” and “XXXU”, in which case the earlier vari-
ant performs the required operation under the integer format “Z.64”, while the later
assumes the default unsigned integer model of a modulo-264 arithmetic.

On MMIX, the integer division instructions “DIVU” and “DIV” compute simulta-
neously both the quotient and the remainder from the corresponding arithmetic opera-
tion. The later is always stored in the remainder register rR, so that the formal meanings
of these two instruction forms can be captured concisely by the following translations:

DI[[ν . DIVU X, Y, Z]] = [[λπ .LET $X = $Y �N.64 $Z, rR = $Y . .
N.64 $Z; [[ν � 4]](π)]]

DI[[ν . DIV X, Y, Z]] = [[λπ .LET $X = $Y �Z.64 $Z, rR = $Y . .
Z.64 $Z; [[ν � 4]](π)]]

Further, the “FCMP”, “CMPU” and “CMP” instructions perform comparison of two
numeric quantities, returning �1, 0 or 1 whenever their first operand is less than, equal
to or greater than the second. Mathematically, this can be expressed as a subtraction
operation of the form “($Z < $Y)� ($Y < $Z)”, assuming the standard encoding of

6.2 SEMANTICS OF MMIX 265

relational operations as the numeric constants 1 and 0 for true and false boolean values,
respectively. In Etude, the resulting term structures are represented as follows:

DI[[ν . FCMP X, Y, Z]] = [[λπ .LET $X = ($Z <R.64 $Y) �Z.64 ($Y <R.64 $Z); [[ν � 4]](π)]]
DI[[ν . CMPU X, Y, Z]] = [[λπ .LET $X = ($Z <N.64 $Y) �Z.64 ($Y <N.64 $Z); [[ν � 4]](π)]]
DI[[ν . CMP X, Y, Z]] = [[λπ .LET $X = ($Z <Z.64 $Y) �Z.64 ($Y <Z.64 $Z); [[ν � 4]](π)]]

In order to facilitate more general comparison operations, the architecture also provides
a set of six instructions with the mnemonic forms “ZSNI”, “ZSZI”, “ZSPI”, “ZSNNI”,
“ZSNZI” and “ZSNPI”. Intuitively, each of these instructions sets the register $X to
the integer constant Z if $Y has, respectively, a negative, zero, positive, non-negative,
non-zero or non-positive value and, in all other cases, continues evaluation with $X set
to zero. Mathematically, this behaviour can be modelled by expressions of the form
($Y op 0)� Z, so that the meanings of these six instruction forms are captured in this
work as follows:

DI[[ν . ZSNI X, Y, Z]] = [[λπ .LET $X = ($Y <Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]
DI[[ν . ZSZI X, Y, Z]] = [[λπ .LET $X = ($Y =Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]
DI[[ν . ZSPI X, Y, Z]] = [[λπ .LET $X = ($Y >Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]

DI[[ν . ZSNNI X, Y, Z]] = [[λπ .LET $X = ($Y �Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]
DI[[ν . ZSNZI X, Y, Z]] = [[λπ .LET $X = ($Y 6=Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]
DI[[ν . ZSNPI X, Y, Z]] = [[λπ .LET $X = ($Y �Z.64 #0N.64) �N.64 #ZN.64; [[ν � 4]](π)]]

On MMIX, conversions between integers and floating point numbers are facilitated
by a set of four opcode mnemonics “FIX”, “FIXU”, “FLOT” and “FLOTU”. In all
four of the associated instruction forms, the immediate operand Y is used to specify
a rounding mode for the operation, but, in this chapter, only those variants of these
instructions whose rounding modes correspond precisely to the behaviour expected of
the corresponding C operation are formalised, so that their complete translation into
Etude is specified by the following six definitions:

DI[[ν . FIXU X, 1, Z]] = [[λπ .LET $X = N.64R.64($Z); [[ν � 4]](π)]]
DI[[ν . FIX X, 1, Z]] = [[λπ .LET $X = Z.64R.64($Z); [[ν � 4]](π)]]
DI[[ν . FLOTU X, 0, Z]] = [[λπ .LET $X = R.64N.64($Z); [[ν � 4]](π)]]
DI[[ν . FLOT X, 0, Z]] = [[λπ .LET $X = R.64Z.64 ($Z); [[ν � 4]](π)]]

Much of the opcode space in the MMIX instruction set is occupied by operations
dedicated to manipulation of memory-resident data. In particular, instructions with
opcodes of the form “STXUI” update the memory location $Y +N.64 #ZN.64 with the
least-significant 8, 16, 32 or 64 bits of the specified register $X:

DI[[ν . STBUI X, Y, Z]] = [[λπ .LET () = SET [$Y +N.64 #ZN.64]N.8 TO $X; [[ν � 4]](π)]]
DI[[ν . STWUI X, Y, Z]] = [[λπ .LET () = SET [$Y +N.64 #ZN.64]N.16 TO $X; [[ν � 4]](π)]]
DI[[ν . STTUI X, Y, Z]] = [[λπ .LET () = SET [$Y +N.64 #ZN.64]N.32 TO $X; [[ν � 4]](π)]]
DI[[ν . STOUI X, Y, Z]] = [[λπ .LET () = SET [$Y +N.64 #ZN.64]N.64 TO $X; [[ν � 4]](π)]]

Conversely, the eight “LDXUI” and “LDXI” operations retrieve a 1, 2, 4 or 8-byte object
located at the address specified by the sum of the general purpose register $Y and the

266 CHAPTER 6: GENERATING CODE

immediate operand #ZN.64, interpreting the object’s bit pattern as a signed or unsigned
integer value that is written directly into the specified register $X. Formally:

DI[[ν . LDBUI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]N.8; [[ν � 4]](π)]]
DI[[ν . LDWUI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]N.16; [[ν � 4]](π)]]
DI[[ν . LDTUI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]N.32; [[ν � 4]](π)]]
DI[[ν . LDOUI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]N.64; [[ν � 4]](π)]]

DI[[ν . LDBI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]Z.8; [[ν � 4]](π)]]
DI[[ν . LDWI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]Z.16; [[ν � 4]](π)]]
DI[[ν . LDTI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]Z.32; [[ν � 4]](π)]]
DI[[ν . LDOI X, Y, Z]] = [[λπ .LET $X = GET [$Y +N.64 #ZN.64]Z.64; [[ν � 4]](π)]]

The “GET” and “PUT” instructions provide access to the 32 special purpose registers
of MMIX. In this chapter, however, we are only ever interested in the sixth such
register rR, so that only the following two translation rules are required for a complete
implementation of our verified C compiler:

DI[[ν . GET X, 0, 6]] = [[λπ .LET $X = rR; [[ν � 4]](π)]]
DI[[ν . PUT 6, 0, Z]] = [[λπ .LET rR = $Z; [[ν � 4]](π)]]

The “GOI” instruction performs an unconditional jump to a memory location deter-
mined dynamically by the sum of its two operands $Y and #ZN.64. In all cases, the
address of the following instruction ν � 4 is also stored in the specified general pur-
pose register $X, for use as the continuation term once the targeted MMIX procedure
has completed its job:

DI[[ν . GOI X, Y, Z]] = [[λπ .LET $X = [[ν � 4]]; ($Y +N.64 #ZN.64)(π)]]

On the other hand, a related branch instruction with the mnemonic “BZ” selects one
of two possible addresses for its continuation term, based on a value specified in the
operand $X. In particular, if that register contains the value of zero, then the instruc-
tion performs a jump to an address determined from the sum of its own location ν and
the 16-bit offset 4(28Y + Z) as specified by its immediate operands Y and Z. Other-
wise, execution will continue normally at the following address ν � 4. In Etude, this
construction can be represented as follows:

DI[[ν . BZ X, Y, Z]]
= [[λπ .IF $X =N.64 #0N.64 THEN [[ν � 4(28Y + Z)]](π) ELSE [[ν � 4]](π)]]

The actual location of the following instruction can be also obtained using the MMIX
operation “GETA”, which stores the numeric value of its address directly in the specified
general purpose register $X:

DI[[ν . GETA X, Y, Z]] = [[λπ .LET $X = [[ν � 4(28Y + Z)]]; [[ν � 4]](π)]]

The reader will observe that all of the MMIX instruction forms described so far have
operated solely on variable operands and small non-negative constants representable
as a single unsigned byte value. To facilitate an efficient synthesis of larger numeric
quantities, MMIX provides a block of four instructions with the mnemonics of “SETL”,
“INCML”, “INCML”, “INCMH” and “INCH”. All of these instructions accept a pair of

6.2 SEMANTICS OF MMIX 267

immediate operands Y and Z, interpreted as a single unsigned integer YZ with a value
of the form 2k(28Y + Z), where k is equal to 0, 16, 32 or 48 for the “L”, “ML”, “MH”
and “H” variants of these instructions, respectively. In particular, the “SETL” operation
sets $X to the value of this constant directly, while the three “INCXX” instruction forms
update $X with the sum of its existing value and the constant 2k(28Y + Z):

DI[[ν . SETL X, Y, Z]] = [[λπ .LET $X = #[[28Y + Z]]N.64; [[ν � 4]](π)]]
DI[[ν . INCML X, Y, Z]] = [[λπ .LET $X = $X +N.64 #[[216(28Y + Z)]]N.64; [[ν � 4]](π)]]
DI[[ν . INCMH X, Y, Z]] = [[λπ .LET $X = $X +N.64 #[[232(28Y + Z)]]N.64; [[ν � 4]](π)]]
DI[[ν . INCH X, Y, Z]] = [[λπ .LET $X = $X +N.64 #[[248(28Y + Z)]]N.64; [[ν � 4]](π)]]

The above four instruction forms also accept an optional fourth symbolic operand,
permitting MMIX programs to perform explicit arithmetic operations on the concrete
values of any symbolic variables introduced into its modules by a later linking stage of
compilation. In particular, if one of these instructions is annotated with a given symbol
σ , then the register $X is updated with an appropriate 16-bit subset of a value assigned
by the linker to the MMIX variable σ.n, in which the offset n is equal to the constant
2k(28Y + Z), determined by the instruction’s immediate operands Y and Z in a manner
appropriate for its opcode. Formally:

DI[[ν . SETL X, Y, Z @ σ]]
= [[λπ .LET $X = σ.[[28Y + Z]] 4N.64 #[[216 � 20]]N.64; [[ν � 4]](π)]]

DI[[ν . INCML X, Y, Z @ σ]]
= [[λπ .LET $X = $X +N.64 (σ.[[216(28Y + Z)]] 4N.64 #[[232 � 216]]N.64); [[ν � 4]](π)]]

DI[[ν . INCMH X, Y, Z @ σ]]
= [[λπ .LET $X = $X +N.64 (σ.[[232(28Y + Z)]] 4N.64 #[[248 � 232]]N.64); [[ν � 4]](π)]]

DI[[ν . INCH X, Y, Z @ σ]]
= [[λπ .LET $X = $X +N.64 (σ.[[232(28Y + Z)]] 4N.64 #[[264 � 248]]N.64); [[ν � 4]](π)]]

Last but not least, an MMIX operation of the form “TRAP X, Y, Z” denotes an in-
vocation of the operating system facility identified by a 24-bit integer encoded in the
instruction’s immediate operands X, Y and Z as follows:

DI[[ν . TRAP X, Y, Z]] = [[λπ .LET π = [[216X + 28Y + Z]](π); [[ν � 4]](π)]]

The reader should observe that, on MMIX, all such system calls are always assumed to
return a new value for every available MMIX register. In the remainder of this chapter,
“TRAP” instructions will receive only a superficial treatment, since their satisfactory
formalisation would inherently involve a detailed specification of the entire operating
system leveraged by the program under semantic scrutiny.

None of the remaining 206 MMIX opcodes are required for the simple transla-
tion of Etude programs into their MMIX counterparts presented later in Section 6.4,
although many of these omitted instruction forms could be easily utilised by a smarter
version of our compiler in order to improve, sometimes dramatically, an operational
efficiency of the resulting programs. For example, most of the above instruction forms
are also accompanied by analogous operations on immediate operand values, alleviat-
ing the need for a continuous synthesis of many simple numeric constants using the

268 CHAPTER 6: GENERATING CODE

“SETL” instruction family. Nevertheless, in this work, I avoid a formal specification
and utilisation of all such instructions, in order to focus the present discussion on the
actual challenge of compiler verification.

6.3 Etude on MMIX
In order to utilise the above semantic translation as a realistic operational interpretation
of MMIX programs, we must also refine the generic Etude language described in
Chapter 4 for the specific requirements of the MMIX instruction set architecture. In
particular, all implementation-specified language parameters, such as the precise ranges
of numeric quantities representable under individual Etude formats, the behaviour of
mathematically-undefined operations, or the precise implementation and structure of
the program’s address space, must be assigned appropriate concrete values, in order to
align the earlier generic algebraic interpretation of Etude programs with the operational
reality of the underlying computational hardware.

6.3.1 Atoms and Their Formats
First of all, every Etude implementation must describe its atomic representation of all
numeric quantities that are supported by the language. As described in Section 4.4,
this representation rests crucially on a language parameter known as the byte width ω ,
which, on every 64-bit architectures such as MMIX, is always assigned the value of 8:

ω :: integer
ω = 8

Further, in this chapter, the encoding component of every Etude format is represented
simply by an integer value, as described by the following type equations:

encoding:
integer

Intuitively, such encoding value specifies the number of bits required for an accurate de-
piction of all numeric quantities representable under a given well-formed Etude format.
Accordingly, the encoding of every natural and integer format must always represent a
sensible bit width in the range 1 ... 64 for the object. On the other hand, formats from
all other genres must be assigned the standard encoding value of 64, except that three
additional object formats “O.63”, “O.62” and “O.61” may be used to describe memory
locations which are guaranteed to be aligned on 2, 4 or 8 byte boundaries, respectively.
Formally, the set of all valid formats on the MMIX architecture is characterised by the
following well-formedness property:

data WF [[.]] :: format ! V

where WFN :: 8 ε) [[1 � ε � 64]] ! WF[[N .ε]]
WFZ :: 8 ε) [[1 � ε � 64]] ! WF[[Z .ε]]
WFO :: 8 ε) [[61 � ε � 64]] ! WF[[O.ε]]
WFR :: WF[[R.64]]
WFF :: WF[[F .64]]

6.3 ETUDE ON MMIX 269

In particular, the standard encoding Φ is always assigned the value of 64:

Φ :: encoding
Φ = 64

THEOREM 6-1: (Validity of standard formats) Every standard Etude format is well-
formed under the above definition of WF and Φ:

WFΦ :: 8 γ) WF(γ) ! WF[[γ .Φ]]

PROOF: Trivial, by case inspection of the “WF:: format ! V” predicate definition:

WFΦ [[P :: WF[[N]]]] = WFN (DEFN :: [[1 � Φ � 64]])
WFΦ [[P :: WF[[Z]]]] = WFZ (DEFN :: [[1 � Φ � 64]])
WFΦ [[P :: WF[[O]]]] = WFO (DEFN :: [[61 � Φ � 64]])
WFΦ [[P :: WF[[R]]]] = WFR

WFΦ [[P :: WF[[F]]]] = WFF

THEOREM 6-2: (Validity of integral formats) For every valid integral format “Z.ε”,
its natural counterpart “N.ε” is likewise well-formed:

WFI :: 8 ε) WF[[Z.ε]] ! WF[[N.ε]]

PROOF: Once again, this theorem follows naturally from the earlier definition of the
format well-formedness axioms WFZ and WFN:

WFI [[WFZ Q]] = WFN Q

For conciseness, in the remainder of this section most of such trivially justified theorems
are presented as simple corollaries, leaving a precise formulation of the required proof
terms as an exercise to a keen reader.

As described earlier in Section 4.6, every well-formed Etude format φ is associated
with some predetermined object format O(φ) that, intuitively, can be used to describe
locations of φ -formatted objects in the program’s address space. On MMIX, these
formats are always given the encoding of 64� blog2(S(φ))c, in which S(φ) depicts the
byte size of the referenced objects, as described later in this section:

O[[.]] :: format ! format

O[[φ]] = [[O.[[64� blog2(S(φ))c]]]]

Further, the width of every well-formed Etude format φ , depicted in Chapter 4 by the
notation “W (φ)”, is always equal to the format’s encoding value ε:

W [[.]] :: format ! integer

W [[φ]] = ε(φ)

On the other hand, the size of a valid format is equal to the least integer k 2 f1, 2, 4, 8g,
such that 8k � W (φ). Mathematically, this integer can be obtained by the following
concise formula:

S [[.]] :: format ! integer

S [[φ]] = 2blog2b(W (φ) + 7)/8cc

270 CHAPTER 6: GENERATING CODE

COROLLARY 6-3: (Geometry of well-formed formats) Every well-formed Etude for-
mat has a positive size and width, with the later no greater than the product of its size
and the byte width parameter ω . Further, the size of every integer format “Z.ε” is equal
to that of the corresponding natural format “N.ε”. Formally:

SIZEφ :: 8 φ) WF(φ) ! [[S(φ) > 0]]
WIDTHφ :: 8 φ) WF(φ) ! [[0 < W (φ) � ω � S(φ)]]
SIZEZ :: 8 ε) WF[[Z.ε]] ! [[S [[Z.ε]] = S [[N.ε]]]]

The MMIX architecture supports a full range of double precision floating point arith-
metic defined in IEEE 754 Standard for Binary Floating Point Arithmetic [IEEE 754].
Accordingly, the four floating point parameters r, p, Emin and Emax assume the following
values for the 64-bit rational format “R.64”:

r[[.]], p[[.]], Emin[[.]], Emax[[.]] :: format ! integer

r [[R.64]] = 2
p [[R.64]] = 53
Emin [[R.64]] = �1021
Emax[[R.64]] = 1024

COROLLARY 6-4: (Minimal floating point requirements)

RADIX :: 8 ε) WF[[R.ε]] ! [[r [[R.ε]] > 1]]
PREC :: 8 ε) WF[[R.ε]] ! [[p[[R.ε]] > 0]]
EMIN :: 8 ε) WF[[R.ε]] ! [[Emin [[R.ε]] < 0]]
EMAX :: 8 ε) WF[[R.ε]] ! [[Emax[[R.ε]] > 0]]

As described in Section 4.4, the greatest finite value representable under a given well-
formed Etude format φ is known as that format’s least upper bound, depicted by the no-
tation “lub(φ)”. For natural formats, this bound is always set to 2W (φ) � 1. On the other
hand, the 2W (φ) possible bit patterns found in integer and pointer values are always in-
terpreted under the two’s complement encoding, so that the greatest representable num-
ber has the value of 2W (φ) � 1 � 1. Finally, in accordance with the IEEE Standard 754,
the least upper bound of every rational format is equal to (1� r(φ)�p(φ))� r(φ)Emax(φ).
Formally, these three rules are captured by the following Haskell definition:

lub[[.]] :: format ! rational

lub[[N .ε]] = 2W [[N.ε]] � 1
lub[[Z .ε]] = 2W [[Z.ε]] � 1 � 1
lub[[R .ε]] = (1� r[[R.ε]]�p[[R.ε]])� r[[R.ε]]Emax[[R.ε]]

lub[[F .ε]] = 263 � 1
lub[[O.ε]] = 263 � 1

Further, the format’s greatest lower bound, or the least finite quantity representable
under it, is always set to 0 for natural formats. For signed integer quantities and
pointer address values, it is always set to the least value �2W (φ) � 1 representable
under the corresponding two’s complement encoding within W (φ) bits of information,

6.3 ETUDE ON MMIX 271

while, for all well-formed rational formats, it is equal precisely to the negation of the
corresponding least upper bound. In Haskell:

glb[[.]] :: format ! rational

glb[[N .ε]] = 0
glb[[Z .ε]] = �2W [[Z.ε]] � 1

glb[[R .ε]] = �lub[[R.ε]]
glb[[F .ε]] = �263

glb[[O.ε]] = �263

COROLLARY 6-5: (Minimal format bounds requirements) The bounds of all well-
formed arithmetic formats satisfy the following minimal requirements:

GLBφ :: 8 φ) WF(φ) ! [[glb(φ) � 0]]
GLBN :: 8 ε) WF[[N.ε]] ! [[glb[[N.ε]] = 0]]
GLBZ :: 8 ε) WF[[Z.ε]] ! [[glb[[Z.ε]] � �lub[[Z.ε]]]]

GLBR :: 8 ε) WF[[R.ε]] ! [[glb[[R.ε]] = �r[[R.ε]]p[[R.ε]] � 1� r[[R.ε]]Emax[[R.ε]] � p[[R.ε]]]]

LUBφ :: 8 φ) WF(φ) ! [[lub(φ) > 0]]

LUBN :: 8 ε) WF[[N.ε]] ! [[lub[[N.ε]] = 2W [[N.ε]] � 1]]
LUBZ :: 8 ε) WF[[Z.ε]] ! [[lub[[Z.ε]] < lub[[N.ε]]]]
LUBR :: 8 ε) WF[[R.ε]] ! [[lub[[R.ε]] = �glb[[R.ε]]]]

Using the above definitions, we can now capture the precise well-formedness property
applicable to all Etude atoms under the MMIX architecture. Perhaps surprisingly, this
can be accomplished by only a pair of simple axioms WFNC and WF�, The relevant
Haskell property definition assumes the following form:

data WF [[.]] :: (ord ν)) atomν ! V

where WFNC [[.]] :: 8 x :: integer) [[0 � x < 264]] ! WF[[#xN.64]]
WF� [[.]] [[.]] :: 8 α1, α2) WF(α1) ! (α1 � α2) ! WF(α2)

In other words, a constant natural atom of the form “#xφ” is always guaranteed to be
well-formed if x depicts a non-negative integer representable in 64 bits of pure binary
representation, i.e., one with a value less than 264. Otherwise, WF� guarantees the
validity of all elements found in a given equivalence class of Etude atoms, whenever at
least one of these elements can be shown to be well-formed. Formally, the equivalence
relation “α1 � α2” is defined as a definitional equality of the two atoms’ respective
normal forms, obtained from their reduction by the evaluation function E . In particular:

data [[.]] � [[.]] :: (ord ν)) atomν ! atomν ! V

where EQVα [[.]] :: 8 α1, α2) [[E(α1) = E(α2)]] ! (α1 � α2)

THEOREM 6-6: (Atom equivalence) The “�” property constitutes a reflexive, sym-
metric and transitive relation over Etude atoms:

REFLα :: 8 α ! (α � α)
SYMMα :: 8 α1, α2) (α1 � α2) ! (α2 � α1)
TRANSα :: 8 α1, α2, α3) (α1 � α2) ! (α2 � α3) ! (α1 � α3)

272 CHAPTER 6: GENERATING CODE

PROOF: All three of the above theorems are justified directly by the corresponding
properties of Haskell’s definitional equality “=”:

REFLα [[α]] = EQVα (REFL [[E(α)]])
SYMMα [[EQVα P]] = EQVα (SYMM P)
TRANSα [[EQVα P]] [[EQVα Q]] = EQVα (TRANS P Q)

THEOREM 6-7: (Equivalence of identical atoms) All well formed pairs of structurally
identical atoms are equivalent:

EQVE :: 8 α1, α2) WF(α1) ! WF(α2) ! [[E(α1) = E(α2)]] ! (α1 � α2)

PROOF: By definition of the automatically derived structural identity relation “=”, we
have [[α1

0 = α2
0]] ! [[α1

0 = α2
0]] for all atomic expressions α1

0 and α2
0 . Accordingly, we

can establish the required equivalence by a simple application of that standard result to
the assumed equality proof of E(α1) = E(α2) in the following manner:

EQVE [[P :: WF(α1)]] [[Q :: WF(α2)]] [[R :: [[E(α1) = E(α2)]]]] = EQVα (L R)

where L1 :: 8 α1
0 , α2

0) [[α1
0 = α2

0]] ! [[α1
0 = α2

0]] = TRIV

In this work, E represents the operational semantics of all closed and well-formed
Etude atoms under the MMIX architecture. By association, therefore, it also defines
the precise operational behaviours of any C and MMIX programs whose meanings
have been described through a translation into the present Etude variant.

A reader should observe that, according to the following definition of E , an oper-
ational semantics of Etude atoms represents a partial Haskell function, undefined for
open and otherwise meaningless syntactic entities. Accordingly, by theorem EQVα, all
such illegal constructs are grouped into a single equivalence class, since, in Haskell, the
definitional equality always holds between a pair of undefined values “?”.

When defined, however, the value produced by E will always represent some
well-formed constant atom “#xN.64”, i.e., one in which the rational number x depicts
a non-negative integer quantity less than 264 in magnitude. Intuitively, this implies
that all MMIX programs are geared solely towards manipulation of 64-bit unsigned
integer values, whose binary representation may, however be interpreted variously as
a signed integer z in the range �263 � z < 263, or even a rational number, with the
later interpretation relying on the somewhat esoteric encoding of the IEEE 754 double
precision values. Accordingly, on MMIX, every well-formed Etude atom “#xφ” is
always equivalent to some other 64-bit natural number with a binary representation
identical to that of x under the rules of the format φ .

Formally, the binary encoding of a given numeric quantity x under a well-formed
Etude format φ is depicted by the notation “encφ (x)”. In particular, if φ represents a
valid natural or integer format, then the encoding of x is always equal to its integral por-
tion dbxec after its reduction modulo 2W (φ), except that, if φ belongs to the integer genre
“Z” and dbxec mod 2W (φ) � 2W (φ) � 1, then 264 � 2W (φ) is added to its value, effectively
copying the integer’s sign bit into all otherwise unoccupied bit positions in the resulting

6.3 ETUDE ON MMIX 273

64-bit natural number. On the other hand, the encoding of x under a format from the
object or function genre represents the value of dbxec mod 264 � dbxec mod 2k, where k is
equal to the number of alignment bits specified by the format, defined as 64� ε(φ) and
2 for object and functional formats, respectively:

enc[[.]][[.]] :: (ord ν)) format ! rational ! atomν

enc[[N.ε]] [[x]] 1 � ε � 64 = [[#[[dbxec mod 2ε]]N.64]]

enc[[Z.ε]] [[x]] 1 � ε � 64 = [[#[[dbxec mod 2ε + (264 � 2ε)� dbxec[ε � 1]]]N.64]]

enc[[O.ε]] [[x]] 61 � ε � 64 = [[#[[dbxec mod 264 � dbxec mod 264 � ε]]N.64]]

enc[[F.64]][[x]] = [[#[[dbxec mod 264 � dbxec mod 22]]N.64]]

The corresponding binary encoding of rational constants “#xR.64” is somewhat more
elaborate. In general, a precise representation of such constants relies on two additional
parameters p and b, whose values are one less than those of the corresponding floating
point parameters p[[R.64]] and Emax[[R.64]], respectively:

p, b :: integer

p = p[[R.64]]� 1
b = Emax[[R.64]]� 1

The b parameter is often referred to as the bias of a floating point format. Using these
parameters, every well-formed rational constant can be encoded as a triple of three
integers s, e and m known as the sign, exponent and mantissa, respectively, such that
0 � s � 1, 0 � e � 2b + 1 and 0 � m < 2p. If x = 0, then all three components are
set to 0, so that “#0R.64” is always encoded directly as “#0N.64”. Otherwise, the 64-bit
encoding n of the rational number x is equal to the sum 263s + 2pe + m, so that the sign s
is stored in the most-significant bit of n, the mantissa m is placed in the least-significant
p bits of the resulting number and the exponent is slipped into the remaining 11 bits
between s and m. In all cases, the sign bit s is assigned the value of 1 if and only if
x < 0 and remains clear for all non-negative rational numbers. Further, the exponent e
is generally equal to blog2 x c+ b, clipped into the required range 0 � e � 2b + 1. If
�b < blog2 x c � b, then x is said to represent a normalised floating point number and
the mantissa m is set to round(2b + p � e x)� 2p. Otherwise, if blog2 x c � �b, then x
is said to be denormalised, resulting in the mantissa of round(2b + p � 1 x). Finally, all
values of x for which blog2 x c > b are semantically equivalent to�1 and are encoded
with m = 0. Formally:

enc[[R.64]][[x]] x = 0 = [[#[[0]]N.64]]

e � 0 = [[#[[263s + round(2b + p � 1 x)]]N.64]]
e � 2b = [[#[[263s + 2pe + round(2b + p � e x)� 2p]]N.64]]
e > 2b = [[#[[263s + 2p(2b + 1)]]N.64]]

where s = x < 0
e = blog2 x c+ b

In the following definition of the operational semantics E , it is often necessary to
reverse the above process, in order to obtain a concrete numeric value of an atom with

274 CHAPTER 6: GENERATING CODE

a given binary encoding. In particular, the notation “decφ [[#nN.64]]” depicts an integer or
rational value reconstructed from its binary encoding n in accordance with the specified
format φ . In Haskell, it is implemented as follows:

dec[[.]][[.]] :: (ord ν)) format ! atomν ! rational

dec[[N.ε]] [[#nN.64]] 1 � ε � 64 = n
dec[[Z.ε]] [[#nN.64]] 1 � ε � 64 = n� 264(n � 263)

dec[[O.ε]] [[#nN.64]] 61 � ε � 64 = n� 264(n � 263)

dec[[F.64]] [[#nN.64]] = n� 264(n � 263)

dec[[R.64]][[#nN.64]] e = 0 = (�1)s � m/2b + p � 1

1 � e � 2b = (�1)s � (m + 2p)/2b + p � e

where s = n[63]
e = n[p ... 62]
m = n[0 ... p� 1]

in which the notations “n[i ... j]” represent the value of bits i ... j in the binary represen-
tation of the integer n, as obtained by the corresponding Haskell construction defined in
Appendix A. The reader should observe that the result of decφ [[#nN.64]] is meaningless
if the integer n falls outside the required range 0 � n < 264, or if it doesn’t represent a
properly sign-extended quantity as appropriate for the underlying format φ . However,
since, by construction, such applications of “dec” can never occur in the following spec-
ification of the operational semantics E , is seems wasteful to enforce these restrictions
directly in the above Haskell definition.

In addition to the finite floating point numbers whose values are interpreted by the
above function, the IEEE 754 arithmetic model allows for two distinct representations
of zero, written as +0 and �0 respectively, as well as two infinities �1 and, further,
two distinguished non-numeric quantities depicted by the notations “�NaN”. When-
ever one of these values is applied to an Etude operator under the format “R.64”, the
result is determined by the rules of the IEEE Standard rather than the conventional
mathematical wisdom. In hexadecimal notation, the binary encodings of these six spe-
cialised quantities are specified as follows:

+0, �0, +1, �1, +NaN, �NaN :: (ord ν)) atomν

+0 = [[#[[000000000000000016]]N.64]]
�0 = [[#[[800000000000000016]]N.64]]
+1 = [[#[[7FF000000000000016]]N.64]]
�1 = [[#[[FFF000000000000016]]N.64]]
+NaN = [[#[[7FF800000000000016]]N.64]]
�NaN = [[#[[FFF800000000000016]]N.64]]

For convenience, we also define a pair of additional notations “{�0}” and “{�1}” to
stand for the following trivial subsets of these distinguished floating point values:

{�0}, {�1} :: (ord ν)) fatomνg

{�0} = f+0, �0g
{�1} = f+1, �1g

6.3 ETUDE ON MMIX 275

In general, a given floating point encoding n represents a finite rational number only
if its biased exponent n[p ... 62] has a value less than or equal to 2b. Otherwise, n
encodes either an infinity of an appropriate sign, or, if the mantissa n[0 ... p� 1] has
a non-zero value, a special non-numeric quantity known as a NaN. The two floating
point values depicted by the earlier notations “�NaN” constitute merely a represen-
tative example of a NaN that is synthesised internally by the processor as a result of
certain undefined mathematical operation. Formally, the complete sets of all finite
and NaN floating point quantities can be identified by the following pair of Haskell
predicates “FIN” and “NaN”:

FIN[[.]], NaN[[.]] :: (ord ν)) atomν ! bool

FIN [[#nN.64]] = (0 � n[p ... 62] � 2b)
NaN[[#nN.64]] = (n[p ... 62] = 2b + 1 ^ n[0 ... p� 1] 6= 0)

A reader interested in the actual motivation behind the above definitions is referred
to the IEEE 754 Standard for Binary Floating Point Arithmetic [IEEE 754], which
covers all of their underlying intricacies with much more details than permitted by
the restricted scope of the present work. It should, however, be observed that all of
the above definitions presuppose a particular configuration of the MMIX processor, in
which all floating point arithmetic is always rounded correctly to the nearest even value
as per the standard Haskell “round” function. For simplicity, I assume that the system
has been configured in this way prior to commencement of every program’s execution
and that no well-formed MMIX instruction sequence will ever attempt to deviate from
that initial configuration.

Armed with these auxiliary definitions, we are now ready to proceed with a precise
formulation of the operational semantics E assigned to all well-formed Etude atoms.
Predictably, E is formulated as a mapping of such atoms to their normalised represen-
tations, which, on MMIX, always depict appropriate constructs of the form “#xN.64”.
Accordingly, the Haskell type signature of E can be specified as follows:

E [[.]] :: (ord ν)) atomν ! atomν

In particular, every constant atom of the form “#xφ” is always reducible directly to
its encoded value “encφ (x)”, provided that this encoding can be subsequently reversed
without any loss of information. On the other hand, all of the remaining closed atomic
forms “opφ (α)” and “α1 opφ α2” are evaluated systematically by obtaining the respec-
tive normal forms of the operands α , α1 and α2 and applying the resulting partially
reduced atom to another function E 0, which performs further normalisation in accor-
dance with the arithmetic semantics of the operator op. Formally:

E [[#xφ]] x = decφ (encφ (x)) = encφ (x)
E [[opφ (α)]] E(α) = E(α) = E 0[[opφ [[E(α)]]]]
E [[α1 opφ α2]] E(α1) = E(α1) ^ E(α2) = E(α2) = E 0[[[[E(α1)]] opφ [[E(α2)]]]]

in which the cunning comparisons E(α) = E(α) ensure that E remains undefined for
all diverging and otherwise malformed operand values.

276 CHAPTER 6: GENERATING CODE

THEOREM 6-8: (Atom compatibility) Two atoms with pairwise-equivalent compo-
nents are themselves equivalent to each other:

EQVα1 :: 8 α1, α2, φ , op) (α1 � α2) ! [[opφ (α1)]] � [[opφ (α2)]]
EQVα2 :: 8 α11, α21, α12, α22, φ , op)

(α11 � α12) ! (α21 � α22) ! [[α11 opφ α21]] � [[α12 opφ α22]]

PROOF:
EQVα1 [[EQVα (P :: [[E(α1) = E(α2)]])]] = EQVα L4

where L1 :: [[E [[opφ (α1)]] = E 0[[opφ [[E(α1)]]]]]] = DEFN
L2 :: [[E 0[[opφ [[E(α1)]]]] = E 0[[opφ [[E(α2)]]]]]] = SUBST P IN α ! E 0[[opφ (α)]]
L3 :: [[E [[opφ (α2)]] = E 0[[opφ [[E(α2)]]]]]] = DEFN
L4 :: [[E [[opφ (α1)]] = E [[opφ (α2)]]]] = TRANS L1 (TRANS L2 (SYMM L3))

The analogous proof for binary atomic forms follows a similar structure.
The actual evaluation function E 0 can be defined for partially normalised unary and

binary atomic forms as follows:

E 0[[.]] :: (ord ν)) atomν ! atomν

First of all, in reality, an MMIX processor does not distinguish its functional and
object formats from the two genres “F” and “O” as autonomous representations of data.
Instead, every atomic operation performed under one of these formats is always treated
exactly as if it was applied under the standard integer format “Z.64”:

E 0[[opφ (α)]] φ 2 fF.64, O.61, O.62, O.63, O.64g = E 0[[opZ.64(α)]]
E 0[[α1 opφ α2]] φ 2 fF.64, O.61, O.62, O.63, O.64g = E 0[[α1 opZ.64 α2]]

Next, it is convenient to dispense with a number of special cases in the definition
of E 0 that pertain to all mathematically undefined applications of Etude’s arithmetic
operators. As already mentioned in Section 6.1, in the interest of conciseness I assume
that our MMIX processor is permanently configured in such a way that all arithmetic
traps for both integer and floating point operations remain disabled throughout the
entire execution of a program. Under these conditions, if one of the two operands
to the “+φ”, “�φ”, “�φ” or “�φ” operator applied under the rational format “R.64”
represents a NaN, then the entire construction is reducible to that NaN, except that the
bit p� 1 is always set in the result. If both operands represent non-numeric quantities,
then the value of the second operand is chosen in preference to the first. On the other
hand, if a NaN is supplied to a relational operator “=φ”, “6=φ”, “<φ”, “>φ”, “�φ” or
“�φ”, then the result is always 0, so that no NaN is ever deemed equal to itself or any
other well-formed floating point quantity. Formally:

E 0[[#xN.64 opR.64 #yN.64]]

op 2 f+, �, �, �g ^ NaN[[#yN.64]] = [[#[[y� 2p � 1y[p� 1] + 2p � 1]]N.64]]
op 2 f+, �, �, �g ^ NaN[[#xN.64]] = [[#[[x� 2p � 1x[p� 1] + 2p � 1]]N.64]]
op 2 f=, 6=, <, >, �, �g ^ (NaN[[#xN.64]] _ NaN[[#yN.64]]) = [[#0N.64]]

Further, if one or both of the two operands α1 and α2 involved in a floating point
addition operation represents �1, then the entire atom is reducible to an infinity of

6.3 ETUDE ON MMIX 277

the same sign, except that the sum of two infinite floating point values with opposite
signs is, by definition, deemed equal to �NaN with the sign of α2. Further, the IEEE
Standard proclaims �0 +�0 to have the value of �0 rather than the expected +0.
These three special cases are captured by E 0 as follows:

E 0[[α1 +R.64 α2]] (α1 = �1 ^ α2 = +1) = +NaN
(α1 = +1 ^ α2 = �1) = �NaN
(α1 = +1 _ α2 = +1) = +1
(α1 = �1 _ α2 = �1) = �1
(α1 = α2 = �0) = �0

Similarly, in a floating point subtraction operation, the same five special cases have
equivalent definitions, after flipping the sign bit of the second operand as follows:

E 0[[α1 �R.64 α2]] (α1 = α2 = �1) = +NaN
(α1 = α2 = +1) = �NaN
(α1 = +1 _ α2 = �1) = +1
(α1 = �1 _ α2 = +1) = �1
(α1 = �0 ^ α2 = +0) = �0

On the other hand, floating point multiplication identifies only three special cases. First
of all, the product of �0 with �1 (in any order) is equal to +NaN if both operands
have identical signs, or �NaN otherwise. All other multiplications involving infinite or
zero values result in �1 or �0 of an appropriate sign, which, in the following Haskell
definition, is captured by adding 263 to the encoding of +NaN, +1 or +0 whenever
the sign bits of the two operands have opposite values:

E 0[[α1 �R.64 α2]] (α1 2 {�1} ^ α2 2 {�0}) _
(α1 2 {�0} ^ α2 2 {�1}) = [[#[[dec[[N.64]](+NaN) + 263s]]N.64]]

(α1 2 {�1} _ α2 2 {�1}) = [[#[[dec[[N.64]](+1) + 263s]]N.64]]

(α1 2 {�0} _ α2 2 {�0}) = [[#[[dec[[N.64]](+0) + 263s]]N.64]]

where s = dec[[N.64]](α1)[63] 6= dec[[N.64]](α2)[63]

In the same manner, the floating point division operations �0 � �0 and �1 � �1
are semantically equivalent to �NaN of an appropriate sign. Otherwise, divisions of
the form �1 � y and x � �0 result in �1, while �0 � y and x � �1 are reducible
to �0. Formally:

E 0[[α1 �R.64 α2]] (α1 2 {�0} ^ α2 2 {�0}) _
(α1 2 {�1} ^ α2 2 {�1}) = [[#[[dec[[N.64]](+NaN) + 263s]]N.64]]

(α1 2 {�1} _ α2 2 {�0}) = [[#[[dec[[N.64]](+1) + 263s]]N.64]]

(α1 2 {�0} _ α2 2 {�1}) = [[#[[dec[[N.64]](+0) + 263s]]N.64]]

where s = dec[[N.64]](α1)[63] 6= dec[[N.64]](α2)[63]

Division by zero also crops up in integer arithmetic. If φ represents a non-rational
format, then, with all arithmetic traps disabled, the MMIX processor reduces all atoms
of the form “α1 �φ #0N.64” and “α1 . .

φ #0N.64” to α2 or α1, respectively:

E 0[[α1 �φ α2]] (γ(φ) 2 fN, Zg ^ 1 � ε(φ) � 64 ^ decφ (α2) = 0) = α2

E 0[[α1 . .
φ α2]] (γ(φ) 2 fN, Zg ^ 1 � ε(φ) � 64 ^ decφ (α2) = 0) = α1

278 CHAPTER 6: GENERATING CODE

The final special case pertains to those applications of the six relational operators “=φ”,
“6=φ”, “<φ”, “>φ”, “�φ” and “�φ” under the rational format “R.64”, in which one or
both of the two atomic operands has an infinite value. In this case, the result is always
equal to “#1N.64” or “#0N.64” whenever the corresponding mathematical relation does or
does not hold asymptotically for the supplied operands. Formally:

E 0[[α1 =R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 = α2]]N.64]]
E 0[[α1 6=R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 6= α2]]N.64]]
E 0[[α1 <R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 6= +1 ^ α2 6= �1]]N.64]]
E 0[[α1 >R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 6= �1 ^ α2 6= +1]]N.64]]
E 0[[α1 �R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 = �1 _ α2 = +1]]N.64]]
E 0[[α1 �R.64 α2]] α1 2 {�1} _ α2 2 {�1} = [[#[[α1 = +1 _ α2 = �1]]N.64]]

Otherwise, every ordinary application of the binary Etude operator “+φ”, “�φ” and
“�φ” is equivalent to the true arithmetic value of the corresponding mathematical oper-
ation “+”, “�” or “�”, encoded under the specified format φ as follows:

E 0[[α1 +φ α2]] = encφ (decφ (α1) + decφ (α2))
E 0[[α1 �φ α2]] = encφ (decφ (α1)� decφ (α2))
E 0[[α1 �φ α2]] = encφ (decφ (α1)� decφ (α2))

More so, the division operation “α1 �φ α2” reduces into “#[[decφ (α1)/decφ (α2)]]φ”
if φ represents a rational format, or “#[[bdec(φ) (α1)/dec(φ) (α2)c]]φ” under any other
arithmetic genre, while the dual remainder operation “α1 . .

φ α2” produces an appropri-
ate binary encoding of the numeric quantity “decφ (x)� bdecφ (x)/decφ (y)c � decφ (x)”.
The later operation is, however, applicable only under integral formats and always re-
mains undefined if φ is equal to “R.64”:

E 0[[α1 �φ α2]] γ(φ) = [[R]] = encφ (decφ (α1)/decφ (α2))
γ(φ) 6= [[R]] = encφbdecφ (α1)/decφ (α2)c

E 0[[α1 . .
φ α2]] γ(φ) 6= [[R]] = encφ (decφ (α1)� bdecφ (α1)/decφ (α2)c � decφ (α1))

In the bitwise operations “α1 4φ α2”, “α1 5φ α2” and “α1 5φ α2”, the format com-
ponent φ constitutes a syntactic noise and is always ignored by the MMIX processor,
even if it happens to have an invalid value. Instead, each of these three atomic forms
is reducible into the bitwise product, difference or sum of the binary encodings x and
y, as captured by the sum of a series [2k(α1[k] op α2[k]) k [0 ... 63]], in which op
is equal to one of the three boolean Haskell operators “^”, “6=” or “_” for “4φ”, “5φ”
and “5φ”, respectively. In other words, “α1 4φ α2” is always equivalent to a natural
number n, whose kth bit is set in its binary representation if and only if the same bit
is set in both of the operands α1 and α2. Similarly, the “5φ” operator sets this result
bit if the corresponding indices of α1 and α2 have opposite values, while “5φ” sets it
whenever at least one of these input bits is set. Formally:

E 0[[#xN.64 4φ #yN.64]] = [[#[[
P

[2k(x[k] ^ y[k]) k [0 ... 63]]]]N.64]]

E 0[[#xN.64 5φ #yN.64]] = [[#[[
P

[2k(x[k] 6= y[k]) k [0 ... 63]]]]N.64]]

E 0[[#xN.64 5φ #yN.64]] = [[#[[
P

[2k(x[k] _ y[k]) k [0 ... 63]]]]N.64]]

6.3 ETUDE ON MMIX 279

Every application of the “�φ” or “�φ” operator under a non-rational format is equiva-
lent to multiplying or dividing the decoded value of its first operand by 2n, where n is
the natural number derived from the second operand under the natural format “N.64”.
For “�φ”, the result is rounded towards �1 in the same way as was done earlier by
the ordinary integer division operator “�φ”. Formally:

E 0[[α1 �φ α2]] γ(φ) 6= [[R]] = encφ (decφ (α1)� 2dec[[N.64]](α2))

E 0[[α1 �φ α2]] γ(φ) 6= [[R]] = encφbdecφ (α1)/2dec[[N.64]](α2) c

On the other hand, when one of the six relational Etude operators “=φ”, “6=φ”, “<φ”,
“>φ”, “�φ” or “�φ” is applied to a pair of finite numeric values, the entire operation is
always equivalent to a natural atom of the form “#nN.64”, in which the integer n has the
value of 1 or 0, obtained from the numeric representation of the corresponding Haskell
boolean expression “x = y”, “x 6= y”, “x < y”, “x > y”, “x � y” or “x � y”, in which x
and y represent the respective decoded numeric values of the construct’s two operands.
In Haskell:

E 0[[α1 =φ α2]] = enc[[N.64]](decφ (α1) = decφ (α2))

E 0[[α1 6=φ α2]] = enc[[N.64]](decφ (α1) 6= decφ (α2))

E 0[[α1 <φ α2]] = enc[[N.64]](decφ (α1) < decφ (α2))

E 0[[α1 >φ α2]] = enc[[N.64]](decφ (α1) > decφ (α2))

E 0[[α1 �φ α2]] = enc[[N.64]](decφ (α1) � decφ (α2))

E 0[[α1 �φ α2]] = enc[[N.64]](decφ (α1) � decφ (α2))

The only cases remaining in the definition of E 0 pertain to the three unary Etude
operators “�φ”, “�φ” and “φ 0

φ”. First of all, every atom of the form “�φ (α)” is
essentially equivalent to “[[�0]] �φ α” if φ belongs to the rational genre, or else to
“[[+0]] �φ α” if it represents any other well-formed Etude format. Further, the bit
complement operation “�φ (α)” stands for a subtraction of α’s value from 264 � 1 under
every Etude format other than “R.64”:

E 0[[�φ (α)]] φ = [[R.64]] = E 0[[[[�0]] �φ α]]
φ 6= [[R.64]] = E 0[[[[+0]] �φ α]]

E 0[[�φ (α)]] φ 6= [[R.64]] = E 0[[#[[264 � 1]]N.64 �φ α]]

Last but not least, all Etude conversion operations of the form “φ 0
φ (α)” denote the

numeric value of α decoded under the given format φ and reinterpreted under the target
format φ 0, except that, if α represents a non-finite floating point quantity, then its binary
encoding is reinterpreted directly without further analysis and, if the source and target
formats are identical, then the operation is always reducible directly to α , even if φ

does not represent a well-formed Etude format. Formally:

E 0[[φ 0φ (α)]] φ = φ 0 = [[α]]
φ = [[R.64]] ^ :FIN(α) = enc

φ
0(decφ (α))

otherwise = enc
φ

0(dec[[N.64]](α))

280 CHAPTER 6: GENERATING CODE

COROLLARY 6-9: (Reduction of atoms) Under E , every well-formed atom is re-
ducible into a valid atomic constant:

WFE :: 8 α) WF(α) ! WF[[E(α)]]
IMME :: 8 α) WF(α) ! [[IMM(E(α))]]

THEOREM 6-10: (Generic validity of constant atoms) The following trivial atomic
forms are always well-formed:

WF0 :: 8 φ) WF(φ) ! WF[[#0φ]]

WFI :: 8 n :: integer, φ)
WF(φ) !
[[γ(φ) 2 fN, Zg ^ glb(φ) � n � lub(φ)]] !
WF[[#xφ]]

WFR :: 8 s, m, e :: integer, φ)
WF(φ) !

[[γ(φ) = [[R]] ^ 0 � s � 1 ^ 0 � m < r(φ)p(φ) ^ Emin(φ) � e � Emax(φ)]] !

WF[[#[[(�1)s � m� r(φ)e � p(φ)]]φ]]

PROOF: From the various cases in the definition of E , we have E [[#0φ]] = [[#0N.64]],
which is obviously well-formed by WFNC, since 0 � 0 < 264. Accordingly, WF0 can
be established by a simple case inspection of all well-formed Etude formats φ , while
utilising the guarantees provides by the supplied validity assumption for satisfaction of
the required preconditions featured in the definition of E .

Similarly, for all well-formed integral formats φ and glb(φ) � n � lub(φ), we
can establish the reduction chain E [[#nφ]] = encφ (x) = [[#[[dbxec mod 2ε]]N.64]] if φ belongs
to the natural genre “N” and E [[#nφ]] = [[#[[dbxec mod 2ε + (264 � 2ε)� dbxec[ε � 1]]]N.64]]

if it represents an integer format. Either way, by definition of the “mod” operator,
n mod m < m for all possible integer values of n and m, and, by well-formedness of φ ,
ε < 64, so that, in both cases, the ensuing natural constant dbxec mod 2ε or, for signed
integers, dbxec mod 2ε + (264 � 2ε)� dbxec[ε � 1], must always represent a non-negative
integer less than 264 in magnitude, which is sufficient to establish a validity of the
supplied atom directly from the axiom WFNC.

The proof of WFR has a similar structure, using the supplied constraints on the
integers s, m and e to satisfy the corresponding preconditions of E . WFNC can then
be established directly by a simple arithmetic reasoning about the range of all possible
natural numbers 263s + 2pe + round(2b + p � e x � 2p) that are featured in the definition
of “enc”.

An actual symbolic rendition of these proofs in the framework of the Haskell ex-
tensions from Chapter 4 would require an uncomplicated but rather extensive reasoning
that, in Fermat’s famous words, is simply too long to fit in the margin of this book, given
that it would contribute little to our understanding of the critical verification processes
at play within a linearly correct program translation system.

6.3 ETUDE ON MMIX 281

THEOREM 6-11: (Addition of rational values) Every well-formed Etude atom of the
form “#xφ +φ #yφ” is equivalent to “#[[x + y]]φ”, up to the rounding error of the specified
rational format φ , provided that glb(φ) � x + y � lub(φ):

EQV+A :: 8 x, y, z, φ)
WF[[#xφ]] ! WF[[#yφ]] !
[[γ(φ) 2 fZ, Rg ^ glb(φ) � x + y � lub(φ)]] !
[[#xφ +φ #yφ]] � [[#zφ]] !
[[z� (x + y) < ulpφ (x + y)]]

PROOF: First of all, we observe that, given the assumption glb(φ) � x + y � lub(φ),
in the following proof we only need to concern ourselves with finite operand values,
safely discarding all infinities and NaNs. Accordingly, let us begin with a detailed
analysis of the common reduction chain of E for all such operands:

E [[#xφ +φ #yφ]]
= E 0[[[[E [[#xφ]]]] +φ [[E [[#yφ]]]]]] (reduce E)
= E 0[[[[enc[[φ]][[#xφ]]]] +φ [[enc[[φ]][[#yφ]]]]]] (reduce E)
= enc[[φ]](dec[[φ]](enc[[φ]][[#xφ]]) + dec[[φ]](enc[[φ]][[#yφ]])) (reduce E)
= enc[[R.64]](x + y) (expand E)
= z0

where the third reduction step follows from the precondition x = dec[[φ]](enc[[φ]][[#xφ]])

found in the definition of E over Etude constants.
Now, if z = 0, then, by definition of “enc”, the resulting atom is equivalent to

“#0N.64”. Under the IEEE floating point model, the decoded value of such an atom,
represented in this work by the notation “decφ [[#0N.64]]”, is equal to the rational number
0, so that 0� 0 = 0 < ulpφ (0) = 2�1021 as required.

Otherwise, let z = x + y, with the biased exponent e equal to blog2 z c+ b and let
s be the sign of z, defined by the numeric value of the relation z < 0. Further, let
s0 = z0[63], e0 = z0[52 ... 62] and m0 = z0[0 ... 51], so that these three variables represent
the sign, exponent and mantissa of the encoded constant z0.

If z is normalised, so that 0 < e � 2b, then, by definition of “ulp”, the required
margin of error is equal to 2blog2 z c � p(φ) = 2e � b � p(φ) = 2e � b � p + 1. Further, the
“enc” function gives us z = 263s + 2pe + round(2b + p � e z)� 2p, so that s0 = s, e0 = e
and m0 = round(2b + p � e z)� 2p by definition of bit extraction. Accordingly:

decφ [[#zN.64]]� z
= (�1)s0

� (m0 + 2p)/2b + p � e0

� z (reduce “dec”)
= (�1)s � (m0 + 2p)/2b + p � e � z (substitute s0 and e0)
= (�1)s � (m0 + 2p)/2b + p � e � (�1)s � z (properties of “ . ”)
= (�1)s � ((m0 + 2p)/2b + p � e � z) (distribution of (�1)z < 0)
= (m0 + 2p)/2b + p � e � z (since (�1)x = x if x > 0)
= (round(2b + p � e z)� 2p + 2p)/2b + p � e � z (substitute m0)
= round(2b + p � e z)/2b + p � e � z (algebraic simplifications)
< (2b + p � e z + 1)/2b + p � e � z (properties of “round”)
= 2e � b � p (algebraic simplifications)
< 2e � b � p + 1

282 CHAPTER 6: GENERATING CODE

as required. The increased precision of our result is due to the fact that our MMIX
processor always performs exact rounding of all floating point quantities, so that none
of its arithmetic operations can ever introduce more than half an ULP of error.

Finally, if z represents a denormalised quantity, i.e., if e � 0, then the result is
encoded as z0 = 263s + round(2b + p � 1 z), so that m0 = round(2b + p � 1 z), s0 = s and
e0 = 0 by definition of the bit extraction operator. Further, for all such denormalised
numbers, the required unit of least precision ulpφ (z) is defined as 2Emin(φ) � 1 = 2�1022.
Keeping these facts in mind, the exact amount of rounding error introduced by the
operation can be computed as follows:

decφ [[#zN.64]]� z
= (�1)s0

� m0/2b + p � 1 � z (reduce “dec”)
= (�1)s � m0/2b + p � 1 � z (substitute s0)
= (�1)s � m0/2b + p � 1 � (�1)z < 0 � z (properties of “ . ”)
= (�1)s � m0/2b + p � 1 � (�1)s � z (substitute s)
= (�1)s � (m0/2b + p � 1 � z) (distribution of (�1)z < 0)
= m0/2b + p � 1 � z (since (�1)x = x if x > 0)
= round(2b + p � 1 x)/2b + p � 1 � z (substitute m0)
< (2b + p � 1 z + 1)/2b + p � 1 � z (properties of “round”)
= z + 21 � b � p � z (distribution of 2b + p � 1)
= 21 � 1023 � 52 (simplify, substitute b and p)
< 2�1022

as required. Observe that, for denormalised numbers, MMIX buys us a whooping 52
bits of precision, as a result of its complete support for gradual underflow performed
during such operations, that is permitted but not mandated by Etude. In the above
definitions, steps 3 and 7 follow from the well-known identities “round(x) < x + 1”
and “x = (�1)x < 0 � x ”, which hold for all rational numbers x.

Section 4.4 lists 45 additional theorems that are used to capture the generic alge-
braic semantics of all arithmetic Etude operations. However, for brevity, in this chapter
I omit their detailed justifications, since all of the corresponding proofs follow a struc-
ture similar to, and generally much simpler than the above reasoning about the proper-
ties of rational addition, save for the less interesting details of Haskell arithmetic.

6.3.2 Evaluation State
In Section 4.5, the object environment of an Etude program was represented by an
abstract type “o-env”, whose properties were described solely through a set of suitable
operations on such environments. It is now time to rectify this situation and specify the
actual structure of the address space made available to all MMIX programs. Formally,
this structure is defined by the following three Haskell types:

o-env: M, A, envelope, envelope, stack, integer, integer, integer
M : integer! integer
A: integer! bool

In other words, every object environment depicts a tuple (M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf),
in which the finite map M, known as the program’s memory image, defines the actual

6.3 ETUDE ON MMIX 283

bindings of individual addresses σ to their respective byte values stored at the corre-
sponding memory locations. The current atomic content of a given object (σ , φ) can
be retrieved from M by the construction ᾱ(∆ . σ , φ), which, on MMIX, is defined as
follows:

ᾱ[[.]] [[.]] :: (ord ν)) (o-env . integer, format) ! atomν

ᾱ[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf . σ , φ]] φ 2 fN.8, N.16, N.32, N.64, R.64g = [[#xN.64]]
otherwise = E [[φ N.64(#xN.64)]]

where x =
P

[2ωkM(σ 0 + S(φ)� 1� k) k [0 ... S(φ)� 1]]
σ 0 = σ � σ mod S(φ)

Intuitively, the above definition renders MMIX into a big-endian architecture, whereby
the proper encoded value of the memory-resident object requested by ᾱ(∆ . σ , φ)

is assembled from the individual bytes of the corresponding memory image M, with
the most significant 8 bits of the object fetched from the least address in the region.
Unless φ specifies one of five blessed formats “N.8”, “N.16”, “N.32”, “N.64” or “R.64”,
the resulting natural atom is always converted into φ , as if by the reduction of an
appropriate term of the form “φ N.64(#xN.64)”. The reader should note that, unlike most
other modern instruction set architectures, MMIX does not assume that the supplied
address σ represents a multiple of the format’s size and always adjusts any misaligned
addresses, implicitly discarding the least-significant 3, 2, 1 or 0 bits of σ if required.

Further, the two envelopes ξ̄ and ξ̄i found in every MMIX object environment
(M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf) correspond directly to the similarly-named functions from
Section 4.5:

ξ̄ [[.]], ξ̄i[[.]] :: o-env ! envelope

ξ̄ [[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]] = ξ̄

ξ̄i[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]] = ξ̄i

while the environment’s stack ψ̄(∆) is, by definition, equal to its component ψ̄:

ψ̄[[.]] :: o-env ! stack

ψ̄[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]] = ψ̄

In practice, none of these three object environment components are used directly on the
MMIX architecture, so that their inclusion in the structure of “o-env” has been effected
only to facilitate identification of various memory allocation patterns that are consid-
ered illegal by the standard of the ultimate mapping between Etude programs and their
MMIX representations in Section 6.4. Instead, the actual structure of the program’s ad-
dress space is defined solely by the environment’s address space component A, which
associates every byte address σ accessible to the program with a boolean flag A(σ), set
to a true value if and only if the underlying operating system has granted our program
the right to modify the content of the byte object located at that address. Within the
domain of A, a smaller range of consecutive addresses [σf ... σi] is reserved for sole use
by the program’s data stack ψ̄(∆) and, further, the current stack pointer component σc

284 CHAPTER 6: GENERATING CODE

determines the least stack address that is currently utilised by the program. Accord-
ingly, the construction σc(∆ . ξ̄) that, in Section 4.5, determined the location of a new
envelope ξ̄ upon its introduction into the address space by the “NEW (ξ̄)” term form, is
defined on MMIX as follows:

σc[[.]] :: (o-env . envelope) ! integer

σc[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf . ξ̄0]] = σc � dS(ξ̄0)/8e � 8

so that each newly introduced stack frame is always placed below any that are already
present in the program’s address space and is assigned a memory location aligned to
the architecture’s word boundary of 8.

In Section 4.7, numeric address values were derived from their atomic represen-
tations using the implementation-defined constructs LO(α) and LF(α). On MMIX,
both of these functions can be implemented by decoding the normalised form of α

as follows:
LO[[.]], LF[[.]] :: (ord ν)) atomν ! integer

LO[[α]] = dec[[O.64]](E(α))

LF [[α]] = dec[[F.64]](E(α))

Throughout its entire execution, every well-formed Etude program must ensure that its
environment (M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf) always satisfies the following nine invariants:
1 The envelope ξ̄ must be well-formed.
2 The initialiser envelope ξ̄i must represent a subset of ξ̄.
3 All frames of the stack ψ̄ must be allocated in ξ̄.
4 All frames of the stack ψ̄ must be allocated within the region [σf ... σi] that is

reserved for this purpose by the operating system.
5 The stack pointer σc must also fall within that address region, with σc mod 8 = 0,

so that σc represents a value of a well-formed atom under the object format “O.61”.
6 Every address σ 2 dom(A) must have a value in the range 0 � σ < 263, so that σ

depicts a well-formed numeric value of an Etude atom under the “O.64” format.
If A(σ) is false, then the address must also appear in the domain of M, in order to
ensure that the contents of all immutable memory objects are always prepopulated
in the program’s memory image M.

7 Every address σ 2 dom(M) must be also mapped in A, with 0 � M(σ) � 255.
8 Every address σ 2 [σf ... σi] must be identified by A as a modifiable.
9 Finally, for each envelope element (σk, φk, µ̄k) 2 ξ̄, every address σ in the set
fσk ... σk + S(φk)� 1g must always appear in the domain of the address space A
and, if A(σ) is false for at least one such value of σ , then the set of memory access
attributes µ̄k associated with σ must contain the access attribute “C”.

Intuitively, these nine requirements are intended to provide the compiler with sufficient
information about the behaviour of well-formed programs to facilitate an efficient tran-
sition between their Etude and native MMIX representations, as required for establish-
ment of the linear correctness property in Section 6.4. The reader should observe that,

6.3 ETUDE ON MMIX 285

under the above conditions, the three environment components ξ̄, ξ̄i ψ̄ echo all of the
useful information stored in M and I. In fact, as we shall soon discover, well-formed
MMIX programs may, under certain conditions, discard some of the less interesting
data from ξ̄ and ψ̄, in order to admit various useful optimising transformations of many
common Etude term forms. However, any program that invokes such behaviour is in-
herently unportable and must be always scrutinised in the context of the specific MMIX
implementation of Etude. Formally, the well-formedness property “WF:: o-env ! V”
is defined for MMIX object environments as follows:

data WF[[.]] :: o-env ! V

where WF∆ :: 8 M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf)

WF(ξ̄) !

[[ξ̄i � ξ̄]] !

[[
S

[ξ̄k � σk (σk, ξ̄k) ψ̄] � ξ̄]] !

[[
S

[fσk ... S(ξ̄k)� 1g (σk, ξ̄k) ψ̄] � fσf ... σig]] !
[[σf � σc � σi ^ σc mod 8 = 0]] !
(8 σ) [[σ 2 dom(A)]] ! [[0 � σ < 263 ^ (A(σ) _ σ 2 dom(M))]]) !
(8 σ) [[σ 2 dom(M)]] ! [[σ 2 dom(A) ^ 0 � M(σ) � 255]]) !
(8 σ) [[σf � σ � σi]] ! [[A(σ)]]) !
(8 σk, φk, µ̄k)

[[(σk, φk, µ̄k) 2 ξ̄ ^ σk � σ < σk + S(φk)]] !
(σ 2 dom(A) ^ (A(σ) _ [[C]] 2 µ̄k))) !

WF[[M, A, ξ̄, ψ̄, σi, σc, σf]]

THEOREM 6-12: (Validity of object environment envelopes and stacks) Every well-
formed object environment ∆ must always specify a valid envelope ξ̄(∆) that includes
at least all of the envelope elements from ξ̄i(∆), as well as any addresses that are
mentioned by the individual stack frames of ψ̄(∆):

ENVE :: 8 ∆) WF(∆) ! WF[[ξ̄(∆)]]

ENVI :: 8 ∆) WF(∆) ! [[ξ̄i(∆) � ξ̄(∆)]]

ENVS :: 8 ∆) WF(∆) ! [[
S

[ξ̄k � σk (σk, ξ̄k) ψ̄(∆)] � ξ̄(∆)]]

PROOF: Directly, by the earlier definition of WF:: o-env ! V.
The environment extension operation ∆/ξ̄ can be modelled quite easily on MMIX,

since it never affects the actual configuration of the address space A or the associated
memory image M. Instead, the current stack pointer σc is assigned directly the required
value of σc(∆ . ξ̄) and, in order to satisfy the requirements from Section 4.5, ξ̄ is also
pushed onto the stack ψ̄(∆) and incorporated into the address space envelopes ξ̄(∆) and
ξ̄i(∆) as follows:

[[.]]/[[.]] :: o-env ! envelope ! o-env

[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]]/[[ξ̄0]]

= [[M, A, ξ̄ [(ξ̄0 � σc
0), ξ̄i [(ξ̄0 � σc

0), (σc
0, ξ̄0) ++ ψ̄, σi, σc

0, σf]]

where σc
0 = σc[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf . ξ̄0]]

286 CHAPTER 6: GENERATING CODE

THEOREM 6-13: (Algebraic semantics of object environment extensions) The envi-
ronment extension operation ∆/ξ̄ preserves the semantics of ∆ as follows:

EXTS :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ψ̄(∆/ξ̄) = (σc(∆ . ξ̄), ξ̄) ++ ψ̄(∆)]]

EXTE :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ξ̄ (∆/ξ̄) = ξ̄ (∆) [(ξ̄� σc(∆ . ξ̄))]]

EXTI :: 8 ∆, ξ̄) WF(∆) ! WF(∆/ξ̄) ! [[ξ̄i(∆/ξ̄) = ξ̄i(∆) [(ξ̄� σc(∆ . ξ̄))]]

EXTA :: 8 ∆, ξ̄, σk, φk, µ̄k)

WF(∆) ! WF(∆/ξ̄) ! [[(σk, φk, µ̄k) 2 ξ̄(∆)]] !

[[ᾱ(∆/ξ̄ . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

PROOF: The first three theorems are justified immediately from our Haskell definition
of the environment extension operation, whereby all of the respective environment
components directly assume the precise forms required above. On the other hand, the
fourth theorem EXTA follows from the fact that the MMIX definition of the environment
inspection operation ᾱ(∆ . σ , φ) relies only on the memory image M(∆), which is
clearly preserved under all of its well-formed extensions.

In contrast, the dual contraction operation ∆nξ̄ may involve some additional pro-
cessing whenever the precise envelope ξ̄ does not appear at the top of the environment’s
data stack ψ̄(∆). On MMIX, such operations are still deemed valid, provided that the
resulting stack pointer σc + dS(ξ̄0)/8e � 8 remains within its allotted region [σf ... σi],
but, for the remainder of the program’s execution, the ξ̄(∆), ξ̄i(∆) and ψ̄(∆) compo-
nents are all reset to ∅, so that no guarantees can be ever made about such programs’
semantics within the portable fragment of the Etude language described in Chapter 4:

[[.]]n[[.]] :: o-env ! envelope ! o-env

[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]]n[[ξ̄0]]

ψ̄ 6= ∅ ^ head(ψ̄) = (σc
0, ξ̄0) = [[M, A, ξ̄n(ξ̄0 � σc

0), ξ̄in(ξ̄0 � σc
0), tail(ψ̄), σi, σc

0, σf]]
otherwise = [[M, A, ∅, ∅, ∅, σi, σc

0, σf]]

where σc
0 = σc + dS(ξ̄0)/8e � 8

THEOREM 6-14: (Algebraic semantics of object environment contractions) The envi-
ronment contraction operation ∆nξ̄ preserves the semantics of ∆ as follows:

CON∆ :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! WF[[∆nξ̄]]

CONS :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ψ̄(∆nξ̄) = tail(ψ̄(∆))]]

CONE :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ξ̄ (∆nξ̄) = ξ̄ (∆)n(ξ̄� σc)]]

CONI :: 8 ∆, σc, ξ̄) WF(∆) ! [[head(ψ̄(∆) = (σc, ξ̄))]] ! [[ξ̄i(∆nξ̄) = ξ̄i(∆)n(ξ̄� σc)]]

CONA :: 8 ∆, σc, ξ̄, σk, φk, µ̄k)
WF(∆) !

[[head(ψ̄(∆) = (σc, ξ̄))]] !
[[(σk, φk, µ̄k) 2 ξ̄(∆)]] !

[[σk + S(φk) � σc _ σk � σc + S(ξ̄)]] !

[[ᾱ(∆nξ̄ . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

6.3 ETUDE ON MMIX 287

PROOF: Once again, all five theorems follow directly from the MMIX implementation
of environment contractions, observing that only the portable case of that definition
is ever applicable under the supplied precondition “head(ψ̄(∆) = (σc, ξ̄))”, that every
subset of a well-formed Etude envelope is also well-formed itself and that the actual
memory image M of the program is never affected by the operation.

Finally, on MMIX, an update to the content of a given memory object (σ , φ)

with the new value of α is modelled by discarding any alignment bits of σ , then
setting each byte σ + k 2 [σ 0 ... σ 0 + S(φ)� 1] in the program’s memory image M to
the corresponding 8 bits x[ωk ... ω(k + 1)� 1] of α’s encoded value dec[[N.64]](E(α))

as follows:
[[.]]/[[.]] :: (ord ν)) o-env ! (integer, format, atomν) ! o-env

[[M, A, ξ̄, ξ̄i, ψ̄, σi, σc, σf]]/[[σ , φ , α]]
V

[A(σ 0 + k) k [0 ... S(φ)� 1]]

= [[M0, A, ξ̄, ξ̄0i, ψ̄, σi, σc, σf]]
where σ 0 = σ � σ mod S(φ)

x = dec[[N.64]](E(α))

M0 = M/f(σ 0 + S(φ)� 1� k):x[ωk ... ω(k + 1)� 1] k [0 ... S(φ)� 1]g

ξ̄0i = ξ̄in(σ 0, σ 0 + S(φ))

THEOREM 6-15: (Validity of object environment updates) Well-formedness of every
environment ∆ is preserved under a valid environment update operation ∆/(σ , φ , α):

SET∆ :: 8 ∆, σ , φ , x, µ̄)

WF(∆) ! WF[[#xφ]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
WF[[∆/(σ , φ , [[#xφ]])]]

PROOF: Recalling the earlier definition of the environment well-formedness property
“WF:: o-env ! V” and, further, observing that the above definition of environment
updates only ever modifies the two environment components M and ξ̄i, we are only
required to establish three of the nine preconditions of WF.

In particular, we must first demonstrate that, in the updated environment, ξ̄0
i always

represents a subset of ξ̄. Given the definitions of the finite map extension and con-
traction operators from Appendix A, we observe that dom(M1) � dom(M1/M2) for all
well-defined finite maps M1 and M2. Accordingly, ξ̄0

i = ξ̄in(σ 0, σ 0 + S(φ)) � ξ̄i � ξ̄.
For all σ 2 dom(A), we also require that 0 � σ < 263 ^ (A(σ) _ σ 2 dom(M)).

Observing that, for every valid map M and set S, the relation dom(MnS) � dom(M)

is always satisfied by the finite map difference operator from Appendix A, we have
dom(M0) � dom(M/fσk

0:nk
0g, so that the second of the required preconditions is like-

wise guaranteed to hold in the resulting environment.
Finally, well-formedness of the resulting object environment also requires that, for

every σ 2 dom(M), 0 � M(σ) � 255. If the address σ + k falls outside of the region
affected by the update, then M0(σ + k) = M(σ + k), so the property holds by definition.
Otherwise, we have M0(σ + k) = x[ωk ... ω(k + 1)� 1] � 2ω(k + 1) � 1 � ωk + 1, which,
as required, is always equal to 2ω or 28, since the byte offset k cannot be greater than 7
in magnitude.

288 CHAPTER 6: GENERATING CODE

THEOREM 6-16: (Object environment binding after an update)

SETα :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
[[ᾱ(∆/(σ , φ , α) . σ , φ)]] � [[α]]

PROOF: Given the earlier definition of the atom equivalence relation in Section 6.3.1,
it will suffice to show that the above theorem holds for the four distinguished natural
formats N.8, N.16, N.32 or N.64, since every other well-formed Etude atom is always
equivalent under reduction by E to some constant “#nN.ε”, in which the integer n falls
within the range of values 0 � n < 2S(φ)ω that are representable under the format φ . In
order to establish theorem SETα, it is therefore sufficient to show that every such value
of n is always preserved under its insertion and a subsequent extraction from the same
address. In particular, let m be the value stored at some address σ in a memory image
M, which has been derived by an update of that address with the value of n. Then:

m =
P

[2ωkM(σ 0 + S(φ)� 1� k) k [0 ... S(φ)� 1]]
=
P

[2ωkn[ωk ... ω(k + 1)� 1] k [0 ... S(φ)� 1]]
=
P

[2ωkP[2j � ωk(bn/2jc mod 2) j [ωk ... ω(k + 1)� 1]] k [0 ... S(φ)� 1]]
=
P

[
P

[2ωk2j � ωk(bn/2jc mod 2) j [ωk ... ω(k + 1)� 1]] k [0 ... S(φ)� 1]]
=
P

[2ωk2j � ωk(bn/2jc mod 2) k [0 ... S(φ)� 1], j [ωk ... ω(k + 1)� 1]]
=
P

[2j(bn/2jc mod 2) k [0 ... S(φ)� 1], j [ωk ... ω(k + 1)� 1]]
=
P

[2j(bn/2jc mod 2) j [0 ... ω � S(φ)� 1]]
= n

as required. The first three steps in the above reduction sequence are justified, respec-
tively, by the earlier definition of the environment inspection function ᾱ, the values of
M(σ 0 + S(φ)� 1� k) inserted into the address space in accordance with the definition
of environment update operations and, finally, by the definition of bit extraction from
Appendix A. The remaining five steps, on the other hand, represent simple arithmetic
transformations justified directly by the axioms of the Haskell “integer” type.

THEOREM 6-17: (Object environment data after an update)

SETᾱ :: 8 ∆, σ , φ , α , ξ̄, σk, φk, µ̄k)
WF(∆) ! WF[[∆/(σ , φ , α)]] !

[[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[(σk, φk, µ̄k) 2A ξ̄(∆)]] !
[[σk + S(φk) � σ _ σk � σ + S(φ)]] !
[[ᾱ(∆/(σ , φ , α) . σk, φk)]] � [[ᾱ(∆ . σk, φk)]]

PROOF: Trivial, observing that none of the relevant address values are ever affected in
M by the above Haskell definition of object environment updates.

THEOREM 6-18: (Compatibility of object environment updates)

SET� :: 8 ∆, σ , φ , α1, α2) [[α1]] � [[α2]] ! [[∆/(σ , φ , α1) = ∆/(σ , φ , α2)]]

PROOF: In the definition of environment extension ∆/(σ , φ , αi), the value ni inserted
into the memory image M at each affected address σ 0 + k is defined as dec[[N.64]](E(αi)),

6.3 ETUDE ON MMIX 289

so that, given the equivalence of α1 and α2 or E(α1) = E(α2), we have x1 = x2 and
∆/(σ , φ , α1) = ∆/(σ , φ , α2) as required.

THEOREM 6-19: (Algebraic invariants of object environment updates) Every well-
formed environment update operation preserves the following properties of the pro-
gram’s address space:

SETI :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[ξ̄i(∆/(σ , φ , α) . σ , φ) = ξ̄i(∆)n(σ , σ + S(φ))]]

SETE :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !

[[ξ̄(∆/(σ , φ , α)) = ξ̄(∆)]]

SETS :: 8 ∆, σ , φ , α , µ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] !
[[ψ̄(∆/(σ , φ , α)) = ψ̄(∆)]]

SETX :: 8 ∆, σ , φ , α , µ̄, ξ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] ! WF[[∆/ξ̄]] !

WF[[(∆/(σ , φ , α))/ξ̄]]

SETN :: 8 ∆, σ , φ , α , µ̄, ξ̄)

WF(∆) ! WF[[∆/(σ , φ , α)]] ! [[(σ , φ , µ̄) 2A ξ̄(∆)]] ! WF[[∆/ξ̄]] !

[[σc(∆/(σ , φ , α) . ξ̄) = σc(∆ . ξ̄)]]

PROOF: Our Haskell implementation of object environment updates always returns
the original value of each environment component scrutinised above, so that all five of
these theorems hold directly by the definition of ∆/(σ , φ , αi).

6.3.3 Terms

The final piece of Etude’s operational model that must be specialised for the MMIX
architecture is the precise semantics of all monadic term constructs provided by the
language. In a nutshell, the meaning of Etude terms is formalised similarly to atoms,
using a function Eτ akin to the earlier atom evaluation algorithm E . In particular, in the
context of a given evaluation environment (Λ, ∆), Eτ(Λ, ∆ . τ) reduces the specified
term τ into a list of result atoms ᾱ, an updated object environment ∆0 and a list of zero or
more abstract entities known as actions, which, intuitively, describe the exact sequence
of system calls invoked by the program during evaluation of τ . Formally:

Eτ [[.]] :: (ord ν)) (f-envν , o-env . termν) ! (o-env, actionsν , atomsν)

Each of these actions is depicted simply by a pair (π , ᾱ), in which π represents one of
the operating system facilities described by the Haskell type “prim” and ᾱ specifies the
precise list of input arguments for the underlying system call. Formally:

actionν : (prim, atomsν)
actionsν : [actionν]

290 CHAPTER 6: GENERATING CODE

The evaluation results obtained by Eτ are used directly for determination of the actual
term equivalence and well-formedness properties utilised in the generic algebraic de-
scription of Etude term semantics from Chapter 4. Specifically, these term properties
capture precisely the notions of definitional equality and well-formedness of the respec-
tive evaluation results obtained from the entity’s syntax and context by Eτ , as expressed
by the following pair of Haskell property definitions:

data [[.]] � [[.]] :: (ord ν)) (f-envν , o-env . termν) ! (f-envν , o-env . termν) ! V

where EQVτ :: 8 Λ1, ∆1, α1, Λ2, ∆2, α2)
[[Eτ(Λ1, ∆1 . α1) = Eτ(Λ2, ∆2 . α2)]] !
[[Λ1, ∆1 . α1]] � [[Λ2, ∆2 . α2]]

data WF[[.]] :: (ord ν)) (f-envν , o-env . termν) ! V

where WFτ :: 8 Λ, ∆, α) WF[[Eτ(Λ, ∆ . α)]] ! WF[[Λ, ∆ . α]]

THEOREM 6-20: (Standard equivalence properties of Etude terms) According to the
above definition, “�” constitutes a reflexive, symmetric and transitive relation over all
Etude term forms:

REFLτ :: 8 Λ, ∆, τ)
[[Λ, ∆ . τ]] � [[Λ, ∆ . τ]]

SYMMτ :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2)
[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] !
[[Λ2, ∆2 . τ2]] � [[Λ1, ∆1 . τ1]]

TRANSτ :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2, Λ3, ∆3, τ3)
[[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] !
[[Λ2, ∆2 . τ2]] � [[Λ3, ∆3 . τ3]] !
[[Λ1, ∆1 . τ1]] � [[Λ3, ∆3 . τ3]]

PROOF: Trivial, from the corresponding properties of definitional equality “=”.
In particular, simple terms of the form “RET (ᾱ)” never deliver any actions or affect

the program’s memory image. Instead, the supplied list of atoms ᾱ is reduced by E and
returned directly as part of the term’s evaluated result:

Eτ [[Λ, ∆ . RET (ᾱ)]] = (∆, ∅, E(ᾱ))

THEOREM 6-21: (Properties of “RET” terms) All Etude “RET” term forms satisfy the
following properties under the MMIX architecture:

WFRET :: 8 Λ, ∆, ᾱ) WF(Λ) ! WF(∆) ! WF(ᾱ) ! WF[[Λ, ∆ . RET (ᾱ)]]
EQVRET :: 8 Λ, ∆, ᾱ1, ᾱ2) (ᾱ1 � ᾱ2) ! [[Λ, ∆ . RET (ᾱ1)]] � [[Λ, ∆ . RET (ᾱ2)]]

PROOF: From the corresponding properties of atom well-formedness WF� and equiv-
alence EQVα.

In every application term of the form “α (ᾱ)”, α must depict a well-formed atom
that, in Λ, is bound to some Etude function λν̄.τ , in which the parameter list ν̄ has the
same length as the number of argument atoms in ᾱ. The construction simply evaluates

6.3 ETUDE ON MMIX 291

the body term τ , after substituting the normal form of each αk 2 E(ᾱ) for any free
occurrences of the corresponding variable νk 2 ν̄ in τ . Formally:

Eτ [[Λ, ∆ . α (ᾱ)]] (length(ᾱ) = length(ν̄)) = Eτ(Λ, ∆ . τ/(ν̄ E(ᾱ)))

where [[λν̄.τ]] = Λ(decF.64(E(α)))

THEOREM 6-22: (Properties of application terms) Every Etude application term
satisfies the following properties under the MMIX architecture:

WFAPP :: 8 Λ, ∆, x, ᾱ, ν̄, τ)
WF(Λ) ! WF(∆) ! WF[[#xF.Φ]] ! WF(ᾱ) !
[[Λ(x) = [[λν̄.τ]] ^ length(ν̄) = length(ᾱ)]] !
WF[[Λ, ∆ . τ/(ν̄ ᾱ)]] !
WF[[Λ, ∆ . #xF.Φ(ᾱ)]]

EQVAPP :: 8 Λ, ∆, α1, ᾱ1, α2, ᾱ2)
(α1 � α2) ! (ᾱ1 � ᾱ2) !
[[Λ, ∆ . α1(ᾱ1)]] � [[Λ, ∆ . α2(ᾱ2)]]

EQVβ :: 8 Λ, ∆, x, ᾱ, ν̄, τ)
WF(Λ) ! WF(∆) ! WF[[#xF.Φ]] ! WF(ᾱ) !
[[Λ(x) = [[λν̄.τ]] ^ length(ν̄) = length(ᾱ)]] !
WF[[Λ, ∆ . τ/(ν̄ ᾱ)]] !
[[Λ, ∆ . #xF.Φ(ᾱ)]] � [[Λ, ∆ . τ/(ν̄ ᾱ)]]

PROOF: Since, by definition, every application term evaluates to the appropriately sub-
stituted function body τ/(ν̄ ᾱ), theorem WFAPP holds trivially by the virtue of its own
precondition WF[[Λ, ∆ . τ/(ν̄ ᾱ)]]. Further, EQVAPP can be established by observing
that Eτ always reduces all of the atomic values involved in the operation into their re-
spective normal forms, which, by EQVα, must be structurally identical if the theorem’s
two preconditions are to be satisfied. Accordingly, the entire theorem is justified by re-
flexivity of the term equivalence relation. Finally, the beta-equivalence theorem EQVβ

is established directly by the definition Eτ , which prescribes precisely the required be-
haviour to all reductions of Etude application expressions.

A complete operational description of Etude system call operations is, regrettably,
impossible without a detailed scrutiny of the underlying operating system facilities.
Fortunately, neither is it required for a successful establishment of the linear correctness
property for our compiler, whereby it will suffice to represent meanings of all well-
formed system primitives by the following unspecified Haskell function:

Eδ [[.]] :: (ord ν)) (f-envν , o-env, prim . atomsν) ! (o-env, atomsν)

Using this auxiliary definition, the semantic significance of each system call operation
“π (ᾱ)” can be represented by the object environment and result atoms derived by Eδ

from an application of π to the normal forms of the arguments ᾱ. In addition, the
evaluation result always includes the invoked primitive in its action list as a pair of the
form (π , E(ᾱ)). Formally:

Eτ [[Λ, ∆ . π (ᾱ)]] = (∆0, [(π , E(ᾱ))], ᾱ0)
where (∆0, ᾱ0) = Eδ (Λ, ∆, π . E(ᾱ))

292 CHAPTER 6: GENERATING CODE

THEOREM 6-23: (Properties of system calls) All Etude system calls satisfy the
following compatibility law under the MMIX architecture:

EQVSYS :: 8 Λ, ∆, π , ᾱ1, ᾱ2) (ᾱ1 � ᾱ2) ! [[Λ, ∆ . π (ᾱ1)]] � [[Λ, ∆ . π (ᾱ2)]]

PROOF: By symmetry of the equivalence relation, after reduction of all argument atoms
into their respective normal forms.

Every conditional Etude expression of the form “IF α THEN τ1 ELSE τ2” evaluates
to either τ1 or τ2, whenever the specified atom α has a non-zero or zero normal form,
respectively. In Haskell:

Eτ [[Λ, ∆ . IF α THEN τ1 ELSE τ2]] (decN.64(E(α)) 6= 0) = Eτ(Λ, ∆ . τ1)
(decN.64(E(α)) = 0) = Eτ(Λ, ∆ . τ2)

THEOREM 6-24: (Properties of conditional terms) All conditional terms satisfy the
following properties under the MMIX architecture:

WFTT :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ1) ! [[x 6= 0]] !
WF[[IF #xZ.Φ THEN τ1 ELSE τ2]]

WFFF :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ2) ! [[x = 0]] !
WF[[IF #xZ.Φ THEN τ1 ELSE τ2]]

EQVIF :: 8 Λ1, ∆1, α1, τ11, τ21, Λ2, ∆2, α2, τ12, τ22)
(α1 � α2) !
(Λ1, ∆1 . τ11) � (Λ2, ∆2 . τ12) ! (Λ1, ∆1 . τ12) � (Λ2, ∆2 . τ22) !
[[Λ1, ∆1 . IF α1 THEN τ11 ELSE τ21]] � [[Λ2, ∆2 . IF α2 THEN τ12 ELSE τ22]]

EQVTT :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ1) ! [[x 6= 0]] !
[[IF #xZ.Φ THEN τ1 ELSE τ2]] � [[Λ, ∆ . τ1]]

EQVFF :: 8 Λ, ∆, x, τ1, τ2)
WF(Λ) ! WF(∆) ! WF[[#xZ.Φ]] ! WF(τ2) ! [[x = 0]] !
[[IF #xZ.Φ THEN τ1 ELSE τ2]] � [[Λ, ∆ . τ2]]

PROOF: Once again, all of the above theorems follow directly from the definition of
Eτ over Etude’s conditional term forms, which always obtains the normal form of the
supplied atomic operand α , thus justifying the compatibility law EQVIF, and proceeds
by reducing the conditional term into one of its two branches τ1 or τ2, precisely as
required by the above theorems.

Further, the five Etude term forms dedicated to the task of address space and
memory image management correspond directly to the analogous object environment
operations from Section 6.3.2, so that their respective reductions can be formalised in
Haskell as follows:

Eτ [[Λ, ∆ . NEW (ξ̄)]] = (∆/ξ̄, ∅, [[#[[σc(∆ . ξ̄)]]O.Φ]])

Eτ [[Λ, ∆ . DEL (ξ̄)]] = (∆nξ̄, ∅, ∅)
Eτ [[Λ, ∆ . GET [α , µ̄]φ]] = (∆, ∅, [[ᾱ(∆ . decO.64(E(α)), φ)]])
Eτ [[Λ, ∆ . SET [α1, µ̄]φ TO α2]] = (∆/(decO.64(E(α1)), φ , E(α2)), ∅, ∅)
Eτ [[Λ, ∆ . SETI [α1, µ̄]φ TO α2]] = (∆/(decO.64(E(α1)), φ , E(α2)), ∅, ∅)

6.3 ETUDE ON MMIX 293

The reader should observe that, on MMIX, both of the “SET” and “SETI” term construc-
tors assume an identical semantic interpretation. Our architecture shares this peculiarity
with almost all other modern instruction set designs, which rarely implement the con-
stant access attributes “C” for memory-resident objects that are allocated dynamically
during a program’s execution.

THEOREM 6-25: (Properties of object environment management terms) On MMIX,
all Etude terms of the form “NEW (ξ̄)” and “DEL (ξ̄)” satisfy the following algebraic
theorems from Section 4.6:

WFNEW :: 8 Λ, ∆, ξ̄) WF(Λ) ! WF[[∆/ξ̄]] ! WF[[Λ, ∆ . NEW (ξ̄)]]
WFDEL :: 8 Λ, ∆, ξ̄) WF(Λ) ! WF[[∆nξ̄]] ! WF[[Λ, ∆ . DEL (ξ̄)]]

EQVNEW :: 8 Λ, ∆, ξ̄)

WF(Λ) ! WF[[∆/ξ̄]] !

[[Λ, ∆ . NEW (ξ̄)]] � [[Λ, ∆/ξ̄ . RET (#[[σc(∆ . ξ̄)]]O.Φ)]]

EQVDEL :: 8 Λ, ∆, ξ̄)

WF(Λ) ! WF[[∆nξ̄]] !

[[Λ, ∆ . DEL (ξ̄)]] � [[Λ, ∆nξ̄ . RET ()]]

PROOF: By definition of Eτ , also utilising the analogous results ENVS and EXTS from
Section 6.3.2.

THEOREM 6-26: (Properties of object environment inspection terms) Every object
environment inspection term of the form “GET [α , µ̄]φ” satisfies the following three
laws on the MMIX architecture:

WFGET :: 8 Λ, ∆, x, n, φ , µ̄)
WF(Λ) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] ! WF[[ᾱ(∆ . x + n, φ)]] !

[[(x + n, φ , µ̄) 2A ξ̄(∆)]] !
WF[[Λ, ∆ . GET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ]]

EQVGET :: 8 Λ, ∆, α1, α2, µ̄, φ)
(α1 � α2) !
[[Λ, ∆ . GET [α1, µ̄]φ]] � [[Λ, ∆ . GET [α2, µ̄]φ]]

EQVGETO :: 8 Λ, ∆, x, n, φ , µ̄)
WF(Λ) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] ! WF[[ᾱ(∆ . x + n, φ)]] !

[[(x + n, φ , µ̄nfVg) 2A ξ̄(∆)]] !
[[Λ, ∆ . GET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ]] � [[Λ, ∆ . RET [[ᾱ(∆ . x + n, φ)]]]]

PROOF: First of all, we observe that, on MMIX, theorems WFGET and EQVGETO are not
constrained to the specific structures of the address atom α that are described above.
After reduction by E within the definition of Eτ , all such terms are rendered equivalent
to their appropriate normal forms “#nN.64”, so that theorem EQVGET holds trivially by
the earlier reflexivity of term equivalence relation REFLτ. Similarly, theorems WFGET

and EQVGETO are justified by the definitional equality of the atoms delivered by Eτ

from “GET” using the object inspection construct ᾱ(∆ . x + n, φ), which both of these
constraints require to be well-formed as part of their respective preconditions.

294 CHAPTER 6: GENERATING CODE

THEOREM 6-27: (Properties of object environment update terms) Under the MMIX
architecture, every object environment update term of the form “SET [α1, µ̄]φ TO α2”
and “SETI [α1, µ̄]φ TO α2” satisfies the following constraint theorems described earlier
in Section 4.6:

WFSET :: 8 Λ, ∆, x, n, φ , µ̄, α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , µ̄) 2A ξ̄(∆)]] !
WF[[Λ, ∆ . SET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]]

WFINI :: 8 Λ, ∆, x, n, φ , µ̄, α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , µ̄) 2A ξ̄i(∆)]] !
WF[[Λ, ∆ . SETI [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]]

EQVSET :: 8 Λ, ∆, α11, α21, α12, α22, µ̄, φ)
(α11 � α12) ! (α21 � α22) !
[[Λ, ∆ . SET [α11, µ̄]φ TO α21]] � [[Λ, ∆ . SET [α12, µ̄]φ TO α22]]

EQVINI :: 8 Λ, ∆, α11, α21, α12, α22, µ̄, φ)
(α11 � α12) ! (α21 � α22) !
[[Λ, ∆ . SETI [α11, µ̄]φ TO α21]] � [[Λ, ∆ . SET [α12, µ̄]φ TO α22]]

EQVSETO :: 8 Λ, ∆, x, n, µ̄, φ , α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , ∅) 2A ξ̄(∆)]] !
[[Λ, ∆ . SET [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]] � [[Λ, ∆/(x + n, φ , α) . RET ()]]

EQVINIO :: 8 Λ, ∆, x, n, µ̄, φ , α)
WF(Λ) ! WF(∆/(x + n, φ , α)) ! WF[[#x[[O(φ)]] +[[O(φ)]] #nZ.Φ]] !

[[(x + n, φ , fCg) 2A ξ̄i(∆)]] !
[[Λ, ∆ . SETI [#x[[O(φ)]] +[[O(φ)]] #nZ.Φ, µ̄]φ TO α]] � [[Λ, ∆/(x + n, φ , α) . RET ()]]

PROOF: A formal justification of these theorems follows a general pattern analogous
to that outlined earlier for the object environment inspection operations, observing that,
on MMIX, no specific restrictions are imposed on these constructs’ access attribute sets
µ̄ or the precise structure of their address terms α .

Last but not least, an Etude operation of the form “LET ν̄ = τ1; τ2” is essentially
reducible into its body term τ2, except that any actions executed by τ1 are prefixed to
those produced by τ2 itself and that all free occurrences of any variables from ν̄ in τ2

are replaced with the respective atomic values delivered by τ1:

Eτ [[Λ, ∆ . LET ν̄ = τ1; τ2]] (length(ᾱ1) = length(ν̄)) = (∆2, ā1 ++ ā2, ᾱ2)

where (∆1, ā1, ᾱ1) = Eτ(Λ, ∆ . τ1)
(∆2, ā2, ᾱ2) = Eτ(Λ, ∆1 . τ2/(ν̄ ᾱ1))

THEOREM 6-28: (Properties of atom bindings) The binding of a trivial well-formed
Etude term “RET (ᾱ)” to a list of variables ν̄ of the same length as ᾱ is equivalent to the

6.3 ETUDE ON MMIX 295

substitution of ᾱ for ν̄ within the associated body term τ:
EQVLETA :: 8 Λ, ∆, ν̄, ᾱ)

WF(ν̄) ! WF(ᾱ) !
[[length(ν̄) = length(ᾱ)]] !
[[Λ, ∆ . LET ν̄ = RET (ᾱ); τ]] � (Λ, ∆ . τ/(ν̄ ᾱ))

PROOF: According to the earlier definition of Eτ(Λ, ∆ . RET (ᾱ)), all such terms
deliver an empty list of actions ā1, together with the normal forms of the specified atoms
ᾱ. The object environment ∆ is not affected by such reduction. In effect, we have:

Eτ(Λ, ∆ . LET ν̄ = RET (ᾱ); τ)
= Eτ(Λ, ∆ . τ/(ν̄ E(ᾱ)))
� (Λ, ∆ . τ/(ν̄ ᾱ))

as required.

THEOREM 6-29: (Properties of monadic term bindings) Given a pair of Etude con-
structs “LET ν̄1 = τ11; τ21” and “LET ν̄2 = τ12; τ22”, in which the respective variable lists
have equal lengths and the two terms τ11 and τ12 are equivalent under the prevailing
evaluation environments, the entire constructs are also equivalent, provided that, for ev-
ery list of well-formed atoms ᾱ0 of an appropriate length, a substitution of these atoms
for ν̄1 in τ21 and, in τ22 for the variable list ν̄2 delivers a pair of Etude term forms
that are equivalent under any well-formed function and object environment (Λ0, ∆0).
Formally:

EQVLETS :: 8 Λ, ∆, ν̄1, τ11, τ21, ν̄2, τ12, τ22)
[[Λ, ∆ . τ11]] � [[Λ, ∆ . τ12]] !
[[length(ν̄1) = length(ν̄2)]] !
(8 Λ0, ∆0, ᾱ0)

WF(ᾱ0) !
[[length(ᾱ0) = length(ν̄1)]] !
[[Λ0, ∆0 . τ21/(ν̄1 ᾱ0)]] � [[Λ0, ∆0 . τ22/(ν̄2 ᾱ0)]]) !

[[Λ, ∆ . LET ν̄1 = τ11; τ21]] � [[Λ, ∆ . LET ν̄2 = τ12; τ22]]

PROOF: First of all, observe that, from the equivalence of τ11 and τ12, we have
Eτ(Λ, ∆ . τ11) = Eτ(Λ, ∆ . τ12) = (∆0, ā, ᾱ0), for some well-formed value of ∆0 and
ᾱ0. Further, an application of the delivered atom list ᾱ0 to the second assumption of
EQVLETS provides us with the equivalence of the substituted terms (Λ, ∆0 . τ21/(ν̄1 ᾱ0))

and (Λ, ∆0 . τ22/(ν̄2 ᾱ0)), or the definitional equality of Eτ(Λ, ∆0 . τ21/(ν̄1 ᾱ0)) and
Eτ(Λ, ∆0 . τ22/(ν̄2 ᾱ0)), from which the equivalence of the entire corresponding “LET”
forms can be obtained directly by the virtue of theorem EQVτ.

THEOREM 6-30: (Properties of nested bindings) A nested “LET” term of the form
“LET (ν̄ = LET β̄; τ1); τ2” is always guaranteed to be equivalent to its flattened variant
“LET β̄; (LET ν̄ = τ1; τ2)”, provided that no variable bound in β̄ appears free within the
body term τ2, with the possible exception of any variables that are also bound in ν̄:

EQVLETN :: 8 Λ, ∆, ν̄, β̄, τ1, τ2)

[[BV(β̄) \ (FV(τ2)nν̄) = ∅]] !

[[Λ, ∆ . LET (ν̄ = LET β̄; τ1); τ2]] � [[Λ, ∆ . LET β̄; (LET ν̄ = τ1; τ2)]]

296 CHAPTER 6: GENERATING CODE

PROOF: For simplicity, let us only consider the case of β̄ = [[ν̄0 = τ 0]], since all more
complex binding groups are always reduced by Eτ into a sequence of such term forms.
From the definition of Eτ(Λ, ∆ . LET (ν̄ = LET ν̄0 = τ 0; τ1); τ2), we have:

Eτ [[Λ, ∆ . LET (ν̄ = LET ν̄0 = τ 0; τ1); τ2]] = (∆2, ā1 ++ ā2, ᾱ2)

where (∆1, ā1, ᾱ1) = Eτ [[Λ, ∆ . LET ν̄0 = τ 0; τ1]]) (τ2))
(∆2, ā2, ᾱ2) = Eτ [[Λ, ∆1 . τ2/(ν̄ ᾱ1)]]

and, for the inner “LET” binding:

Eτ(Λ, ∆ . LET ν̄0 = τ 0; τ1) = (∆1, ā0 ++ ā1
0 , ᾱ1)

where (∆0, ā0, ᾱ0) = Eτ [[Λ, ∆ . τ 0]]
(∆1, ā1

0 , ᾱ1) = Eτ [[Λ, ∆0 . τ1/(ν̄0 ᾱ0)]]

where ā1 = ā0 ++ ā1
0 . Similarly, the reduction of “LET ν̄0 = τ 0; (LET ν̄ = τ1; τ2)” proceeds

as follows:

Eτ [[Λ, ∆ . LET ν̄0 = τ 0; (LET ν̄ = τ1; τ2)]] = (∆2, ā0 ++ ā2
0 , ᾱ2)

where (∆0, ā0, ᾱ0) = Eτ [[Λ, ∆ . τ 0]]
(∆2, ā2

0 , ᾱ2) = Eτ [[Λ, ∆0 . [[LET ν̄ = τ1; τ2]]/(ν̄0 ᾱ0)]]

Given that, by assumption, ν̄0 does not appear free within τ2, τ2/(ν̄0 ᾱ0) = τ2, so that
the later “LET” form can be simplified as follows:

Eτ [[Λ, ∆ . LET ν̄ = [[τ1/(ν̄0 ᾱ0)]]; τ2]] = (∆2, ā1
0 ++ ā2, ᾱ2)

where (∆1, ā1
0 , ᾱ1) = Eτ [[Λ, ∆ . τ1/(ν̄0 ᾱ0)]]

(∆2, ā2, ᾱ2) = Eτ [[Λ, ∆1 . τ2/(ν̄ ᾱ1)]]

so that both the nested and the flattened variant of the “LET” statement are reducible to
the common result value (∆2, ā0 ++ ā1

0 ++ ā2, ᾱ2) as required.
On MMIX, all bindings that have been grouped into a single “LET” term are always

evaluated precisely in the order their appearance within the group, so that the reductions
of all remaining “LET” term forms can be formalised trivially as follows:

Eτ [[Λ, ∆ . LET; τ]] = Eτ(Λ, ∆ . τ)

Eτ [[Λ, ∆ . LET β̄; τ]] = Eτ [[Λ, ∆ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]]

THEOREM 6-31: (Properties of binding groups) All Etude binding groups satisfy the
following requirements on the MMIX architecture:

WFLETM :: 8 Λ, ∆, β̄, τ)
WF(Λ) ! WF(∆) !

WF[[Λ, ∆ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]] !

[[[FV(τk)nν̄k [[ν̄k = τk]] β̄] [\ BV(β̄) = ∅]] !

(8 k) [[0 � k < length(β̄)!]] ! [[Λ, ∆ . LET β̄; τ]] � [[Λ, ∆ . LET [[P (k, β̄)]]; τ]]) !

WF[[Λ, ∆ . LET β̄; τ]]

EQVLETE :: 8 Λ, ∆, τ) [[Λ, ∆ . LET; τ]] � [[Λ, ∆ . τ]]

EQVLETM :: 8 Λ, ∆, ν̄, β̄, τ)

[[length(β̄) > 1]] !

[[Λ, ∆ . LET β̄; τ]] � [[Λ, ∆ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]]

6.4 CODE GENERATION 297

PROOF: By definition of the Eτ function. The convoluted precondition of WFLETM,
which was provided in the earlier algebraic semantics of Etude in order to forbid
overlapping of side effects within a binding group, is irrelevant on MMIX, which
always imposes a predetermined order of term reduction within such constructs.

Finally, one more auxiliary theorem must be established in order to complete our
formalisation of Etude terms under the MMIX instruction set architecture:

THEOREM 6-32: (Validity of equivalent term forms) Every Etude term from a given
equivalent class is well-formed whenever at least one of the terms in that class is
deemed valid:

WFEQV :: 8 Λ1, ∆1, τ1, Λ2, ∆2, τ2)
WF[[Λ1, ∆1 . τ1]] ! [[Λ1, ∆1 . τ1]] � [[Λ2, ∆2 . τ2]] ! WF[[Λ2, ∆2 . τ2]]

PROOF: Trivial, from the analogous property WF� that was established for Etude atoms
in Section 6.3.1.

A complete operational description of Etude terms is, regrettably, impossible with-
out a detailed scrutiny of the underlying operating system facilities. In particular, most
of such facilities operate in the real world of hardware devices and user interactions, so
that their complete formalisation would probably mandate an extension of the earlier
object environment structure from Section 6.3.2 with some suitable abstract rendition
of that real world. Fortunately, this added complexity is not required for a successful
establishment of the linear correctness property for our compiler, whereby the above al-
gebraic treatment of system calls turns out to be sufficiently detailed as to satisfy all of
the proof obligations raised in the following section of this work. Accordingly, without
further ado, let us now proceed to the final code generation stage of the entire project.

6.4 Code Generation
As described in Chapter 2, the ultimate validity of our entire compiler rests on a single
property of linear correctness. In Section 2.4, this property was formulated as the
judgement ρ � ψ̂ �ψ = ρ , in which ρ and ψ represent the translation semantics of C
and MMIX. In Sections 5.10 and 6.2, these two functions were implemented by the
respective Haskell definitions DTU and DM. We are now ready to define the final piece
of the entire puzzle ψ̂ , in a form of the reverse mapping of Etude modules into their
MMIX counterparts. Formally, ψ̂ is depicted by the following algorithm C :

C [[.]] :: (ord υ)) moduleυ ! MMIX-module

C [[MODULE τ EXPORT ξ̄ WHERE ῑ]]
= [[LET S TEXT T DATA D IN #0]]

where S = fΣ(υk) :xk [[xk = υk]] ξ̄g [fΣ(υk) :xk [[υk = IMP xk]] ῑg
T = fΣ(υk) :Cλ [[Σ0 . λῡk.τk]] [[υk = λῡk.τk]] ῑg [f#0:Cλ [[Σ0 . λ.τ]]g

D = fΣ(υk) : [[OBJ ([[δk/Σ0]]) OF (ξ̄k)]] [[υk = OBJ (δk) OF (ξ̄k)]] ῑg
Σ = dom(ῑ) [#1 ...]
Σ0 = fυk : [[σk.0]] υk :σk Σg

298 CHAPTER 6: GENERATING CODE

In other words, an Etude module of the form “MODULE τ EXPORT ξ̄ WHERE ῑ” is com-
piled into the symbolic MMIX construct “LET S TEXT T DATA D IN #0”. The sup-
plied set of item definitions ῑ is split into the text segment T , data segment D and symbol
table S that are formed, respectively, from all function, data and imported items found
in ῑ. Further, the symbol table is also extended with bindings of any symbols that are
made available to the remainder of the entire program through the source module’s ex-
port list ξ̄. The precise translation of Etude functions, depicted in the above definition
by the algorithm Cλ , is discussed later in Section 6.4.3.

THEOREM 6-33: (Linear correctness) Collectively, the three algorithms DTU, DM

and C satisfy the linear correctness property ρ � ψ̂ �ψ = ρ . In particular, for every
set of translation units t̄u that forms an autonomous C program, their collective image
produced by the system’s linking algorithm L is equivalent to the term obtained by the
same algorithm from the collection of meanings assigned to their respective MMIX
renditions. Formally:

LC :: 8 t̄u) L [DTU(tuk) tuk t̄u] � L [DM(C (DTU(tuk))) tuk t̄u]

PROOF: Recall from Section 4.7 that L produces a single Etude term τ , together
with a context (Λ, ∆) that, collectively, describes the initial address space of the entire
program. Accordingly, the above theorem follows directly from a similar result derived
for individual terms in Section 6.4.3 below.

6.4.1 Variables and Registers
In the above definition of the module compilation algorithm C , the reader will doubtless
notice the two finite maps Σ and Σ0. In a nutshell, these maps are used to rename any
input variables found in the source module into their appropriate MMIX counterparts
that, in the resulting program, are depicted by the respective symbols #0, #1, #2 and
so on. The designated symbol #0 is reserved for the module’s initialiser term, while
all other MMIX variables are bound systematically to any global Etude item definitions
found in the supplied list ῑ. For data items, the renaming process is represented by
the standard Etude substitution function δk/Σ that was defined earlier in Section 4.7.
For all other Etude entities, however, variable renaming is integrated directly into the
compilation process, whereby it facilitates implementation of an important translation
stage known as register allocation.

Intuitively, register allocation converts all Etude variables found in the source pro-
gram into appropriate general purpose MMIX registers. Although our target architec-
ture provides an abundance of register resources, in principle, it is always possible to
define Etude programs with more variables than those supported directly by the hard-
ware. To this end, in the following translation, only the first 250 Etude variables are
assigned to concrete hardware registers $0 ... $249, with all remaining entities bound
to pseudo-registers $256, $257 and so on. As will be revealed shortly, in the translated
program the values of all such pseudo-registers are stored in memory-resident objects
that are set aside for that specific purpose by our compiler.

6.4 CODE GENERATION 299

For conciseness, the sequence of all MMIX registers available for depiction of
Etude variables is represented by the notation ν̄G. Further, the list of all variables as-
signed by our compiler to the individual parameters of every Etude function is depicted
by the symbol ν̄P. Formally, both ν̄G and ν̄P are defined in Haskell as the following
infinite list structures:

ν̄G, ν̄P :: [MMIX-var]

ν̄G = [$249, $248 ... $0] ++ [$256 ...]
ν̄P = [$0, $1 ... $249] ++ [$256 ...]

A careful reader will observe that the order in which true MMIX registers appear
in these lists is inverted within ν̄G. In Section 6.4.3, this simple technique serves
to reduce the possibility of a single variable being associated with both a function
argument and a temporary entity within that function’s caller. Under the naïve register
allocation algorithm defined in this section, such conflicts would result in a significant
performance degradation of the generated MMIX programs, but, given the multitude of
registers provided by our target architecture, they are unlikely to occur in practice.

The remaining six general purpose hardware register $250 ... $255 are reserved by
our code generator for various specific purposes described throughout the remainder of
this section. For clarity, in the following presentation they are always depicted by the
following symbolic names:

$S, $K, $T, $U, $V, $W :: MMIX-var

$S = $255 (stack pointer)
$K = $254 (continuation pointer)
$T = $253 (temporary variable T)
$U = $252 (temporary variable U)
$V = $251 (temporary variable V)
$W = $250 (temporary variable W)

Intuitively, the two register $S and $K (or $255 and $254) are dedicated for storage
of the current stack pointer and the continuation address of the Etude function under
execution. The following translation always ensures that $S invariably echoes the
current value of the object environment component σc, in order to relieve the processor
from maintaining that component explicitly within its hardware state. Further $K will
always contain the address of the current function’s caller, or, more specifically, the
precise location of the instruction that the program intends to execute upon return from
the presently evaluated function. The remaining four registers $T, $U, $V and $W
provide our compiler with a temporary scratch space that is required by our register
allocator for a transparent implementation of any pseudo-register variables.

In particular, the process of allocating a given MMIX variable ν to an appropriate
general purpose hardware register can be depicted in Haskell as follows:

Aν [[.]] :: (MMIX-var . MMIX-var) ! MMIX-var

Aν [[$N . ν]] $0 � ν � $255 = ν

otherwise = $N

300 CHAPTER 6: GENERATING CODE

If the specified Etude variable already corresponds to one of the hardware registers
$0 ... $255, then Aν($N . ν) always allocates ν directly to that register. Otherwise,
the construction returns the backup register $N, which, in all cases, must be supplied
by the surrounding algorithm with a value disjoint from any other such registers already
allocated for one of the Etude variables that remain free within the remainder of the
program under translation.

For convenience, we also provide an implicit coercion function, which maps all
hardware-provided registers to their concrete numeric encodings, suitable for use within
the operand fields of an appropriate MMIX instruction form. Specifically:

[[.]] :: MMIX-var ! integer

[[$N]] = N
[[rR]] = 6

Finally, the notation “load($D . ν)” represents a variable load operation, which, in
the translated program, can be utilised to place the value of an arbitrary MMIX vari-
able into the specified general purpose hardware register $D. In all cases, load($D . ν)

returns a sequence of zero or more MMIX instructions that achieve the desired effect
as part of their execution. In particular, if ν and $D represent the same hardware
register, then the resulting sequence will be empty, since no actual movement of data
is required. Otherwise, if ν represents a hardware register, then the construction de-
livers a single register copy operation, depicted by an MMIX instruction of the form
“OR $D,$S,$S” or “GET $D,0,rR” for all general purpose registers and the remain-
der register, respectively. If, on the other hand, the source variable assumes a symbolic
form “σ.δ”, then the symbol’s numeric value is placed in the target register using a se-
quence of four MMIX instructions “SETL”, “INCML”, “INCMH” and “INCH”, which
were dedicated to the specific task of constant synthesis earlier in Section 6.2. Finally,
if ν represents one of the pseudo-registers $S in which S � 256, then the variable’s
value is stored in a memory-resident object found at the predetermined offset 8� S into
the dedicated MMIX data segment “LOC”. In the resulting instruction sequence, the
content of that object is placed into $D by synthesising the target address “LOC.8S”
into the dedicated temporary register $V and fetching the required word of data using
an appropriate MMIX instruction “LDOUI”. Formally:

load[[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr]

load[[$D . $S]] $S = $D = ∅

$S � $255 = [[OR $D, $S, $S]]
$S � $256 = load[[$V . LOC.8S]] ++ [[LDOUI $D, $V, 0]]

load[[$D . rR]] = [[GET $D, 0, rR]]
load[[$D . σ.δ]] = [[SETL $D, [[δ [8 ... 15]]], [[δ [0 ... 7]]] @ σ

INCML $D, [[δ [24 ... 31]]], [[δ [16 ... 23]]] @ σ

INCMH $D, [[δ [40 ... 47]]], [[δ [32 ... 39]]] @ σ

INCH $D, [[δ [56 ... 63]]], [[δ [48 ... 55]]] @ σ]]

Further, the dual operation “store(ν . $S)” binds the specified MMIX variable ν to the

6.4 CODE GENERATION 301

current value of a given general purpose hardware register $S. Specifically, if ν = $S,
or if it represents a general purpose hardware register, then the construction behaves
identically to the earlier “load” operation with the same arguments. On the other
hand, if ν refers to some pseudo-register $D for D � 256, then the corresponding
memory-resident object “LOC.8D” is updated with the value of $S using an appropriate
“STOUI” instruction form. Finally, an update of the rR register can be performed using
the MMIX instruction “PUT” as follows:

store[[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr]

store[[$D . $S]] $D = $S = ∅

$D � $255 = [[OR $D, $S, $S]]
$D � $256 = load[[$V . LOC.8D]] ++ [[STOUI $S, $V, 0]]

store[[rR . $S]] = [[PUT rR, 0, $S]]

The reader should observe that “store” is left undefined whenever its target operand
represents a symbolic MMIX variable, since symbol bindings cannot be redefined in a
well-formed Etude program.

Finally, two additional constructs facilitate direct movement of information be-
tween pairs of MMIX variables or between two sets of such variables. Formally,
Cν(νD . νS) begins by loading the value of νS into an appropriate general purpose
hardware register $R, set to the scratch register $W if νS does not already have the
appropriate form. The resulting value is then placed in the targeted variable νD using
the earlier “store” combinator. In Haskell:

Cν [[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr]

Cν [[νD . νS]] = load($R . νS) ++ store(νD . $R)
where [[$R]] = Aν(Aν($W . νD) . νS)

Further, Cν̄(ν̄D . ν̄S) makes it possible to shuffle data between two potentially overlap-
ping sets of MMIX variables. Formally, this construction is implemented as follows:

Cν̄[[.]] :: ([MMIX-var] . [MMIX-var]) ! [MMIX-instr]

Cν̄[[ν̄D . ν̄S]]
ν̄D = ∅ _ ν̄S = ∅ = [[]]
otherwise = Cν(ν0D . νD) ++ Cν(νD . νS) ++ Cν̄(tail(ν̄D) . tail(ν̄0S))

where νS = head(ν̄S)
νD = head(ν̄D)
ν0D = head[νk νk νD ++ ν̄G, νk /2 tail(ν̄S)]
ν̄0S = [Σ(νk) νk ν̄S]
Σ = (ν̄S ν̄S)/fνD:ν0Dg

In summary, Cν̄(ν̄D . ν̄S) simply binds every variable νD 2 ν̄D to the corresponding
value νS 2 ν̄S. However, in order to preserve the semantics of any still unprocessed
variables in ν̄S, the present value of νD is first saved in some temporary scratch space
ν0

D, taken to represent the first unallocated variable from the list [νD] ++ ν̄G that is not
mentioned in the remainder of the source list ν̄S. Once νS has been assigned its new

302 CHAPTER 6: GENERATING CODE

value, Cν̄ proceeds with any remaining entries in ν̄S, after renaming any occurrences of
νD in that list to its new binding ν0

D.
In order to simplify presentation of the following linear correctness theorems, let

us introduce one additional auxiliary definition, which presents the meaning of an
entire instruction section that was produced by our compiler as an appropriate function
environment structure Λ. Formally:

DĪ[[.]] :: (MMIX-var! integer, MMIX-var . MMIX-section) ! f-envMMIX-var

DĪ[[Γ, ν . ῑ]] = f(Γ(ν) + 4k :DI(ν � 4k . ιk)) (ιk, k) ῑ [0 ...]g

THEOREM 6-34: (Preservation of atom semantics under compilation) Let νS and
νD represent a pair of MMIX variables involved in a given copy operation and let Γ

represent the mapping of all relevant MMIX variables to their respective atomic values.
Further, let Λ0 represent a function environment updated with bindings of n successive
instruction addresses, beginning at some Etude function variable ν , to the respective
n instructions generated from the compilation of “Cν(νD . νS)”. If νS represents a
pseudo-register $N, then let ∆0 represent an object environment that is likewise updated
with a binding of the corresponding address LOC.8N to Γ($N). Then, every application
of ν to a the standard parameter list π under a substitution by Γ is always equivalent to
an application of the function ν � 4n to the same parameter list under a substitution by
an updated finite map Γ/fΓ(νD) :νSg. Formally:

LCν :: 8 Γ, Γ0, Λ, Λ0, ∆, ∆0, ν , νS, νD)
WF(Λ) ! WF(∆) !
[[Γ0 = Γ/fΓ(νD) :νSg]] !
[[Λ0 = Λ/DĪ(Γ, ν , Cν(νD . νS))]] !
[[∆0 = ∆/fΓ(LOC.8k) :Γ($k) [[$k]] [νS], k � 256]]) !
[[Λ0, ∆0 . [[Γ(ν)(π)]]/Γ]] � [[Λ, ∆ . [[[[Γ(ν � length(Cν(νD . νS)))]](π)]]/Γ0]]

PROOF: If νS = νD, then Cν produces an empty instruction sequence. Accordingly,
ν � length(Cν(νD . νS)) = ν � 0 = ν and Γ0 = Γ/fνD :νSg = Γ/fνD :νDg = Γ, so that
the above theorem holds trivially in such cases.

Otherwise, if both νS and νD represent general purpose hardware registers, then
the single “OR νR, α, α” instruction produced by the compiler is, by the definition of
DI, equivalent to “λπ .LET νR = α 5N.64 α ; [[Γ(ν)� 4]](π))”, which can be easily sim-
plified into “λπ .LET νR = α ; [[Γ(ν)� 4]](π))”, given that, under the earlier operational
interpretation of the “5φ” operator in Section 6.3.1, we can easily establish the iden-
tity α 5φ α � α for all Etude atoms α . Accordingly, an application of Γ(ν) to π is
reducible by Eτ into “[[σ � 4]](π)” as required.

Finally, if α depicts one of the MMIX pseudo-registers, then the resulting sequence
of constant synthesis instructions can be likewise demonstrated to be equivalent to the
register’s corresponding address LOC.n, after substituting each function’s body into
its caller in accordance with the operational model of Etude terms that was described
in Section 6.3.3 and applying a simple arithmetic reasoning to the resulting sum of

6.4 CODE GENERATION 303

constant operands in order to arrive at the required conclusion. Accordingly, the LCν’s
assumption about the bindings of such address locations in the extended environment
∆0 provides us with all the information required to complete the proof.

6.4.2 Atoms
We are now ready to proceed with the actual translation of Etude atoms into appropriate
MMIX instruction sequences. A proof of this translation’s correctness is included at the
end of the section, once we have completed the compiler’s design for all valid atomic
forms.

To begin with, we observe that, under all sequential program representations such
as that provided by the MMIX instruction set architectures, every intermediate result of
an arithmetic computation must be bound to a variable before its value can be utilised in
the remainder of the program. Accordingly, we commence our translation of Etude into
MMIX by describing a register allocation algorithm that selects an appropriate MMIX
register for every well-formed atomic expression. A naïve but sufficient implementation
of this algorithm can be defined as follows:

Aα [[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg . atomυ) ! MMIX-var

Aα [[Σ, ν̄K . υ]] = Σ(υ)
Aα [[Σ, ν̄K . φ 0φ (α)]] (φ � φ 0) = Aα(Σ, ν̄K . α)
Aα [[Σ, ν̄K . α]] = head[νk νk ν̄G, νk /2 ν̄K]

In addition to the usual variable substitution mapping Σ, the above function also accepts
a set of live variables ν̄K that, intuitively, must be preserved for other uses later in
the surrounding program. Accordingly, Aα(Σ, ν̄K . α) allocates the specified Etude
atom α to the first variable νk 2 ν̄G whose name does not appear in ν̄K. However, if
α represents a simple Etude variable υ , then υ is always associated with the MMIX
register Σ(υ) that was previously allocated for that variable. Further, as a special case,
any operation of the form “φ 0

φ (α)” that, under the earlier semantics of Etude atoms
defined in Section 6.3.1, is reducible to α itself, is allocated to the same register as its
operand α , since such redundant conversions appear frequently in programs generated
by automatic translations from other sources. Formally, the “�” operator used above
for identification of these atomic forms is defined as follows:

[[.]] � [[.]] :: format ! format ! bool

[[φ 1]] � [[φ 2]] = (γ(φ 1) = γ(φ 2) ^ ε(φ 1) � ε(φ 2)) _
(γ(φ 1) = [[N]] ^ γ(φ 2) = [[Z]] ^ ε(φ 1) < ε(φ 2)) _
(γ(φ 1) 6= [[R]] ^ γ(φ 2) 2 fN, Zg ^ ε(φ 2) � 64) _
(γ(φ 1) 6= [[R]] ^ γ(φ 2) 2 fF, Og)

The actual sequence of MMIX instructions used to represent a given atom α in the
translated program is then obtained by the following algorithm Cα :

Cα [[.]] :: (ord υ)) (υ!MMIX-var, fMMIX-varg, MMIX-var . atomυ) ! [MMIX-instr]

In every construction of the form “Cα(Σ, ν̄K, νR . α)”, the result variable νR should
represent an MMIX register which has been previously allocated for the atom by

304 CHAPTER 6: GENERATING CODE

Aα(Σ, ν̄K . α). If α is formed entirely from a single Etude variable υ , or if it depicts
some atomic constant “#xφ”, then the translation proceeds as follows:

Cα [[Σ, ν̄K, νR . υ]] = Cν(νR . Σ(υ))
Cα [[Σ, ν̄K, νR . #xφ]] (n < 216) = [[SETL $R, [[n[8 ... 15]]], [[n[0 ... 7]]]]] ++

Cν(νR . $R)
(n < 232) = [[SETL $R, [[n[8 ... 15]]], [[n[0 ... 7]]]

INCML $R, [[n[24 ... 31]]], [[n[16 ... 23]]]]] ++
Cν(νR . $R)

(n < 248) = [[SETL $R, [[n[8 ... 15]]], [[n[0 ... 7]]]
INCML $R, [[n[24 ... 31]]], [[n[16 ... 23]]]
INCMH $R, [[n[40 ... 47]]], [[n[32 ... 39]]]]] ++

Cν(νR . $R)
otherwise = [[SETL $R, [[n[8 ... 15]]], [[n[0 ... 7]]]

INCML $R, [[n[24 ... 31]]], [[n[16 ... 23]]]
INCMH $R, [[n[40 ... 47]]], [[n[32 ... 39]]]
INCH $R, [[n[56 ... 63]]], [[n[48 ... 55]]]]] ++

Cν(νR . $R)
where [[#nN.64]] = E [[#xφ ::]]

[[$R]] = Aν($T . νR)

Intuitively, the above construction attempts to find the shortest sequence of MMIX
instructions that are sufficient to bind νR to the atom’s semantic interpretation. The
reader should observe that, for many constants of the form “#nφ”, an even shorter
sequence could be obtained using various MMIX instruction forms that were excluded
from the discussion in Section 6.2. However, for conciseness, in this chapter I present
only the simplest sufficient implementation of the MMIX code generator.

Next, we dispense with the translation of the following five simple atomic forms,
whose meanings were defined in Section 6.3.1 in terms of some other Etude constructs:

Cα [[Σ, ν̄K, νR . opφ (α)]] γ(φ) 2 fF, Og = Cα [[Σ, ν̄K, νR . opZ.64(α)]]
Cα [[Σ, ν̄K, νR . φ 0φ (α)]] γ(φ 0) 2 fF, Og = Cα [[Σ, ν̄K, νR . Z.64φ (α)]]
Cα [[Σ, ν̄K, νR . α1 opφ α2]] γ(φ) 2 fF, Og = Cα [[Σ, ν̄K, νR . α1 opZ.64 α2]]
Cα [[Σ, ν̄K, νR . �φ (α)]] γ(φ) = [[R]] = Cα [[Σ, ν̄K, νR . [[�0]] �φ α]]

γ(φ) 6= [[R]] = Cα [[Σ, ν̄K, νR . [[+0]] �φ α]]
Cα [[Σ, ν̄K, νR . �φ (α)]] = Cα [[Σ, ν̄K, νR . #[[264 � 1]]N.64 �φ α]]

Similarly, an Etude conversion of the form “φ 0
φ (α)”, in which φ � φ 0, was defined

in Section 6.3.1 to be synonymous with its atomic operand α . On the other hand,
most other conversions that involve the rational format “R.64” must be performed in
the resulting program using an appropriate application of the MMIX opcode “FIXU”,
“FIX”, “FLOTU” or “FLOT” as follows:

Cα [[Σ, ν̄K, νR . φ 0φ (α)]] φ � φ 0 = Cα(Σ, ν̄K, νR . α)
φ 0 = [[N.64]] ^ γ(φ) = [[R]] = CU(Σ, ν̄K, $A, FIXU, 0 . α)
φ 0 = [[Z .64]] ^ γ(φ) = [[R]] = CU(Σ, ν̄K, $A, FIX, 0 . α)
γ(φ 0) = [[R]] ^ γ(φ) = [[N]] = CU(Σ, ν̄K, $A, FLOTU, 0 . α)
γ(φ 0) = [[R]] ^ γ(φ) = [[Z]] = CU(Σ, ν̄K, $A, FLOT, 0 . α)

where [[$A]] = Aν($T . Aα(Σ, ν̄K . α))
[[$R]] = Aν($T . νR)

6.4 CODE GENERATION 305

In all of these cases, an MMIX rendition of the operand atom is first obtained using a
recursive application of the algorithm Cα , binding that operand’s value to a temporary
MMIX variable chosen for the atom by the earlier definitions of Aα and Aν . The
scratch register $T is used to hold both the value of α and the result of the entire
operation if either of these happens to be allocated by Aα to a pseudo-register. Once
the desired result has been computed by the selected instruction, its output is copied
into the specified MMIX variable νR, whereby it becomes available to the rest of the
translated program. Formally:

CU[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode, integer . atomυ) !
[MMIX-instr]

CU[[Σ, ν̄K, νR, OP, Y . α]] = Cα(Σ, ν̄K, $A . α) ++
[[OP $R, Y, $A]] ++
Cν(νR . $R)

where [[$A]] = Aν($T . Aα(Σ, ν̄K . α))
[[$R]] = Aν($T . νR)

All other unary Etude operations of the form “φ 0
φ (α)” describe conversions of a ra-

tional number into some non-standard integral format, or else a conversion between a
pair of such integral formats. In the first case, the operation is enacted in the trans-
lated program through an intermediate conversion of α into the corresponding stan-
dard format “N.64” or “Z.64”, as depicted by the Etude term “φ 0

φ
0 0 (φ 00

φ (α))”, in which
φ 00 represents a standard format of the same genre as φ 0. In the later case, we ob-
serve that, by the virtue of their semantic interpretation in Section 6.3.1, every such
conversion is essentially equivalent to α mod 2W (φ 0), which can be also rephrased as
b((α � 264 � W (φ 0)) mod 264)/264 � W (φ 0)c. The later variant of this expression can be
easily compiled into an efficient MMIX instruction sequence through the following
intermediate translation into a pattern of Etude bit shift operations:

Cα [[Σ, ν̄K, νR . φ 0φ (α)]]
(γ 0 2 fN, Zg ^ γ = [[R]]) = Cα [[Σ, ν̄K, νR . φ 0

φ
0 0 (φ 00φ (α))]]

otherwise = Cα [[Σ, ν̄K, νR . (α �N.64 #[[64� ε 0]]N.64) �
φ

0 0 #[[64� ε 0]]N.64]]

where [[γ .ε]] = φ

[[γ 0.ε 0]] = φ 0

φ 00 = [[γ 0.64]]

All of the remaining atomic forms that are defined by Etude pertain to applications
of its various binary operators. Each of these operators is naturally associated with a
predetermined MMIX opcode as captured by the following translation:

Cα [[Σ, ν̄K, νR . α1 + R.ε α2]] = CA(Σ, ν̄K, νR, FADD . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � R.ε α2]] = CA(Σ, ν̄K, νR, FSUB . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � R.ε α2]] = CA(Σ, ν̄K, νR, FMUL . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � R.ε α2]] = CA(Σ, ν̄K, νR, FDIV . α1, α2)

306 CHAPTER 6: GENERATING CODE

Cα [[Σ, ν̄K, νR . α1 + N.64 α2]] = CA(Σ, ν̄K, νR, ADDU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � N.64 α2]] = CA(Σ, ν̄K, νR, SUBU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � N.64 α2]] = CA(Σ, ν̄K, νR, MULU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � N.ε α2]] = CA(Σ, ν̄K, νR, DIVU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 � Z.ε α2]] = CA(Σ, ν̄K, νR, DIV . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �N.64 α2]] = CA(Σ, ν̄K, νR, SLU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 4φ α2]] = CA(Σ, ν̄K, νR, AND . α1, α2)

Cα [[Σ, ν̄K, νR . α1 5φ α2]] = CA(Σ, ν̄K, νR, XOR . α1, α2)

Cα [[Σ, ν̄K, νR . α1 5φ α2]] = CA(Σ, ν̄K, νR, OR . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �N.ε α2]] = CA(Σ, ν̄K, νR, SRU . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �Z.ε α2]] = CA(Σ, ν̄K, νR, SR . α1, α2)

All of these atomic forms are invariably compiled into almost identical sequences of
MMIX instructions, which are distinguished only in their choice of a specific opcode
OP for enactment of the desired computational effect. In particular, the resulting
program always beings by evaluating the first operand α1 and binding its result to an
appropriate MMIX variable νA that has been designated for the purpose by Aα . In order
to preserve the precise semantics of the following operand α2, all Etude variables that
appear free within α2 are added to the set of live variables ν̄KA during translation of α1.
Next, α2 is likewise evaluated and bound to some general purpose hardware register
$B, equal to the atom’s allotted variable νB if νB is implemented in hardware, or else
to the scratch register $U if all such hardware registers have been already assigned to
other rôles by the program. Within α2, the set of live variables is extended with νA,
in order to preserve that variable’s value during the atom’s evaluation. Subsequently,
the compiler ensures that the value of νA is available in a hardware register, using the
scratch space of $T if necessary. Finally, the specified MMIX instruction OP is applied
to the values of the two operands and the result of the entire construction is copied into
the desired MMIX variable νR, mediating it through $T if deemed necessary by the
register allocator. Formally:

CA[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ , atomυ) !
[MMIX-instr]

CA[[Σ, ν̄K, νR, OP . α1, α2]] = Cα(Σ, ν̄KA, νA . α1) ++
Cα(Σ, ν̄KB, $B . α2) ++
Cν($A . νA) ++
[[OP $R, $A, $B]] ++
Cν(νR . $R)

where [[$A]] = Aν($T . νA)
[[$B]] = Aν($U . νB)
[[$R]] = Aν($T . νR)
νA = Aα(Σ, ν̄KA . α1)
νB = Aα(Σ, ν̄KB . α2)
ν̄KA = ν̄K [fΣ(υk) υk FV(α2)g
ν̄KB = ν̄K [fνAg

Similarly, the translation of signed and unsigned integer remainder operations is en-

6.4 CODE GENERATION 307

acted using an appropriate MMIX division instruction “DIVU” or “DIV”:

Cα [[Σ, ν̄K, νR . α1 . .
N.ε α2]] = CB(Σ, ν̄K, νR, DIVU . α1, α2)

Cα [[Σ, ν̄K, νR . α1 . .
Z.ε α2]] = CB(Σ, ν̄K, νR, DIV . α1, α2)

The precise translation of these two atomic forms is identical to the earlier treatment
of other binary arithmetic operations, except that the ultimate result of the entire con-
struct can be found in the special purpose register rR rather than its general purpose
counterpart $R that was featured in the definition of CA:

CB[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ , atomυ) !
[MMIX-instr]

CB[[Σ, ν̄K, νR, OP . α1, α2]] = Cα(Σ, ν̄KA, νA . α1) ++
Cα(Σ, ν̄KB, $B . α2) ++
Cν($A . νA) ++
[[OP $T, $A, $B]] ++
Cν(νR . rR)

where [[$A]] = Aν($T . νA)
[[$B]] = Aν($U . νB)
νA = Aα(Σ, ν̄KA . α1)
νB = Aα(Σ, ν̄KB . α2)
ν̄KA = ν̄K [fΣ(υk) υk FV(α2)g
ν̄KB = ν̄K [fνAg

On the other hand, every application of the Etude comparison operator “=φ”, “6=φ”,
“<φ”, “>φ”, “�φ” or “�φ” must be translated into a sequence of two MMIX instruc-
tions. First, the actual comparison is performed using the operation “FCMP”, “CMPU”
or “CMP”, as appropriate for the underlying Etude format φ . Next, the value of �1, 0
or 1 that each of these instruction forms delivers is converted into the required boolean
constant 1 or 0 using one of the six conditional copy instructions “ZSZI”, “ZSNZI”,
“ZSNI”, “ZSPI”, “ZSNPI” or “ZSNNI”, as required to achieve the overall effect of the
specified relational operation. In particular:

Cα [[Σ, ν̄K, νR . α1 =R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 6=R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSNZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 <R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSNI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 >R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSNPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �R.ε α2]] = CC(Σ, ν̄K, νR, FCMP, ZSNNI . α1, α2)

Cα [[Σ, ν̄K, νR . α1 =N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 6=N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSNZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 <N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSNI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 >N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSNPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �N.ε α2]] = CC(Σ, ν̄K, νR, CMPU, ZSNNI . α1, α2)

Cα [[Σ, ν̄K, νR . α1 =Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 6=Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSNZI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 <Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSNI . α1, α2)

308 CHAPTER 6: GENERATING CODE

Cα [[Σ, ν̄K, νR . α1 >Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSNPI . α1, α2)
Cα [[Σ, ν̄K, νR . α1 �Z.ε α2]] = CC(Σ, ν̄K, νR, CMP, ZSNNI . α1, α2)

where the actual compilation of these atoms is performed by the following Haskell con-
struction CC, whose structure follows the same general principles as its earlier cousins
CA and CB:

CC[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-var,

MMIX-opcode, MMIX-opcode . atomυ , atomυ) !
[MMIX-instr]

CC[[Σ, ν̄K, νR, OP1, OP2 . α1, α2]] = Cα(Σ, ν̄KA, νA . α1) ++
Cα(Σ, ν̄KB, $B . α2) ++
Cν($A . νA) ++
[[OP1 $R, $A, $B]] ++
[[OP2 $R, $R, 1]] ++
Cν(νR . $R)

where [[$A]] = Aν($T . νA)
[[$B]] = Aν($U . νB)
[[$R]] = Aν($T . νR)
νA = Aα(Σ, ν̄KA . α1)
νB = Aα(Σ, ν̄KB . α2)
ν̄KA = ν̄K [fΣ(υk) υk FV(α2)g
ν̄KB = ν̄K [fνAg

Finally, the four Etude operators “+φ”, “�φ”, “�φ” and “�φ” can be also applied under
non-standard integral formats. Observing that all of these operators implement pure
modulo arithmetic, their MMIX representation can be obtained trivially by evaluating
the operation under the standard natural format “N.64” and converting the resulting
value into the desired precision of φ :

Cα [[Σ, ν̄K, νR . α1 opφ α2]] op 2 f+, �, �, �g ^ γ(φ) 2 fN, Zg
= Cα [[Σ, ν̄K, νR . φ N.64(α1 opN.64 α2)]]

Last but not least, a list of Etude atoms can be compiled into a sequence of semantically
equivalent MMIX instructions by the following recursive algorithm Cᾱ:

Cᾱ[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, [MMIX-var] . atomsυ) !
[MMIX-instr]

Specifically, Cᾱ(Σ, ν̄K, ν̄R . ᾱ) successively compiles each of the supplied atoms αk

in ᾱ, binding their respective results to the corresponding MMIX variables from ν̄R.
During translation of each αk, the existing value of the targeted register νR is saved in
a temporary MMIX variable ν0

R if νR appears free within the remainder of the list, in
which case the binding of the corresponding Etude variable υk is also updated in the
substitution function Σ. The chosen temporary variable is also added to the atom’s set
of live register ν̄K, except that the actual target of the assignment νR is never included

6.4 CODE GENERATION 309

in ν̄K, in order to allow subsequent atoms in the list to reuse its preallocated value.
Formally:

Cᾱ[[Σ, ν̄K, ν̄R . ᾱ]] ᾱ 6= ∅ = Cν(ν0R . νR) ++
Cα(Σ, ν̄0K [fν0RgnfνRg, νR . head(ᾱ)) ++
Cᾱ(Σ0, ν̄K, tail(ν̄R) . tail(ᾱ))

otherwise = [[]]
where νR = head(ν̄R)

ν0R = head[νk νk νR ++ ν̄G, νk /2 ν̄0K]
ν̄0K = ν̄K [fΣ(υk) υk FV(tail(ᾱ))g
Σ0 = Σ/fυk:ν0R υk FV(tail(ᾱ)), Σ(υk) = νRg

THEOREM 6-35: (Preservation of atom semantics under compilation) Let Σ be a
variable renaming function and Γ represent the mapping of all relevant MMIX variables
to their respective atomic values. Let α be an Etude atom that is closed and well-
formed under the substitution by Γ � Σ. Further, let Λ0 represent a function environment
updated with bindings of n successive instruction addresses that begin at some Etude
function variable ν to the respective n instructions generated from the compilation of
α and let ∆0 represent an object environment that is likewise updated with bindings of
any symbolic addresses LOC.8k to the current values of all pseudo-registers $k which
appear free within α . Then, every application of ν to a the standard parameter list π

under a substitution by Γ is always equivalent to an application of the function ν � 4n to
the same parameter list under a substitution by an updated finite map Γ/fΓ(Σ(υ)) :αg.
Formally:

LCα :: 8 Σ, Γ, Γ0, Λ, Λ0, ∆, ∆0, ν , υ , α , ν̄K, υ)
WF(Λ) ! WF(∆) ! WF(α/(Γ � Σ)) !
[[Γ0 = Γ/fΓ(Σ(υ)) :αg]] !
[[Λ0 = Λ/DĪ(Γ, ν . Cα(Σ, ν̄K, Σ(υ) . α))]] !
[[∆0 = ∆/f(Γ(LOC.8k) :Γ($k)) [[$k]] [Σ(υk) υk FV(α)], k � 256g]] !
[[Λ0, ∆0 . [[Γ(ν)(π)]]/Γ]] � [[Λ, ∆ . [[[[Γ(ν � length(Cα(Σ, ν̄K, Σ(υ) . α)))]](π)]]/Γ0]]

PROOF: If α represents a single Etude register or a constant, then the above theorem
follows directly from the earlier result LCν , which provides us with a convenient base
case for the subsequent induction proof. Otherwise, if the atom represents one of the
fifteen binary operations compiled through the construction CA, then:

Cα(Σ, ν̄K, Σ(υ) . α) = Cα(Σ, ν̄KA, νA . α1) ++
Cα(Σ, ν̄KB, $B . α2) ++
Cν($A . νA) ++
[[OP $R, $A, $B]] ++
Cν(νR . $R))

If we now apply LCα inductively to the first two constructs in the above term and, fur-
ther, utilise LCν to similarly eliminate the third construct, then the resulting instruction
sequence can be simplified into “[[OP $R, $A, $B]] ++ Cν(νR . $R)”, to be taken in the
context of Γ updated with the set of bindings fνA:α1, $A:α1, $B:α2g. Observing that
the above instruction sequence would be translated by DĪ into an Etude function with

310 CHAPTER 6: GENERATING CODE

the body of “LET $R = $A +R.64 $B; ... [[ν � n]](π)”, an application of this term to π

under π/fνA:α1, $A:α1, $B:α2g is clearly equivalent to the term’s body “[[ν � n]](π)”,
which matches the right-hand side of the desired equivalence form.

6.4.3 Functions and Terms

Armed with the above atom compiler, we are now ready to proceed with the translation
of actual Etude functions. As already mentioned at the beginning of this section, every
Etude construct of the form “λῡ.τ” materialises in the eventual MMIX program as a
collection of one or more MMIX instructions, which are generated from the function’s
body using the term compiler Cκ that will be described shortly. In particular, at the
beginning of every such entity, the supplied substitution function Σ is updated with
bindings of all Etude variables ῡ to their respective MMIX analogues found in the
standard parameter list ν̄P as defined earlier in Section 6.4.1. Formally:

Cλ [[.]] :: (ord υ)) (υ ! MMIX-var . functionυ) ! [MMIX-instr]

Cλ [[Σ . λῡ.τ]] = Cκ(Σ/ῡ ν̄P . τ)

In the following translation, a term which appears outside of any “LET” bindings is
known as a tail term. In the eventual MMIX program, the concrete rendition of all such
terms is obtained by the following Haskell function Cκ :

Cκ [[.]] :: (ord υ)) (υ ! MMIX-var . termυ) ! [MMIX-instr]

In particular, every tail term ends in a jump to the function’s continuation address,
which, by construction, is always made available to the program as a value of the des-
ignated variable $K. Under the following translation, such jumps are always depicted
by the MMIX instruction “GOI $X, $Y, 0”, which, as described earlier in Section
6.2, transfers control to the location within the program’s address space specified by
the general purpose register $Y , after saving the address of the following instruction in
$X. Since, in tail terms, this later address is of no use to the function’s caller, we will
always place it in the scratch variable $T, whereby it will be promptly discarded by
some following instruction which finds a better use for that register.

The actual results of the entire Etude function are always placed in the successive
registers $0, $1, $2 and so on, as represented by the MMIX variable list ν̄P. Accord-
ingly, a simple tail term of the form “RET (ᾱ)” is compiled directly into an MMIX
representation of the supplied atoms ᾱ, whose respective values are placed into the cor-
responding variables from ν̄P. On the other hand, the computational effect of all “NEW”,
“DEL”, “GET”, “SET” and “SETI” term forms must be obtained using another algorithm
Cτ that is defined later in this section. Their individual translations are then completed
with the same operation “GOI $T, $K, 0”. In Haskell:

Cκ [[Σ . RET (ᾱ)]] = Cτ [[Σ, ∅, take(length(ᾱ), ν̄P).RET (ᾱ)]] ++ [[GOI $T,$K,0]]

Cκ [[Σ . NEW (ξ̄)]] = Cτ [[Σ, ∅, $0 . NEW (ξ̄)]] ++ [[GOI $T, $K, 0]]

Cκ [[Σ . DEL (ξ̄)]] = Cτ [[Σ, ∅, ∅ . DEL (ξ̄)]] ++ [[GOI $T, $K, 0]]
Cκ [[Σ . GET [α , µ̄]φ]] = Cτ [[Σ, ∅, $0 . GET [α , µ̄]φ]] ++ [[GOI $T, $K, 0]]

6.4 CODE GENERATION 311

Cκ [[Σ . SET [α1, µ̄]φ TO α2]] = Cτ [[Σ, ∅, ∅ . SET [α1, µ̄]φ TO α2]] ++ [[GOI $T, $K, 0]]
Cκ [[Σ . SETI [α1, µ̄]φ TO α2]] = Cτ [[Σ, ∅, ∅ . SETI [α1, µ̄]φ TO α2]] ++ [[GOI $T, $K, 0]]

The core meaning of an Etude tail call operation “α (ᾱ)” is likewise represented by a
similar “GOI” instruction. However, in this case, the targeted Etude function is to be
found at a memory location depicted by the construct’s initial operand α . Accordingly,
we begin by compiling all of the supplied atoms and allocating them to the successive
variables form ν̄P, where the eventual program expects to find their respective values.
Next, we ensure that the actual address of the target instruction has been placed in a real
hardware register (say, $R), after which the “GOI” instruction can be applied directly to
that register as follows:

Cκ [[Σ . α (ᾱ)]] = Cᾱ(Σ, ∅, ν̄R . ᾱ ++ [α]) ++ Cν($R . last(ν̄R)) ++ [[GOI $T, $R, 0]]
where [[$R]] = Aν($T . last(ν̄R))

ν̄R = take(length(ᾱ) + 1, ν̄P)

A suitable MMIX rendition of a system call operation “π (ᾱ)” is obtained similarly,
except that, instead of an actual memory address, the jump materialises as an MMIX
“TRAP” instruction, whose three operands X, Y and Z are used to encode the 24-bit
system call number π . Once control has been relinquished by the operating system, the
program proceeds with a jump to the prevailing continuation address $K:

Cκ [[Σ . π (ᾱ)]] = Cᾱ(Σ, ∅, take(length(ᾱ), ν̄P) . ᾱ) ++
[[TRAP [[π[16 ... 23]]], [[π[8 ... 15]]], [[π[0 ... 7]]];
GOI $T, $K, 0]]

On the other hand, every conditional Etude term of the form “IF α THEN τ1 ELSE τ2”
must choose between one of the two available targets τ1 or τ2. Either way, both of these
terms are compiled into their respective instruction sequences ῑ1 and ῑ2. If the first of
these sequences is short enough (specifically, if it contains fewer than 216 instructions),
then the branch target can be encoded verbatim within the Y and Z operands of an
MMIX “BZ” operation. Otherwise, the desired target address must be synthesised
indirectly, which, in the following translation, is performed by the Haskell function CJ.
Formally:

Cκ [[Σ . IF α THEN τ1 ELSE τ2]] (δ < 218) = Cα(Σ, ν̄K, $R . α) ++
[[BZ $R, [[δ [10 ... 17]]], [[δ [2 ... 9]]]]] ++
ῑ1 ++ ῑ2

otherwise = Cα(Σ, ν̄K, $R . α) ++
[[BZ $R, 0, 3]] ++
CJ(4(length(ῑ2) + 1)) ++
ῑ2 ++ ῑ1

where [[$R]] = Aν($T . Aα(Σ, ν̄K . α))
ν̄K = fΣ(υk) υk FV(τ1) [FV(τ2)g
ῑ1 = Cκ(Σ . τ1)
ῑ2 = Cκ(Σ . τ2)
δ = 4(length(ῑ1) + 1)

In order to compile a jump to such a remote address that is found n bytes away from
its source, CJ(n) begins by obtaining the location of the current instruction, which,

312 CHAPTER 6: GENERATING CODE

on MMIX, can be achieved easily enough using the “GETA” opcode. Conveniently,
“GETA” also allows us to increment that address by the 16 least significant bits of n.
The remaining bits must be added to the resulting value using the familiar sequence
of “INCML”, “INCMH” and “INCH” operations. Once the entire address has been
prepared in $T, the program proceeds with the unconditional control transfer to that
location, enacted in the usual manner by an appropriate “GOI” instruction. The Z
operand of “GOI”, which, in the semantic translation from Section 6.2, was always
added to the supplied target register value, is used to perform the final adjustment of the
synthesised address by the number of instructions introduced internally within CJ itself:

CJ[[.]] :: integer ! [MMIX-instr]

CJ[[δ]] (δ < 232) = [[GETA $T, [[δ [10 ... 15]]], [[δ [2 ... 9]]]
INCML $T, [[δ [24 ... 31]]], [[δ [16 ... 23]]]
GOI $T, $T, 12]]

(δ < 248) = [[GETA $T, [[δ [10 ... 15]]], [[δ [2 ... 9]]]
INCML $T, [[δ [24 ... 31]]], [[δ [16 ... 23]]]
INCMH $T, [[δ [40 ... 47]]], [[δ [32 ... 39]]]
GOI $T, $T, 16]]

otherwise = [[GETA $T, [[δ [10 ... 15]]], [[δ [2 ... 9]]]
INCML $T, [[δ [24 ... 31]]], [[δ [16 ... 23]]]
INCMH $T, [[δ [40 ... 47]]], [[δ [32 ... 39]]]
INCH $T, [[δ [56 ... 63]]], [[δ [48 ... 55]]]
GOI $T, $T, 20]]

Finally, a tail term of the form “LET ῡ = τ1; τ2” is depicted by a sequence of MMIX
instructions that represent the inner Etude term τ1, followed by the rendition of the
tail’s body τ2. Any results of τ1 are bound to fresh MMIX variables which otherwise
cannot appear free within τ2. Predictably, during compilation of the actual “LET” body
τ2, all of these variables are substituted for their respective Etude equivalents from ῡ,
which, in Haskell, can be represented concisely as follows:

Cκ [[Σ . LET ῡ = τ1; τ2]] = Cτ(Σ, ν̄K, take(length(ῡ), ν̄) . τ1) ++ Cκ(Σ/(ῡ ν̄) . τ2)
where ν̄K = fΣ(υk) υk FV(τ2)nῡg

ν̄ = [νk νk ν̄G, νk /2 ν̄K]

Last but not least, groups of “LET” bindings are compiled naturally through their stan-
dard semantic translation into monadic sequences of singular binding forms:

Cκ [[Σ . LET; τ]] = Cκ [[Σ . τ]]

Cκ [[Σ . LET β̄; τ]] = Cκ [[Σ . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]]

Within a “LET” binding, the above compilation algorithm must be adjusted slightly,
in order to ensure that all Etude variables that are referenced in the remainder of the
program retain their original semantic significance under the translation, and that the
actual results delivered by the term are saved in the MMIX equivalents of the Etude
variables to which these results have been assigned by the programmer. To this end, the
translation of such terms in enacted by one final algorithm Cτ in our compiler:

Cτ [[.]] :: (ord υ)) (υ!MMIX-var, fMMIX-varg, [MMIX-var] . termυ) ! [MMIX-instr]

6.4 CODE GENERATION 313

In the present context, a trivial “RET (ᾱ)” term simply compiles its atoms into the
supplied list of MMIX variables ν̄R as follows:

Cτ [[Σ, ν̄K, ν̄R . RET (ᾱ)]] = Cᾱ(Σ, ν̄K, ν̄R . ᾱ)

Further, an application term of the form “α (ᾱ)” proceeds similarly to its earlier tail
variant, except that, prior to evaluating any of the Etude atoms found within the con-
struct’s syntax, the continuation variable $K and any other values ν̄K that remain live
somewhere in the remainder of the program must be placed into some temporary stor-
age facilities, since any of these variables may be clobbered by the targeted function.
As expected, the “GOI” instruction introduced by the term is followed with a binding
operation Cν̄, which copies any delivered results to the respective registers from ν̄R.
Once this has been achieved, any preserved variables are promptly restored to their
original values. Formally:

Cτ [[Σ, ν̄K, ν̄R . α (ᾱ)]] = save[$K $K ν̄K [f$Kg] ++
Cᾱ(Σ, ∅, ν̄A . ᾱ ++ [α]) ++
Cν($R . last(ν̄A)) ++
[[GOI $K, $R, 0]] ++
Cν̄(ν̄R . take(length(ν̄R), ν̄P)) ++
restore[$K $K ν̄K [f$Kg]

where [[$R]] = Aν($T . last(ν̄A))
ν̄A = take(length(ᾱ) + 1, ν̄P)

A convenient scratch space can be found for storage of any variables during an exe-
cution of a nested MMIX function call in the form of the data stack ψ̄(∆). As already
mentioned earlier in Section 6.4.1, throughout the entire execution of all MMIX pro-
grams produced by our compiler, the current value of the stack pointer σc can be found
in the designated register $S. Recalling from Section 6.3.2 that, on the present instruc-
tion set architecture, the data stack always grows downwards towards lower address
values and that, under the MMIX semantics of Etude atoms from Section 6.3.1, the
value of every register is always representable under the 64-bit natural format “N.64”,
the process of pushing the values of an arbitrary MMIX variable set ν̄ onto the data
stack can be modelled by the following recursive algorithm:

save[[.]] :: [MMIX-var] ! [MMIX-instr]

save[[∅]] = [[]]
save[[ν̄]] = load($R . head(ν̄)) ++

[[SETL $T, 0, 8
SUBU $S, $S, $T
STOUI $R, $S, 0]] ++

save(tail(ν̄))

where [[$R]] = Aν($T . head(ν̄))

A dual operation, which reverts these registers to their original values and restores the
earlier configuration of the stack pointer σc, can be also implemented without further
difficulties. The reader should observe, however, that during restoration of variables

314 CHAPTER 6: GENERATING CODE

from the data stack, their values must be retrieved in the reverse order of these variables’
earlier allocation by “save”, so that the following algorithm “restore” processes the
tail of the supplied register list before proceeding with restoration of the initial entry
in that sequence:

restore[[.]] :: [MMIX-var] ! [MMIX-instr]

restore[[∅]] = [[]]
restore[[ν̄]] = restore(tail(ν̄)) ++

[[LDOUI $R, $S, 0
SETL $T, 0, 8
ADDU $S, $S, $T]] ++

store(head(ν̄) . $R)

where [[$R]] = Aν($T . head(ν̄))

Similarly to application expressions, in the context of a nested term form, an MMIX
rendition of an Etude system call operation must be likewise surrounded in an appro-
priate pair of “save” and “restore” constructs:

Cτ [[Σ, ν̄K, ν̄R . π (ᾱ)]] = save[$K $K ν̄K] ++
Cᾱ(Σ, ∅, ν̄P . ᾱ) ++
[[TRAP [[π[16 ... 23]]], [[π[8 ... 15]]], [[π[0 ... 7]]]]] ++
Cν̄(ν̄R . take(length(ν̄R), ν̄P)) ++
restore[$K $K ν̄K]

Further, all conditional terms materialise in the resulting MMIX program almost iden-
tically to their earlier tail variants, except that, in the present scenario, we must ensure
that execution proceeds at the following address within the surrounding function. To
this end, one of the instruction sequences ῑ1 and ῑ2 derived from the respective nested
terms τ1 and τ2 must be always amended with an additional jump past the entire block
generated from the complete construct:

Cτ [[Σ, ν̄K, ν̄R . IF α THEN τ1 ELSE τ2]]

(δ < 218) = Cα(Σ, ν̄0K, $R . α) ++
[[BZ $R, [[δ [10 ... 17]]], [[δ [2 ... 9]]]]] ++
ῑ1 ++ ῑ1

0 ++ ῑ2

otherwise = Cα(Σ, ν̄0K, $R . α) ++
[[BZ $R, 0, 3]] ++
CJ(4(length(ῑ2) + length(ῑ2

0) + 1)) ++
ῑ2 ++ ῑ2

0 ++ ῑ1

where [[$R]] = Aν($T . Aα(Σ, ν̄0K . α))
ν̄0K = ν̄K [fΣ(υk) υk FV(τ1) [FV(τ2)g
ῑ1 = Cτ(Σ, ν̄K, ν̄R . τ1)
ῑ1
0 = CJ(4(length(ῑ2) + 1))

ῑ2 = Cτ(Σ, ν̄K, ν̄R . τ2)
ῑ2
0 = CJ(4(length(ῑ1) + 1))

δ = 4(length(ῑ1) + length(ῑ1
0) + 1)

Next, we must tackle the two object environment operations “NEW (ξ̄)” and “DEL (ξ̄)”.
As described earlier in Section 6.3.2, the entire effect of these term forms can be

6.4 CODE GENERATION 315

captured by rounding the size of the specified envelope ξ̄ to the nearest multiple of 8
and subtracting or adding the resulting integer to the existing value of the stack pointer
σc which, in the translated program, is depicted simply by the general purpose hardware
register $S. Accordingly:

Cτ [[Σ, ν̄K, νR . NEW (ξ̄)]] = Cα [[Σ, ν̄K, $T . #[[dS(ξ̄)/8e � 8]]N.64]] ++
[[SUBU $S, $S, $T]] ++
Cν(νR . $S)

Cτ [[Σ, ν̄K, ∅ . DEL (ξ̄)]] = Cα [[Σ, ν̄K, $T . #[[dS(ξ̄)/8e � 8]]N.64]] ++
[[ADDU $S, $S, $T]]

On the other hand, every memory inspection operation “GET [α , µ̄]φ ” is translated into
yet another common structure, with each variant of this term form differing only in
the precise choice of an MMIX opcode, selected in accordance with the specified
Etude format φ to perform the actual movement of data from the program’s memory
image. In particular, the three distinguished natural formats “N.8”, “N.16” and “N.32”
are implemented directly by the MMIX instruction forms “LDBUI”, “LDWUI” and
“LDTUI”, while their signed integer cousins “Z.8”, “Z.16” and “Z.32” correspond to
“LDBI”, “LDWI” and “LDTI”, respectively. In every other case, the object’s content is
fetched invariably using the 64-bit load operation “LDOUI”:

Cτ [[Σ, ν̄K, νR . GET [α , µ̄]N.8]] = CLD(Σ, ν̄K, νR, LDBUI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]N.16]] = CLD(Σ, ν̄K, νR, LDWUI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]N.32]] = CLD(Σ, ν̄K, νR, LDTUI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]Z.8]] = CLD(Σ, ν̄K, νR, LDBI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]Z.16]] = CLD(Σ, ν̄K, νR, LDWI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]Z.32]] = CLD(Σ, ν̄K, νR, LDTI . α)
Cτ [[Σ, ν̄K, νR . GET [α , µ̄]φ]] = CLD(Σ, ν̄K, νR, LDOUI . α)

All such load operations are depicted in the translated program by a sequence of MMIX
instructions which beings with the compiled representation of the supplied address
atom α , followed by the actual load operation “OP $R, $A, 0” and ends in a copy
operation that moves the fetched value $R into its rightful place νR:

CLD[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ) !
[MMIX-instr]

CLD[[Σ, ν̄K, νR, OP . α]] = Cα(Σ, ν̄K, $A . α) ++
[[OP $R, $A, 0]] ++
Cν(νR . $R)

where [[$A]] = Aν($T . Aα(Σ, ν̄K . α))
[[$R]] = Aν($T . νR)

The partial MMIX instruction set that was formalised in Section 6.2 provides only four
unsigned variants of the dual object update operations “STBUI”, “STWUI”, “STTUI”
and “STOUI”. Accordingly, all updates to the content of a signed memory-resident
object must be first replaced with a semantically equivalent unsigned term form, ob-
serving that, either way, MMIX discards any insignificant bits of the object’s value, so

316 CHAPTER 6: GENERATING CODE

that both Etude formats result in identical program behaviours. Once this adjustment
has been enacted, the compiler proceeds with the term’s translation as follows:

Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]Z.ε TO α2]] = Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]N.ε TO α2]]
Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]N.8 TO α2]] = CST(Σ, ν̄K, STBUI . α1, α2)
Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]N.16 TO α2]] = CST(Σ, ν̄K, STWUI . α1, α2)
Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]N.32 TO α2]] = CST(Σ, ν̄K, STTUI . α1, α2)
Cτ [[Σ, ν̄K, ∅ . SET [α1, µ̄]φ TO α2]] = CST(Σ, ν̄K, STOUI . α1, α2)

Further, the reader should recall that, on MMIX, every “SETI” variant of an object update
operation assumes a semantic meaning that is indistinguishable from the corresponding
“SET” form of the term:

Cτ [[Σ, ν̄K, ν̄R . SETI [α1, µ̄]φ TO α2]] = Cτ [[Σ, ν̄K, ν̄R . SET [α1, µ̄]φ TO α2]]

In all cases, the resulting instruction sequence is prepared from the “SET” operation in
the following manner:

CST[[.]] :: (ord υ))
(υ ! MMIX-var, fMMIX-varg, MMIX-opcode . atomυ , atomυ) !
[MMIX-instr]

CST[[Σ, ν̄K, OP . α1, α2]] = Cα(Σ, ν̄KA, νA . α1) ++
Cα(Σ, ν̄KB, $B . α2) ++
Cν($A . νA) ++
[[OP $B, $A, 0]]

where [[$A]] = Aν($T . νA)
[[$B]] = Aν($U . νB)
νA = Aα(Σ, ν̄KA . α1)
νB = Aα(Σ, ν̄KB . α2)
ν̄KA = ν̄K [fΣ(υk) υk FV(α2)g
ν̄KB = ν̄K [fνAg

Finally, in the context of a nested Etude term, a binding “LET” construct of the form
“LET ῡ = τ1; τ2” is compiled in an essentially the same way as its earlier tail variant,
except that, during translation of τ1, the set of preserved variables ν̄K is extended with
any entities that are found free within the following body term τ2. Formally:

Cτ [[Σ, ν̄K, ν̄R . LET ῡ = τ1; τ2]] = Cτ(Σ, ν̄0K, take(length(ῡ), ν̄) . τ1) ++
Cτ(Σ/(ῡ ν̄), ν̄K, ν̄R . τ2)

where ν̄0K = ν̄K [fΣ(υk) υk FV(τ2)nῡg
ν̄ = [νk νk ν̄G, νk /2 ν̄0K]

Cτ [[Σ, ν̄K, ν̄R . LET; τ]] = Cτ [[Σ, ν̄K, ν̄R . τ]]

Cτ [[Σ, ν̄K, ν̄R . LET β̄; τ]] = Cτ [[Σ, ν̄K, ν̄R . LET [[head(β̄)]]; LET [[tail(β̄)]]; τ]]

THEOREM 6-36: (Preservation of term semantics under compilation) Let Σ be a
variable renaming function and Γ represent the mapping of all relevant MMIX variables
to their respective atomic values. Let τ be an Etude term that is closed and well-
formed under the substitution by Γ � Σ. Further, let Λ0 represent a function environment
updated with bindings of n successive instruction addresses that begin at some Etude
function variable ν to the respective n instructions generated from the compilation of

6.4 CODE GENERATION 317

τ and let ∆0 represent an object environment that is likewise updated with bindings
of any symbolic addresses LOC.8k to the current values of all pseudo-registers $k
which appear free within τ . Then, taken in the context of Λ and ∆, a term of the form
“LET ῡ = τ ; [[$K(π)/Γ]]” is equivalent to the function application term “ν (π)” under
substitution by Γ. Formally:

LCτ :: 8 Σ, Γ, Γ0, Λ, Λ0, ∆, ∆0, ν , υ , α , ν̄K, υ)
WF(Λ) ! WF(∆) ! WF(τ/(Γ � Σ)) !
[[Λ0 = Λ/DĪ(Γ, ν . Cτ(Σ, ν̄K, [Σ(υk) υk ῡ] . α))]] !
[[∆0 = ∆/f(Γ(LOC.8k) :Γ($k)) [[$k]] [Σ(υk) υk FV(τ)], k � 256g]] !
[[Λ, ∆ . [[LET ῡ = τ ; [[$K(π)/Γ]]]]]] � [[Λ0, ∆0 . [[[[Γ(Σ(ν))]](π)]]/Γ]]

PROOF: For all “RET”, “NEW”, “DEL”, “GET”, “SET” and “SETI” term forms of τ ,
“LET ῡ = τ ; $K(π)” is always reducible under Eτ into a direct call to $K, provided that
all variables found in both ῡ and π are replaced in $K’s argument list with their actual
atomic values delivered by τ , since none of these term forms ever affects the evaluation
state. From theorems LCν and LCα , we also have an equivalence between such calls
and their compiled representations, observing that the MMIX rendition of every such
term is precisely identical to that obtained from the delivered atomic values. Accord-
ingly, the desired equivalence relation “LET ῡ = τ ; $K(π) � ν (π)” holds as required for
all of these term forms.

If τ represents a function application term, then both “LET ῡ = τ ; $K(π)” and
“ν (π)” are compiled into identical MMIX instruction sequences, save for an occasional
copy operation that can be amortised into Γ using the earlier equivalence result provided
by theorem LCν . Accordingly, for all such term forms, theorem LCτ holds trivially by
the virtue of a definitional equality between the respective function environments.

Finally, the induction step, which pertains to the preservation of nested “LET” bind-
ings, follows directly from the equivalence between “LET ῡ2 = (LET ῡ1 = τ1; τ2); τ3”
and its flattened variant “LET ῡ1 = τ1; (LET ῡ2 = τ2; τ3)”. Accordingly, we can begin
by establishing theorem LCτ inductively for the inner “LET” term and, subsequently,
utilising the resulting equivalence in order to establish the result for the entire construct.

The remaining two cases, which pertain to the system calls and conditional “IF”
term forms, are no more difficult to scrutinise. However, a detailed analysis of their re-
spective evaluation sequences is somewhat more elaborate, so that I leave the fulfilment
of the associated proof obligations as an exercise for the reader.

With this last set of Haskell definitions, we have now completed our implementa-
tion of a verified compiler for the C programming language and can proceed directly
with an implementation and subsequent verification of individual C programs, using
their semantic model defined in the previous three chapters. While space and time con-
straints prohibited me from presenting the full details of many lesser aspects of the de-
scribed compiler implementation, or from elaborating fully on the required proof obli-
gations, these omissions should in no way distract from the magnitude of our present
success.

318 CHAPTER 6: GENERATING CODE

6.5 Example Translation
As an illustrative example of our compiler in action, let us present the MMIX rendition
of the C translation unit discussed earlier in Section 5.11, which, as the reader may
recall, provided a textbook implementation of the quick sort algorithm. The resulting
MMIX module exports two external names swap and sort, which are bound to the
text symbols #1 and #2, respectively. The data segment is empty, while the text segment
defines eight distinct symbols, of which #0 represents the entry point into the entire
program:

LET #1:swap
#2:sort

TEXT ...
DATA
IN #0

First, symbol #0 represents the trivial initialiser term of the two C declarations found
in the original source file:

#0: GOI $T, $K, 0

The following section #1 implements the actual body of the C function swap:

#1: SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S OR $248, $0, $0
LDOI $248, $248, 0 LDTI $248, $248, 0
STTUI $248, $249, 0 OR $248, $0, $0
LDOI $248, $248, 0 OR $247, $1, $1
LDOI $247, $247, 0 LDTI $247, $247, 0
STTUI $247, $248, 0 OR $248, $247, $247
OR $248, $1, $1 LDOI $248, $248, 0
LDTI $249, $249, 0 STTUI $249, $248, 0
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $2, 0, 0 @ #3 INCML $2, 0, 0 @ #3
INCMH $2, 0, 0 @ #3 INCH $2, 0, 0 @ #3
GOI $T, $2, 0

Next, #2 provides an MMIX rendition of sort itself:

#2:OR $249, $2, $2 LDTI $249, $249, 0
OR $248, $1, $1 LDTI $248, $248, 0
SETL $247, 0, 1 ADDU $248, $248, $247
SETL $247, 0, 32 SLU $248, $248, $247
SETL $247, 0, 32 SR $248, $248, $247
CMP $249, $249, $248 ZSPI $249, $249, 1
SETL $248, 0, 0 CMP $249, $249, $248
ZSNZI $249, $249, 1 BZ $249, 0, 38
SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S SETL $T, 0, 8
SUBU $S, $S, $T OR $248, $S, $S
SETL $T, 0, 8 SUBU $S, $S, $T
OR $247, $S, $S OR $246, $0, $0
OR $245, $1, $1 LDTI $245, $245, 0

6.5 EXAMPLE TRANSLATION 319

SETL $244, 0, 4 MULU $245, $245, $244
ADDU $246, $246, $245 LDTI $246, $246, 0
STTUI $246, $249, 0 OR $246, $1, $1
LDTI $246, $246, 0 SETL $245, 0, 1
ADDU $246, $246, $245 SETL $245, 0, 32
SLU $246, $246, $245 SETL $245, 0, 32
SR $246, $246, $245 STTUI $246, $248, 0
OR $246, $2, $2 LDTI $246, $246, 0
STTUI $246, $247, 0 OR $3, $249, $249
OR $4, $248, $248 OR $5, $247, $247
SETL $6, 0, 0 @ #4 INCML $6, 0, 0 @ #4
INCMH $6, 0, 0 @ #4 INCH $6, 0, 0 @ #4
GOI $T, $6, 0 SETL $3, 0, 0 @ #7
INCML $3, 0, 0 @ #7 INCMH $3, 0, 0 @ #7
INCH $3, 0, 0 @ #7 GOI $T, $3, 0

The function #3 implements the trivial exit block of swap:
#3: GOI $T, $K, 0

while #4 depicts the loop body at the heart of the entire algorithm:
#4: OR $249, $4, $4 LDTI $249, $249, 0

OR $248, $5, $5 LDTI $248, $248, 0
CMP $249, $249, $248 ZSNI $249, $249, 1
SETL $248, 0, 0 CMP $249, $249, $248
ZSNZI $249, $249, 1 BZ $249, 0, 118
OR $249, $0, $0 OR $248, $4, $4
LDTI $248, $248, 0 SETL $247, 0, 4
MULU $248, $248, $247 ADDU $249, $249, $248
LDTI $249, $249, 0 OR $248, $3, $3
LDTI $248, $248, 0 CMP $249, $249, $248
ZSNPI $249, $249, 1 SETL $248, 0, 0
CMP $249, $249, $248 ZSNZI $249, $249, 1
BZ $249, 0, 16 OR $249, $4, $4
SETL $248, 0, 1 LDTI $247, $249, 0
ADDU $248, $247, $248 SETL $247, 0, 32
SLU $248, $248, $247 SETL $247, 0, 32
SR $248, $248, $247 STTUI $248, $249, 0
OR $249, $248, $248 SETL $6, 0, 0 @ #5
INCML $6, 0, 0 @ #5 INCMH $6, 0, 0 @ #5
INCH $6, 0, 0 @ #5 GOI $T, $6, 0
SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S SETL $T, 0, 8
SUBU $S, $S, $T OR $248, $S, $S
SETL $247, 0, 0 @ #1 INCML $247, 0, 0 @ #1
INCMH $247, 0, 0 @ #1 INCH $247, 0, 0 @ #1
OR $246, $0, $0 OR $245, $4, $4
LDTI $245, $245, 0 SETL $244, 0, 4
MULU $245, $245, $244 ADDU $246, $246, $245
STOUI $246, $249, 0 OR $246, $0, $0
OR $245, $5, $5 SETL $244, 0, 1
LDTI $243, $245, 0 SUBU $244, $243, $244

320 CHAPTER 6: GENERATING CODE

SETL $243, 0, 32 SLU $244, $244, $243
SETL $243, 0, 32 SR $244, $244, $243
STTUI $244, $245, 0 OR $245, $244, $244
SETL $244, 0, 4 MULU $245, $245, $244
ADDU $246, $246, $245 STOUI $246, $248, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $0, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $1, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $2, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $3, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $4, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $5, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $K, $S, 0 OR $0, $249, $249
OR $1, $248, $248 OR $2, $247, $247
GOI $K, $2, 0 LDOUI $K, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $5, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $4, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $3, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $2, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $1, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $0, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $6, 0, 0 @ #5 INCML $6, 0, 0 @ #5
INCMH $6, 0, 0 @ #5 INCH $6, 0, 0 @ #5
GOI $T, $6, 0 SETL $6, 0, 0 @ #6
INCML $6, 0, 0 @ #6 INCMH $6, 0, 0 @ #6
INCH $6, 0, 0 @ #6 GOI $T, $6, 0

The next function #5 facilitiates an exit from the inner “if” statement:

#5: SETL $6, 0, 0 @ #4 INCML $6, 0, 0 @ #4
INCMH $6, 0, 0 @ #4 INCH $6, 0, 0 @ #4
GOI $T, $6, 0

and #6 provides a rather lengthy rendition of the remaining computations performed
within the loop:

#6: SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S SETL $T, 0, 8
SUBU $S, $S, $T OR $248, $S, $S
SETL $247, 0, 0 @ #1 INCML $247, 0, 0 @ #1
INCMH $247, 0, 0 @ #1 INCH $247, 0, 0 @ #1
OR $246, $0, $0 OR $245, $4, $4
SETL $244, 0, 1 LDTI $243, $245, 0

6.5 EXAMPLE TRANSLATION 321

SUBU $244, $243, $244 SETL $243, 0, 32
SLU $244, $244, $243 SETL $243, 0, 32
SR $244, $244, $243 STTUI $244, $245, 0
OR $245, $244, $244 SETL $244, 0, 4
MULU $245, $245, $244 ADDU $246, $246, $245
STOUI $246, $249, 0 OR $246, $0, $0
OR $245, $1, $1 LDTI $245, $245, 0
SETL $244, 0, 4 MULU $245, $245, $244
ADDU $246, $246, $245 STOUI $246, $248, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $0, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $1, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $2, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $4, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $5, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $K, $S, 0
OR $0, $249, $249 OR 1, $248, $248
OR $2, $247, $247 GOI $K, $2, 0
LDOUI $K, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $5, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $4, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $2, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $1, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $0, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S SETL $T, 0, 8
SUBU $S, $S, $T OR $248, $S, $S
SETL $T, 0, 8 SUBU $S, $S, $T
OR $247, $S, $S SETL $246, 0, 0 @ #2
INCML $246, 0, 0 @ #2 INCMH $246, 0, 0 @ #2
INCH $246, 0, 0 @ #2 OR $245, $0, $0
STOUI $245, $249, 0 OR $245, $1, $1
LDTI $245, $245, 0 STTUI $245, $248, 0
OR $245, $4, $4 LDTI $245, $245, 0
STTUI $245, $247, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $0, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $1, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $2, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $5, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $K, $S, 0
OR $0, $249, $249 OR $1, $248, $248
OR $2, $247, $247 OR $3, $246, $246

322 CHAPTER 6: GENERATING CODE

GOI $K, $3, 0 LDOUI $K, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $5, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $2, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $1, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $0, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 SUBU $S, $S, $T
OR $249, $S, $S SETL $T, 0, 8
SUBU $S, $S, $T OR $248, $S, $S
SETL $T, 0, 8 SUBU $S, $S, $T
OR $247, $S, $S SETL $246, 0, 0 @ #2
INCML $246, 0, 0 @ #2 INCMH $246, 0, 0 @ #2
INCH $246, 0, 0 @ #2 OR $245, $0, $0
STOUI $245, $249, 0 OR $245, $5, $5
LDTI $245, $245, 0 STTUI $245, $248, 0
OR $245, $1, $1 LDTI $245, $245, 0
STTUI $245, $247, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $0, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $1, $S, 0 SETL $T, 0, 8
SUBU $S, $S, $T STOUI $2, $S, 0
SETL $T, 0, 8 SUBU $S, $S, $T
STOUI $K, $S, 0 OR $0, $249, $249
OR $1, $248, $248 OR $2, $247, $247
OR $3, $246, $246 GOI $K, $3, 0
LDOUI $K, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $2, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
LDOUI $1, $S, 0 SETL $T, 0, 8
ADDU $S, $S, $T LDOUI $0, $S, 0
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $T, 0, 8 ADDU $S, $S, $T
SETL $3, 0, 0 @ #7 INCML $3, 0, 0 @ #7
INCMH $3, 0, 0 @ #7 INCH $3, 0, 0 @ #7
GOI $T, $3, 0

6.5 EXAMPLE TRANSLATION 323

Finally, symbols #7 and #8 describe the exit blocks of the outer “if” statement and
the sort function itself:

#7: SETL $3, 0, 0 @ #8 INCML $3, 0, 0 @ #8
INCMH $3, 0, 0 @ #8 INCH $3, 0, 0 @ #8
GOI $T, $3, 0

#8: GOI $T, $K, 0

The reader will undoubtedly observe the naïveté of the above translation, whereby
constants such as 8 are repeatedly placed into scratch registers during allocation of
objects on the program’s data stack. Given a smarter register allocation algorithm and a
more elaborate constant synthesis strategy, the above program could be easily reduced
into 20-odd individual MMIX operations. Nevertheless, I chose to present the above
unoptimised version of the program in order to expose the actual behaviour of our
compiler in its present form that was described throughout the last three chapters.

7

CONCLUSION

CHAPTER 7: CONCLUSION 325

Man is still the most extraordinary computer of all.

— John F. Kennedy

When, over seven years ago, I embarked on the road towards a formal verification
of a C compiler, I held little hope of ever arriving at the ultimate destination and
expected to content myself with a partial solution to only one or two aspects of the
entire project. Yet here it is: not just a complete, formally verified translation of the
standard C programming language into a sequence of realistic, executable machine
instructions, but, more so, an entire framework ready to facilitate similar designs for
many other source and target languages. Although, due to space restrictions, I was
forced to omit many of the less interesting details such as the lexical analysis, parsing
and linking stages of the translation process and I was only able to present a casual
and sometimes schematic outlines of the required proofs, it should be clear that all of
these remaining tasks pale in comparison with the complexity of the original project
at its outset. With the help of capable theorem proving tools such as Coq and Twelf,
it should be possible to refine the informal reasoning presented in Chapter 6 into a
stringent mechanically verified proof of correctness for our compiler. Nevertheless, in
the interest of professional honesty, it is now time to summarise both the successes and
the limitations of the linear correctness approach advocated in Chapter 4, as well as the
few conspicuous omissions from the present work.

First and foremost, my approach rests crucially on a novel and hence necessarily
controversial perception of a compiler as a functor between the categories of its source
and target languages. It assumes that the system’s correctness can be reduced solely
to that functor’s isomorphism, without recourse to any external semantic authority
for mediation of meanings during the various stages of a program’s translation. As
such, my approach challenges the very foundations of all existing work on compiler
verification, so that, notwithstanding the philosophical argument from Chapter 2, I
fully expect the linear correctness principle to raise eyebrows and a certain degree of
academic opposition. Accordingly, more than an authoritative solution to the challenge
of compiler verification, I indent the present work to constitute opening remarks in a
debate on the philosophical substratum of program correctness.

I should also point out that the formalisation of C presented in Chapter 5 is not all
that different from the existing denotational approaches to language semantics. Nev-
ertheless, its successful incorporation into an actual translation system refutes the folk

326 CHAPTER 7: CONCLUSION

wisdom which has it that such translation semantics do not work in practice due to an
overwhelming amount of engineering trickery found in an effective implementation of
every industrial compiler. In particular, most of the incidental implementation details
found in Chapter 5 have direct counterparts in more conventional operational specifica-
tions of a realistic programming language [Milner 90].

A particularly interesting aspect of linear correctness, which represents both its
cardinal reward and a potential focus of many philosophical objections, is the apparent
scarcity of formal proof obligations imposed by the design. It stems from the fact that
every translation of a language into the compiler’s intermediate representation, includ-
ing both the system’s front end and the semantic description of the target language, is
taken to be true by definition and, accordingly requires no formal justification. The
only proof that cannot be avoided under the linear correctness approach is a commu-
tativity of the mapping between the intermediate and target portrayal of the source
program, which, as shown in Chapter 6 of this work, turns out to be far simpler than the
more complex commutativity relation of the Morris diagram [Morris 73]. Of course,
in practice, the system would benefit greatly from an inclusion of additional results,
such as the precise termination criteria for the compiler outlined in Section 5.11, or the
positive magnitude of all C types. Here, the foundational nature of this work raises
as many questions as it answers, since further research and experience is required to
determine which, if any, useful program properties can be derived from the semantic
definition provided by a linearly correct compiler for a language in which the program
has been described.

The second conspicuous omission in this work pertains to the issues of lexical anal-
ysis and parsing of a textual representation found in the original source files supplied to
the compiler by its users. By the time I came to the realisation that these topics could
not be covered adequately within the available time and space, I had completed large
portions of the rather non-trivial specification of a standard C preprocessor and was un-
derstandably reluctant to conclude that the work had to be discarded from the ultimate
dissertation. However, these topics are already treated thoroughly by other authors,
certainly in more detail than I could ever afford without distracting the reader from the
primary goals of the present project. Nevertheless, in order to retain as much explicit-
ness in the specification of C as possible without dwelling into the awkward issues of
manipulating individual characters or lexeme sequences, I chose to present my com-
piler as a translation of a program’s parse tree, following the precise BNF grammar of
the language as prescribed by the C Standard. Although, initially, the decision seemed
like a necessary evil, I have since come to believe that the forfeiture of a convenient ab-
stract syntax tree representation is vital for a compiler’s ability to serve as an effective
formal specification of its source language, since it avoids a certain degree of detach-
ment between the designers of a translation system and its eventual users. In a similar
way, although the translation semantics presented in Chapter 5 ought to avoid details
of a complex error diagnostic infrastructure found in typical industrial compilers, the

CHAPTER 7: CONCLUSION 327

model should, in principle, accommodate such diagnostics in its eventual practical im-
plementation. For example, the unspecified Haskell exception monad M ubiquitous in
Chapter 5 could be, in principle, extended with any such diagnostics, without mandat-
ing any adjustments to the actual semantic translation which underpins the system’s
correctness.

Incidentally, there is nothing intrinsically new about my reliance on the program’s
parse tree in a formal specification of a programming language. For example, LISP has
been defined by a translation of LISP source files into the language of LISP itself from
the beginning [McCarthy 62, Smith 84], while Haskell is formalised as a translation of
its concrete grammar into a subset of the language known affectionately as “the core”,
whose syntax is itself captured by Haskell’s own concrete grammar [Peyton Jones 03].
Further, most theorem proving frameworks such as Twelf and Coq are formalised solely
in terms of their abstract, rather than concrete syntax [Twelf 98, INRIA 02].

A much more significant omission of this work pertains to the reasoning about
properties of primitive definitions found in the standard Haskell libraries, such as those
of the arithmetic, list and set operations described in Appendix A, whose mathematical
underpinning is taken for granted in the proofs from Chapter 6. In most, but certainly
not all cases, these properties can be inferred easily from the corresponding Haskell
definitions. However, the precise amount and difficulty of the work required for a
complete formalisation of the Haskell prelude remains uncertain and open for future
research. In the meantime, the formal reasoning presented in this dissertation should
be taken with the usual degree of caution appropriate for the traditional “pen and pa-
per” proofs of mathematics. All of the above limitations would be lifted by a concrete
implementation of my extensions to the Haskell programming language proposed in
Chapter 3. To this end, I believe that a formal development of the underlying theory
and an effective execution of these extensions represents an essential continuation of
my present work and the next logical step on the road towards a fully verified imple-
mentation of a C compiler.

In my original vision for the project, I intended to focus on the issues of applying
conventional optimising transformations within the framework of a purely functional
intermediate program representation. Only one or two chapters were to be devoted to
the actual translation of C programs. However, when the volume of material began
to approach some four hundred pages, it became clear that this preliminary scope was
far too broad for a single monograph and that it had to be restricted considerably if the
work was to be completed within the allotted time frame. First to go was the goal of pre-
senting an exhaustive treatment of modern program optimisation techniques within the
framework, a topic that, although fascinating and tremendously important, could easily
span multiple volumes on its own, while remaining essentially orthogonal to the actual
issues of a verified compiler design. Accordingly, I elected to present a system that
performs the absolute minimum of work required for a faithful translation a C program
into a sequence of executable machine instructions, disregarding any issues of that pro-

328 CHAPTER 7: CONCLUSION

gram’s operational efficiency. Nevertheless, the performance of programs during their
execution remains a primary issue of concern to any compiler design methodology and,
while I have exercised every care to ensure that arbitrary optimising program transfor-
mations can be incorporated posteriorly into the prescribed framework without invali-
dating any of the results presented herein, more work in the area is required to establish
the sufficiency of my approach for representation of many such transformations. Some
preliminary results on the effectiveness of purely functional program representations
for capturing of the information essential to such transformations has been presented
in my earlier publication on the topic [Chakravarty 03]. Perhaps the only limitation
to the expressiveness of Etude is its inability to accommodate certain popular optimi-
sations such as sparse conditional constant propagation, which do not always preserve
the semantics of non-terminating programs [Wegman 91]. Since the linear correctness
approach from Chapter 2 relies crucially on transitivity of the program equivalence re-
lation, such optimisations are inherently inexpressible within the framework. Further
experience is required to estimate the exact impact of this deficiency on the effective
performance of programs produced by our compiler.

A possibility of exhaustion of any bounded resources, such as the program’s stack
space, raises another challenge for my compiler verification approach. While, on
modern computers, most such resources are so abundant that, in practice, this problem
is no more interesting than a formalisation of the precise effects a power failure would
have on the meaning of an otherwise well-behaved program, the intricacies of semantic
transparency proofs, such as those involved in the final translation of Etude programs
into their MMIX counterparts in Section 6.4, artificially exasperate these issues to a
rank of a serious obstacle. In Chapter 6, I have given this problem only a very superficial
treatment, since I was unable to arrive at a satisfactory resolution of the underlying
limitation in the course of my own research. However, future work on linear compiler
design will need to establish a suitable formal model of resource exhaustion, to serve as
a panacea for all program transformations which affect their memory usage, both in the
course of the essential instruction stream generation and any auxiliary improvements
to the operational performance of resulting programs. I can only hope that such future
resolution of this issue will not invalidate the central premises of my approach.

However, as the project developed, its scope has not always contracted, but also
expanded into a number of originally unanticipated areas. In particular, initially I held
little hope of applying the linear correctness technique to a verification of the final
stream of machine instructions produced by the compiler. However, in the end, incor-
poration of that ultimate translation stage into the system proved not only natural, but,
more so, pivotal to the complete approach, so that the validity of the entire compiler
rests crucially on proving commutativity of that phase with respect to the semantics of
its intermediate program representation. Nevertheless, code generation has introduced
the project to an entirely new level of complexity, necessitating certain simplifications
in order to present all of the critical ideas within a reasonable amount of material. In

CHAPTER 7: CONCLUSION 329

particular, the translation unveiled in Chapter 6 includes only a very rudimentary regis-
ter allocation algorithm, since even the most naïve treatment of the topic would require
a significant amount of effort, all of which would remain largely orthogonal to the ac-
tual topic of compiler verification. It is rather unfortunate that the need for register
allocation in the final translation of Etude into a target architecture blurs the otherwise
clear boundary between a canonical language translation and its pragmatic optimising
variant. However, this confusion of concerns cannot be avoided for as long as real hard-
ware architectures continue to provide only a finite amount of register storage space.

Further, certain additional issues in generation of actual executable programs re-
main unresolved at the present time. In particular, the compiler described in this work
includes only a fairly abstract model of the linkage stage of translation, or the seman-
tics of all operating system primitives. Nevertheless, given the existing research in
the area, especially that conducted as part of monadic foundations for the treatment of
side effects in the Haskell language, promise to alleviate these issues in an elegant and
unobtrusive fashion [Peyton Jones 87, Peyton Jones 93].

However, to confuse the matter further, in the real world, every machine language
comes with a well-established and rigid operational interpretation in the form of its ac-
tual hardware implementation. Although these operational models are rarely specified
formally, they should nevertheless be recognised somewhere within my framework, in
order to preserve the expected behaviour of the program under its translation by the
compiler. Although the issues of hardware verification itself are beyond the scope of
the present work, a satisfactory design of a verified compiler must, at least in principle,
enable verification of the semantic interpretation ρ � ψ̂ utilised by its linearly correct
implementation with respect to any other semantic model of the target language pro-
vided by its designers. Although I do not resolve this issue at the present time, the
reader should observe that the natural and well-understood operational semantics of
lambda calculi promise to serve as a very capable tool for the task.

Finally, in the original proposal, I had no intention of capturing any under-specifi-
cations of the C programming language prescribed the ANSI/ISO committee. However,
it soon became obvious that a faithful model of those linguistic features which the C
Standard deems undefined, unspecified and implementation-defined is not only inter-
esting, but also highly demonstrative of the flexibility with which the linear correctness
approach is able to tackle the challenges posed by modern programming language de-
signs. Accordingly, much of the material in Chapters 4, 5 and 6 is shaped by a desire
to retain these aspects of C within the presented compilation framework. To this end,
the specification of C and MMIX defined in this work contains certain conspicuous
omissions, such as a formal description of the underlying memory model. A proper
separation between the portable and non-portable C constructs proved to be one of the
most sensitive tasks of the entire project, and I have only achieved the presented results
after numerous unsuccessful attempts at the exercise. In this, my work confirms the
folklore belief that, when it comes to language semantics, saying less is often harder

330 CHAPTER 7: CONCLUSION

than saying too much. The stratification of meaning favoured by my approach sits well
with the practicalities of software implementation, allowing programmers to elect the
precise layer within the resulting “semantic onion” which best serves the purpose and
structure of their particular software.

Perhaps the only feature of the C programming language, whose unspecified se-
mantics are not recognised correctly by its formalisation in Chapter 5, is the precise
behaviour of statically linked array objects that are introduced implicitly by string lit-
eral expressions. In the C Standards, such objects are permitted to occupy overlapping
memory regions whenever the corresponding string literals have suitably overlapping
contents. Although this optional linguistic feature is not recognised in Chapter 5, it
should not pose too many difficulties in a future revision of the system. One particu-
larly compelling means of admitting overlapping objects into the generic Etude model
from Section 4.5 is to extend the set of memory access attributes with a new family
of aliasing tags, which would include a separate value for each potentially overlap-
ping object in the program. Any environment updates to one such object would then
automatically invalidate the contents of all other objects with the same aliasing access
attribute found anywhere else in the address space. This technique seems especially at-
tractive, as it could also prove useful during later optimising program transformations,
by allowing many other important object aliasing information to be captured within the
constraints of the generic Etude language.

While on the topic of memory access attributes, it must be acknowledged that my
treatment of volatile objects, and, for that matter, all other issues that stem from an
asynchronous or otherwise non-deterministic execution of C programs is, in general,
inexpressible within the current incarnation of Etude. In all likelihood, an entirely dif-
ferent kind of intermediate program representation would be required in order to pro-
vide a proper formalisation of non-determinism and concurrency. It could, for example,
be based on the pi calculus of Milner, Parrow and Walker [Milner 92a, Milner 92b].
Notwithstanding these limitations, the reader should observe that, by happy coinci-
dence, the actual MMIX programs produced by the present version of my compiler are
ready and able to be executed in concurrent environments.

Sometimes, however, in order to blur the distinction between unspecified and unde-
fined behaviours of C programs, the translation semantics presented in Chapters 4 and 5
must deviate from the strict letter of the C Standard. This effect is particularly visible in
the area of unspecified evaluation order, whereby C expressions such as “f(a) + f(b)”
are deemed undefined by our semantics of Etude groups, whenever the evaluation of f
produces some non-trivial side effects, despite the fact that the C Standard brands such
expressions as merely unspecified. To the best of my knowledge, this issue cannot be
resolved adequately without introducing some degree of support for non-deterministic
evaluation into the language. However, the reader should observe that the current alge-
braic semantics of Etude are quite capable to correctly modelling even the most intricate
forms of interactions between memory access operations in such expression groups, so

CHAPTER 7: CONCLUSION 331

that, even in its present form, the translation semantics of C capture the notion of un-
specified evaluation order with an accuracy and clarity that is unparalleled in all past
research on the topic.

Three further improvements to my intermediate program representation suggest
themselves naturally. First and foremost, in this work I do not advocate for a sin-
gle universal representation of programs within all linearly correct compilers, so that
various intricacies of a particular source and target language must be captured by a
stratified semantic model, in a manner epitomised by Chapters 5 and 6. Nevertheless,
given the experience of projects such as TenDRA and C-- [Macrakis 92, Currie 95, Pey-
ton Jones 98b], it should not be difficult to arrive at a fully portable variant of Etude,
so that, in principle, all unspecified and implementation-defined aspects of the source
language could be captured by permitting some leeway in the actual translation process
itself. For example, in Chapter 5 this approach was already adopted in description of
structure and union assignments, whose semantics were modelled by concrete but oth-
erwise unspecified Etude terms depicted by the implementation-defined constructions
“set” and “setI”. However, given that extending this approach to the remainder of the
language would significantly complicate the final translation of the resulting program
into its ultimate binary representation, I leave all such enhancements open for future
research.

In the meantime, a simple but useful improvement to our intermediate program
representation would involve clarification of the proper distinction between programs
that are well-formed, in that they conform to the various syntactic constraints imposed
on the abstract syntax of Etude, and those which are well-defined, i.e., denote com-
putations other than “?”. Although, for conciseness, in this work I consolidate both
semantic properties into a single predicate “WF”, such simplification was only possible
due to an absence of a more sophisticated concrete syntax in my presentation and, in a
more pragmatic scenarios, the distinction will have to be reinstated, in order to allow a
precise characterisation of those Etude programs which can be actually handled by the
translation from Chapter 6.

Last but not least, it would be tempting to extend Etude with a strong type system,
in order to extend the project into the area of compiler-aided program verification, envi-
sioned by Anthony Hoare in his 2003 Grand Challenge address in Warsaw [Hoare 03].
Besides its obvious benefits to the design of reliable software, a suitably expressive
dependant type system would also, in all likelihood, enable future compilers to incor-
porate many useful semantic properties of C programs directly into the framework of
Etude, instead of formalising them explicitly within the translation process. However,
the actual design of such a type system and its precise expressive power remain un-
certain, so that, at the present time, they constitute perhaps the most exciting area for
future research stemming from my work.

John F. Kennedy once said in his commencement address at Yale University that
the great enemy of the truth is very often not the lie —– deliberate, contrived and dis-

332 CHAPTER 7: CONCLUSION

honest — but the myth —– persistent, persuasive, and unrealistic. This insight is as true
in computer science as it is in politics, and nowhere does it manifest itself more than
in the history of compiler verification. For over fifty years, the quest for formal certi-
fication of a program translation system has centred around the single premise that a
language such as C constitutes an autonomous notation for a description of algorithms
rather than a mapping between such notations. This is despite the fact that most of
the significant successes in the area have been achieved through recognition of some
translational aspects of the system, such as Blum’s and Kannan’s work on program
checking [Blum 89, Blum 95, Wasserman 97] or the staged compiler verification ef-
fort of Blazy, Dargaye and Leroy [Blazy 06]. By making explicit the definition of a
programming language as the subject rather than an object of a translation between a
programmer’s intentions and a mathematical depiction of computation, I was able to
achieve in the space of one monograph what has alluded computer scientists for half a
century: a complete verified implementation of a compiler for a practical high level pro-
gramming language. Accordingly, more than any other of its contributions, my work
demonstrates conclusively that no programming language can be ever extricated from
its translation into some more fundamental calculus of computation.

This thesis describes only one verified compiler, which targets a rather utopian
instruction set architecture and a venerable source language that has already seen better
days and whose popularity will only diminish further with age. But I have no doubt
that many more linearly correct systems will be devised in the future, opening the
stage for the next great adventure in the science of programming languages, the grand
challenge of a compiler that verifies its work, so that, once and for all, the reality of a
provably correct software can be brought to the everyday experience of the information
technology industry.

ASSUMED
NOTATION

As discussed in Chapter 3, the presentation of all Haskell source code included in
this work omits the implementation details of many simple definitions. Most of these
omitted constructs can be found in the standard Haskell library, in which case only their
type signatures are presented below. For all remaining entities that are applied but not
defined in the actual body of this work, this appendix contains a detailed description of
both the type and the implementation of the entity in the standard syntax of the Haskell
programming language.

A.1 Standard Types
The standard Haskell library provides a plethora of predefined scalar types, but only
four of them are actually used in this work: “Bool”, “Integer”, “Rational” and “String”.
For consistency with the conventions adopted by the C standard for presentation of
language grammars, the names of these types are presented simply as “bool”, “integer”,
“rational” and “string”, respectively. The two data constructors of the “bool” type are
written as “true” and “false”, while integers are depicted simply by numeric constants
such as “0”, “�1” or “7”. Rational numbers are always introduced by the arithmetic
operators described later in Section A.5, while concrete string values never appear in the
presented compiler implementation at all. As mentioned in Chapter 3, the “undefined”
value which appears as an implicit member of every Haskell type is written as “?”.

The standard prelude also supports a number of type classes, but only seven of
these are of any interest to us. The “eq” class provides the two standard structural
equality operators “=” and “6=”, while “ord” implements total ordering of values,
as exemplified by the four operators “<”, “>”, “�” and “�”. Further, the “num”
class introduces the four arithmetic operators “+”, “�”, “�” and “/” common to both
integers and rational numbers, while “show” describes types whose values can be
formatted into human-readable strings. Finally, “enum” represents enumerated types
such as “bool”, all of which can be happily confused with integer values by the virtue
of two predefined functions “fromEnum” and “toEnum”. For conciseness, in this work
both of these functions are treated as implicit coercions, whose names are hidden from
the presentation. Their type signatures are introduced as follows:

[[.]] :: (enum T)) T ! integer
[[.]] :: (enum T)) integer ! T

A.2 TYPE COMBINATORS 335

Most often, these implicit conversions are applied to the values of boolean quantities,
whereby the “true” and “false” constructors are rendered isomorphic to the integers 1
and 0, respectively. At any rate, if both enumeration coercions represent total functions,
then the notation “succ(n)” is equal to the following value n + 1 in the underlying
enumeration sequence:

succ[[.]] :: (enum T)) T ! T

succ[[n]] = n + 1

In similar vain, in this work we also confuse integer and rational numbers, allowing the
earlier to be used freely whenever a rational number is actually expected by the com-
piler. This implicit promotions of integers into the realm of fractions can be formalised
by a coercion function of the following form:

[[.]] :: integer ! rational

[[x]] = x/1

assuming that the division operator “/” described later in Section A.5 always produces
a rational number. The reverse demotion of rationals into the realm of integers is also
possible, provided that the rational’s value does not contain a fractional part. Formally:

[[.]] :: rational ! integer

[[x]] (dbxec = x) = dbxec

where the truncation operation “dbxec” is also defined later in Section A.5.

A.2 Type Combinators
In Haskell, type-valued functions are represented by polymorphic data types. Perhaps
the simplest of such constructions is epitomised by the standard “Maybe” type. Since,
in this work, this type combinator is used almost exclusively for depiction of optional
parse tree components, both of its constructors “Just” and “Nothing” are almost always
suppressed from the presentation. In particular, an application of the standard Haskell
type combinator “Maybe” to T , is represented by the concise notation “Topt”, formatted
in line with the conventions adopted by the C standardisation committee [ANSI 89].
In those contexts where an omission of the data constructor “Nothing” could lead to
a confusion, the constructor is written as “ε”. Accordingly, the Haskell definition of
“Maybe” can be presented as follows:

[[T]]opt :
T
ε

For clarity, all variables of a “Maybe” type are generally assigned names that are
decorated with the “opt” subscript, such as “xopt” and “identifieropt”. To complete the
annihilation of the “Just” construction from our presentation, we also introduce the
following coercion function, which is always undefined on “Nothing” values:

[[.]] :: Topt ! T

[[x]] = x

336 ASSUMED NOTATION

In Haskell, stateful constructs are often represented as monadic computations, whose
structure is described by members of the standard classes “monad” and “monad-fix”. In
this work, such monads appear solely in the translation of C entities, whereby they are
used to identify and reject any invalid inputs to the compiler. To this end, the notation
“require (P)” represents a monadic term that always evaluates to the Haskell unit value
“()” lifted into some monad M, provided that the supplied boolean predicate P is true.
Formally:

require [[.]] :: (monad M)) bool ! M()

require [[true]] = return
require [[false]] = reject “Semantic error”

which relies on two additional standard monadic combinators “return” and “reject” that
are provided by every Haskell monad. In the actual Haskell prelude, the “reject” com-
binator actually appears under the name “fail”:

return [[.]] :: (monad M)) T ! M(T)
reject :: (monad M)) M(T)

The final monadic operation “ ” combines two or more computations into a list of
the form “M1 M2 ... Mn”. It evaluates to the first of these terms which delivers a
well-formed Haskell value. Formally:

[[.]] [[.]] :: (monad M)) Topt ! Topt ! M(T)

[[x]] [[M2]] = return (x)
[[ε]] [[y]] = return (y)
[[ε]] [[ε]] = reject

observing that the standard “Maybe” type already belongs to the “monad” class.
Last but not least, no treatment of type combinators would be complete without

a mention of tuples, or n-products of predetermined Haskell types. In this work, a
collection of n Haskell values x1 :: T1, x2 :: T2 ... xn :: Tn is usually written as a term
(x1, x2 ... xn) of the type (T1, T2 ... Tn), although the surrounding parentheses may be
omitted whenever they are deemed visually redundant by the expression’s contents. For
clarity, the “,” separator in a tuple expression or type is often replaced with the symbol
“:” or “.”. In other words, both of the terms (A:B) and (A . B) should be always
considered as semantically identical to (A, B), distinguished from the later form only
in the interest of presentation.

A.3 Logical Operations
The three Haskell operators “&&”, “||” and “not” are typeset in this work as the well-
known logical notations “^”, “_” and “:”, respectively. In the standard library, they
assume the following Haskell signatures:

[[.]] ^ [[.]], [[.]] _ [[.]] :: bool ! bool ! bool
:[[.]] :: bool ! bool

A.4 RELATIONAL OPERATIONS 337

It is important to observe that the standard definitions of these functions are strict only
in their first boolean argument.

For convenience, the “^” and “_” operators may be also applied to an entire list
of operands using the standard Haskell functions “and” and “or”. In the presentation,
these two list operations are always typeset as “

V
” and “

W
”, respectively and their

Haskell signatures are defined as follows:
V

[[.]],
W

[[.]] :: [bool] ! bool

where the notation “[T]” represents the standard Haskell polymorphic list type. Both
of these operations are particularly useful when combined with the list comprehension
notation. For example, the expression “

V
[P(xk) xk x̄]” evaluates to “true” if and

only if every element of the list x̄ satisfies the predicate function P.

A.4 Relational Operations
Boolean values may be also constructed using the two Haskell operators “==” and “/=”,
typeset as “=” and “6=” in our presentation. In this work, these operators are always
assumed to represent the structural identity relation that can be derived implicitly for
every non-functional type T using an appropriate “deriving” clause. Intuitively, these
operators have the following Haskell signatures:

[[.]] = [[.]], [[.]] 6= [[.]] :: (eq T)) T ! T ! bool

A pair of values whose type is subject to an appropriate total ordering may be also
compared using the standard Haskell operators “<”, “<=”, “>” and “>=”, predictably
typeset as “<”, “�”, “>” and “�”, respectively:

[[.]] < [[.]], [[.]] � [[.]], [[.]] > [[.]], [[.]] � [[.]] :: (ord T)) T ! T ! bool

Given a pair of ordered values (x, y), the lesser and greater of its members may be
retrieved using the respective notations “min(x, y)” and “max(x, y)”. Both of these
functions are provided in the standard Haskell library with the following types:

min[[.]], max[[.]] :: (ord T)) (T , T) ! T

As with the “^” and “_” operators, “min” and “max” can be also applied to entire lists
of values. The relevant functions are known in the standard Haskell library under the
names of “minimum” and “maximum”, but, for clarity, we will typeset them simply as
follows:

min[[.]], max[[.]] :: (ord T)) [T] ! T

It should be observed that both of these constructions have undefined semantics when
applied to an empty list of values.

Comparisons of numeric quantities often give rise to mathematical notations of the
form “x < y < z”. In this work, such constructs are given a formal mandate by the
following Haskell definitions:

[[.]] [[.]] [[.]] [[.]] [[.]] :: T ! (T ! U ! bool) ! U ! (U ! V ! bool) ! V ! bool

[[x]] op1 [[y]] op2 [[z]] = (x op1 y ^ y op2 z)

338 ASSUMED NOTATION

A.5 Arithmetic Operations
Predictably, the four standard binary arithmetic operators “+”, “-”, “*” and “/” are
always typeset as the familiar mathematical symbols “+”, “�”, “�” and “/”. Further,
the unary operator “negate” is also written as “�”. Each of these five operators may be
applied to either integer or rational operands, but, in both cases, it always reflects the
true arithmetic result of the corresponding mathematical construction:

[[.]] + [[.]], [[.]]� [[.]], [[.]]� [[.]] :: (num T)) T ! T ! T
[[.]]/[[.]] :: (num T)) T ! T ! rational
�[[.]] :: (num T)) T ! T

The reader should observe that, in this work, the division operator “/” always produces
a rational number, even when applied to integer arguments. To convert the resulting
fraction back into an integer, one of the following four rounding operations must be
applied explicitly to its value:

round[[.]] :: rational ! integer
d[[.]]e :: rational ! integer
db[[.]]ec :: rational ! integer
b[[.]]c :: rational ! integer

All four of these operations are implemented for us in the standard Haskell library. The
“round” function converts its operand to the nearest integer value, while “dbxec”, “dxe”
and “bxc” round x towards zero, infinity and negative infinity, respectively. On the
other hand, the superficially similar notation “ x ” has nothing to do with rounding at
all. Instead, it returns the absolute value of a numeric quantity. Once again, it is already
provided for us in the standard Haskell library with the following type signature:

[[.]] :: (num T)) T ! T

Mathematicians often like to apply the + and � operators to entire lists of values. In
the standard Haskell library, the relevant functions are written as “sum” and “product”
but, in this work, they are typeset using the familiar symbols “

P
” and “

Q
”, giving rise

to the following declarations of their types:
P

[[.]],
Q

[[.]] :: (num T)) [T] ! T

Occasionally, when the two operands of the “�” operator are represented by short
variable names or parenthesised expressions, the operator symbol is omitted from the
presentation for conciseness. No ambiguity is generally possible, since the resulting
presentation essentially resembles the syntax of a function application, which is of
course meaningless on numeric quantities. Formally, the notation is enacted by the
following unusual Haskell definition:

[[.]] [[.]] :: (num T)) T ! T ! T

[[x]] [[y]] = x� y

The standard library also supports a number of exponentiation operators. In this work,
all of these are presented using the same familiar mathematical formatting, which is

A.5 ARITHMETIC OPERATIONS 339

exemplified by the following Haskell type signature:

[[.]][[.]] :: (num T)) T ! T ! T

While, in our compiler, we do not require a complete mathematical implementation of
the dual “log” function, in a number of places we rely on its integer approximations
“dlog2(x)e” and “blog2(x)c”. Fortunately, both of these can be obtained easily enough
using the following recursive algorithms:

dlog2[[.]]e, blog2[[.]]c :: rational ! integer

dlog2[[x]]e (x � 1/2) = dlog2(x� 2)e � 1
(1/2 < x � 1) = 0
(x > 1) = dlog2(x/2)e+ 1

blog2[[x]]c (x < 1) = blog2(x� 2)c � 1
(1 � x < 2) = 0
(x � 2) = blog2(x/2)c+ 1

For integers only, we must also provide three additional functions “gcd”, “lcm” and
“mod” borrowed from number theory. The first two construct the greatest common
divisor and the least common multiple of two integers, as obtained using the well-
known Euclid’s algorithm. In this work, their type signature are represented as follows:

gcd[[.]], lcm[[.]] :: (integer, integer) ! integer

The third, “mod”, is used to implement proper modulo arithmetic. Given an arbitrary
integer x and a positive integer y, “x mod y” returns the least non-negative integer that
is congruent to x in arithmetic modulo y. An efficient implementation of this function
is readily available in the standard Haskell library and comes with the following type
signature:

[[.]] mod [[.]] :: integer ! integer ! integer

In Appendix C, we also find it necessary to apply the “lcm” operator to an entire list
of values. Using the built-in Haskell function “foldl” described in Section A.6, this
construction can be implemented as follows:

lcm[[.]] :: [integer] ! integer

lcm[[x̄]] = fold lcm 1 x̄

A careful use of the “mod” operator also permits us to extract individual bits of data
from a given integer value x. In particular, the ith bit in the two’s complement repre-
sentation of such an integer can be obtained using the following formula:

[[.]] [[.]] :: integer ! integer ! integer

[[x]] [[i]] = bx/2ic mod 2

Finally, an arbitrary subset of bits extracted in this fashion can be summed up backed
into an integer value, giving rise to the following useful notation:

[[.]] [[.]] :: integer ! [integer] ! integer

[[x]] [[ī]] =
P

[x(k)� 2k � min(ī) k ī]

340 ASSUMED NOTATION

This completes the entire suite of arithmetic functions required for a satisfactory im-
plementation of our C compiler. Although many of the above definitions are clearly
sub-optimal, they are nevertheless correct. Readers are encouraged to improve upon
them and to apply the theorem proving capabilities from Chapter 3 in order to establish
a semantic neutrality of any such improvements.

A.6 Function Combinators
Of course, numbers are not the only entities manipulated by our compiler. In particular,
our implementation often operates on Haskell functions themselves. Perhaps the most
useful of all such function combinators is the composition operator “�”, whose well-
known implementation is included in the standard Haskell library as follows:

[[.]] � [[.]] :: (U ! V) ! (T ! U) ! (T ! V)

[[f]] � [[g]] = λx . f (g(x))

Intuitively, given a pair of unary functions f and g, f � g represents a new unary function
that begins by applying g to its operand and produces the value obtained from an
application of f to the result of g. Such function composition may be also applied
naturally to an entire list of functions of the Haskell type T ! T:

�[[.]] :: [T ! T] ! (T ! T)

�[[f̄]] = fold � id f̄

in which “id” represents the following trivial identity function:

id[[.]] :: T ! T

id[[x]] = x

and “fold f y x̄” depicts the left fold combinator, which, beginning with the value y,
systematically applies f (y, xk) to all xk 2 x̄:

fold [[.]] [[.]] [[.]] :: (T ! U ! T) ! T ! [U] ! T

fold [[f]] [[y]] [[∅]] = y
fold [[f]] [[y]] [[x:x̄]] = fold f (f (y, x)) x̄

This combinator is, of course, available as part of the standard Haskell library and
serves the important rôle of combining list values into a single result. However, in this
work, it is seldom used directly, other than through its implicit application in most list
operations such as

P
,
Q

and �.

A.7 List Operations
The compiler implementation presented in this work relies heavily on the standard
polymorphic list type “[T]”. Individual values of this type include the empty list ∅,
together with nodes of the form “x : x̄”. Most often, however, list values are represented
by an explicit syntax such as [1, 2, 3], [1 ... 3] or [f (xk) xk x̄]. The later form
represents a list obtained by applying the function f to every element of some other list x̄

A.8 FINITE SETS 341

and all of these notations are supported natively by the Haskell programming language.
Further, to make many list comprehension expressions such as [x� k xk x̄] clearer,
we will write the standard Haskell function “zip” as an infix operator “ ”. Intuitively,
ā1 ā2 converts a pair of lists into a single list of pairs, in which each pair is assembled
from the corresponding elements of its two operands, after truncating both lists to the
length of the shorter argument. Its type signature assumes the following form:

[[.]] [[.]] :: [T] ! [U] ! [T , U]

The actual length of a finite Haskell list can be obtained using the standard function
“length”, which is introduced with the following type signature:

length[[.]] :: [T] ! integer

Further, a concatenation of two lists is represented by the familiar notation “x̄ ++ ȳ”:

[[.]] ++ [[.]] :: [T] ! [T] ! [T]

The dual operation of deconstructing a list into two sub-lists is most commonly per-
formed with the help of standard Haskell functions “head”, “tail”, “take” and “drop”.
In particular, given a non-empty list x̄, head(x̄) and tail(x̄) return the list’s first ele-
ment and the remainder of the list, respectively, while last(x̄) and init(x̄) return the final
element and all elements preceding it. Further, reverse(x̄) conveniently reverses the or-
dering of all elements in x̄, so that head(reverse(x̄)) is always equal to last(x̄), unless x̄
represents an empty list:

head[[.]], last[[.]] :: [T] ! T
tail[[.]], init[[.]], reverse[[.]] :: [T] ! [T]

None of these five functions is ever defined on an empty list ∅.
Finally, given an arbitrary list x̄ and an integer n, take(n, x̄) retrieves the first n

elements of x̄, while drop(n, x̄) discards these elements, returning the remainder of
x̄. If n is 0 or negative, “take” will return an empty list while “drop” will return
its operand unchanged. Conversely, if n is greater than the length of x̄, “take” will
return x̄ unchanged and “drop” will return an empty list. The Haskell signatures of both
functions are given as follows:

take[[.]], drop[[.]] :: (integer, [T]) ! [T]

Finally, in Section 4.6, we rely on one more list combinator “P (k, x̄)”, which returns
the kth permutation of the list x̄:

P [[.]] :: (integer, [T]) ! [T]

A.8 Finite Sets
No treatment of algebraic data types would be complete without providing a conve-
nient polymorphic implementation of sets. Fortunately, the standard Haskell library
comes complete with a very capable implementation of this data structure, in the form
of the standard “Data.Set” module. In this work, the set of n ordered Haskell expres-
sions x1, x2 ... xn :: T is represented by the familiar notation “fx1, x2, xng” and its type

342 ASSUMED NOTATION

is written simply as “fTg”. In this work, I also recognise the notion of set compre-
hensions, writing them as expression of the form f1 ... 7g and even f f (xk) xk x̄g.
Formally, such notation can be given a formal mandate by confusing the concepts of
sets and lists whenever the context of the discussion provides sufficient disambiguation
of the term, which gives rise to the following pair of implicit coercion functions:

[[.]] :: (ord T)) [T] ! fTg
[[.]] :: (ord T)) fTg ! [T]

The cardinality of a set, or the number of distinct elements stored within it, is repre-
sented by standard mathematical notation x̄ :

[[.]] :: (ord T)) fTg ! integer

The Haskell library also provides an efficient direct access to the smallest and greatest
element of a set of ordered values using the following pair of functions:

min[[.]], max[[.]] :: (ord T)) fTg ! T

Most often, however, we are merely concerned with the question of set membership.
Given a value x and a set x̄, the Haskell expression “x 2 x̄” returns “true” if x can be
found in the supplied set and “false” otherwise. This common operator (and its dual
“/2”) are readily available in the standard Haskell library:

[[.]] 2 [[.]], [[.]] /2 [[.]] :: (ord T)) T ! fTg ! bool

Similarly, the subset operator “�” and its strict variant “�” have the following Haskell
declarations:

[[.]] � [[.]], [[.]] � [[.]] :: (ord T)) fTg ! fTg ! bool

Further, a union, intersection and difference of two sets can be obtained using the
standard mathematical notations “x̄1 [x̄2”, “x̄1 \ x̄2” and “x̄1nx̄2”, respectively. They
are implemented by the following Haskell functions:

[[.]] [[[.]], [[.]] \ [[.]], [[.]] n [[.]] :: (ord T)) fTg ! fTg ! fTg

Similarly, the cross-product of two sets can be obtained using the following standard
notation “x̄1 � x̄2”:

[[.]] � [[.]] :: (ord T , ord U)) fTg ! fUg ! fT , Ug

Last but not least, the “[” and “\” operators may be also applied wholesale to an entire
list of sets:

S
[[.]],
T

[[.]] :: (ord T)) [fTg] ! fTg

Highly optimised implementations of the above set operations are readily available in
the standard Haskell library. However, the reader should observe that most of the set
functions described in this section are defined only for types that are a member of the
Haskell class “ord”. When no sensible total ordering is available for a type whose
sets are constructed by our compiler implementation, the reader should assume that an
adequate instance of the “ord” class has been constructed implicitly using the standard
instance derivation mechanism supported by the language.

A.9 FINITE MAPS 343

A.9 Finite Maps
A finite map is a unary function defined over a finite domain of distinct values in such a
way that it can be extended with additional definitions during execution of the program.
The standard Haskell library conveniently provides us with an efficient implementation
of such constructs for ordered domain types, in the form of the “Data.Map” module.
In this work, the type of a map from an ordered domain type T to U is written as
“T ! U”. The most primitive value of such a type is the empty map ∅, whose domain
is guaranteed to be empty. Other map values may be constructed using the familiar
set comprehension notation such as fx1:y1, x2:y2, x3:y3g and f f (xk, yk) xk:yk Mg,
in which every value xk represents an element of the resulting map’s domain. In the
resulting map, each xk is bound to the corresponding value yk. Similarly to the earlier set
type, these notations are mandated by the following pair of implicit coercions between
finite maps and lists of tuples:

[[.]] :: (ord T)) [T , U] ! (T! U)
[[.]] :: (ord T)) (T! U) ! [T , U]

The cardinality or size of a finite map is depicted by the standard mathematical notation
M , with a type similar to the corresponding set operation:

[[.]] :: ord T) (T! U) ! integer

A set of all elements present in the domain or codomain of a given finite map M is
represented by the respective notations “dom(M)” and “codom(M)”. A native imple-
mentation of both constructions is provided in the standard library as the following pair
of Haskell functions:

dom [[.]] :: (ord T)) (T! U) ! fTg
codom[[.]] :: (ord U)) (T! U) ! fUg

In practice, finite maps are generally considered to represent partial functions. In this
work, an application of a map m̄ to a value x from the map’s domain is typeset as like
an ordinary function application m̄(x). In the real life of Haskell, such map applications
are executed by a function with the following type signature:

[[.]] [[.]] :: (ord T)) (T! U) ! T ! U

To complete the partial function illusion, we can also define the standard composition
operator “�” on finite maps as follows:

[[.]] � [[.]] :: (ord T , ord U)) (U! V) ! (T! U) ! (T! V)

[[M]] � [[N]] = fx :M(y) (x :y) N, y 2 dom(M)g

Given two or more finite maps with disjoint domain sets, a new map that consists of all
the bindings found in any of the supplied operands can be constructed with one of the
following familiar union operators:

[[.]] [[[.]] :: (ord T)) (T! U) ! (T! U) ! (T! U)

S
[[.]] :: (ord T)) [T! U] ! (T! U)

344 ASSUMED NOTATION

Both operations are explicitly left undefined on arguments with overlapping domains.
When combining such overlapping finite maps, a different kind of a binary map oper-
ator, known as a map extension or a right-biased union, is required. In this work, an
extension of a given map m̄1 by m̄2 is represented by the notation “m̄1/m̄2”. Formally,
it is implemented in Haskell as follows:

[[.]] / [[.]]:: (ord T)) (T! U) ! (T! U) ! (T! U)

[[M]] / [[N]]= (Mndom(N)) [N

In other words, M/N maps every element x 2 dom(N) to N(x) and every element
y /2 dom(N) to M(y). Intuitively, the new bindings introduced by the second operand
of “/” override any existing mappings from M. This popular map operation is critical
to a successful implementation of most symbol tables encountered in our compiler.

A careful reader will observe that, in the above definition, the map difference
operator “n” was applied with a set, rather than a map as its second argument. In
fact, it is often convenient to define a similar asymmetric map-set intersection operator
“\”. Both of these functions are implemented in the standard library with the following
obvious type signatures:

[[.]] \ [[.]], [[.]]n[[.]] :: (ord T)) (T! U) ! fTg ! (T! U)

As for finite sets, a complete implementation of every data type and function described
in this section is readily available in the standard Haskell module “Data.Map”. Since the
art of purely functional data type constructions is not the primary subject of this work,
I refer an interested reader to the existing relevant literature for a further discussion of
the topic [Adams 93].

BIBLIOGRAPHY

[ANSI 68] USA Standard COBOL, American Standard USAS X3.23-1968, American National Standards
Institute, 1968.

[ANSI 89] Programming Languages — C, International Standard ANSI/ISO 9899:1990, The Institute
of Electrical and Electronics Engineers, Inc, 1992.

[ANSI 99] Programming Languages — C, International Standard ISO/IEC 9899:1999(E), American
National Standards Institute, 2000.

[Abramsky 93] Samson Abramsky and C.H. Luke Ong. Full Abstraction in the Lazy Lambda Calculus.
Information and Computation, Volume 105(2), 1993.

[Abramsky 94] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, Volume 59, pp. 543–574, 1994.

[Abramsky 99] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
Proceedings of the Fourteenth International Symposium on Logic in Computer Science, pp.
431–442. Computer Science Press of the IEEE, 1999.

[Aczel 96] Amir D. Aczel. Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical
Problem, Delta.

[Adams 93] Stephen Adams. Efficient sets — a balancing act. Journal of Functional Programming,
Volume 3(4), pp. 553–561, October 1993.

[Aho 86] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers— Principles, Techniques and
Tools, Addison-Wesley, 1986.

[Appel 98] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN Notices, Volume 33(4),
1998.

[Appel 98ML] Andrew W. Appel. Modern Compiler Implementation in ML, Cambridge University Press,
1998.

[Attali 93] Isabelle Attali, Denis Caromel and Michael Oudshoorn. A Formal Definition of the Dynamic
Semantics of the Eiffel Language. In Proceedings of the 16th Australian Computer Science
Conference, pp. 109–120, Brisbane, Australia. Griffith University, 1993.

[Backus 54] John W. Backus, Harlan Herrick and Irving Ziller. Preliminary Report: Specifications for
the IBM Mathematical FORmula TRANslating System, FORTRAN, Programming Research
Group, Applied Science Division, International Business Machines Corporation, November
1954.

[Backus 59] John W. Backus. The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM conference. In Proceedings of the International Conference on
Information Processing, pp. 125–132, UNESCO, 1959.

[Barendregt 84] Hendrik Pieter Barendregt. Lambda Calculus, Its Syntax and Semantics, North-Holland,
1984.

[Bauer-Mengelberg 67] Stefan Bauer-Mengelberg. On the building blocks of mathematical logic. In A Source Book
in Mathematical Logic, 1879-1931, pp. 355–366. Harvard University Press, 1967.

[Bekic 74] Hans Bekic, Dines Bjørner, Wolfgang Henhapl, Cliff B. Jones and Peter Lucas. A Formal
Definition of a PL/I Subset, IBM Laboratory, Vienna, Technical Report 25.139, September
1974.

[Berghofer 03] Stefan Berghofer and Martin Strecker. Extracting a formally verified, fully executable com-
piler from a proof assistant. In Electronic Notes in Theoretical Computer Science, Volume
82(2), pp. 377–394. Elsevier, April 2004.

BIBLIOGRAPHY 347

[Bjørner 82a] Dines Bjørner and Cliff B. Jones. ALGOL 60. In Formal Specification and Software Devel-
opment, Chapter 6, pp. 141–173. Prentice Hall, 1982.

[Bjørner 82b] Dines Bjørner and Cliff B. Jones. Pascal. In Formal Specification and Software Development,
Chapter 7, pp. 175–251. Prentice Hall, 1982.

[Black 96] Paul E. Black and Phillip J. Windley. Inference Rules for Programming Languages with Side
Effects In Expressions. In Proceeding of the Ninth International Conference on Theorem
Proving in Higher Order Logics, Lecture Notes in Computer Science, Volume 1125, pp. 51–
60, Turku, Finland. Springer-Verlag, 1996.

[Blakley 92] George Robert Blakley. A Smalltalk Evolving Algebra and its Uses, PhD Thesis, University
of Michigan, 1992.

[Blazy 06] Sandrine Blazy, Zaynah Dargaye and Xavier Leroy. Formal Verification of a C Compiler
Front-End. In International Symposium on Formal Methods, Lecture Notes in Computer
Science, Volume 4085, pp. 460–475. Springer-Verlag, 2006.

[Blech 04] Jan Olaf Blech and Sabine Glesner. A Formal Correctness Proof for Code Generation from
SSA Form in Isabelle/HOL. In Proceedings der 3. Arbeitstagung Programmiersprachen
(ATPS) auf der 34. Jahrestagung der Gesellschaft für Informatik. Lecture Notes in Infor-
matics, September 2004.

[Blum 89] Manuel Blum and Sampath Kanna. Designing programs that check their work. In Proceed-
ings of the Twenty First Annual ACM Symposium on Theory of Computing, pp. 86–97, Seattle,
Washington, USA. ACM Press, 1989.

[Blum 95] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of
the ACM, Volume 42(1), pp. 269–291, 1995.

[Börger 94] Egon Börger, Igor Ðurd̄anović and Dean Rosenzweig. Occam: Specification and Compiler
Correctness. Part I: The Primary Model. In Proceedings of PROCOMET’94, IFIP Working
Conference on Programming Concepts, Methods and Calculi, pp. 489–508. North-Holland,
1994.

[Börger 95a] Egon Börger and Dean Rosenzweig. A mathematical definition of Full Prolog. Science of
Computer Programming, Volume 24(3), pp. 249–286, 1995.

[Börger 95b] Egon Börger and Dean Rosenzweig. The WAM — Definition and Compiler Correctness.
Logic Programming: Formal Methods and Practical Applications, 1995.

[Börger 96] Egon Börger and Igor Ðurd̄anović. Correctness of compiling Occam to Transputer code.
Computer Journal, Volume 39(1), pp. 52–92, 1996.

[Broy 80] Manfred Broy and Martin Wirsing. Programming Languages as Abstract Data Types, Uni-
versité de Lille, 1980.

[Broy 87] Manfred Broy, Martin Wirsing and Peter Pepper. On the algebraic definition of programming
languages. ACM Transactions on Programming Languages and Systems, Volume 9(1), pp.
54–99, 1987.

[Burstall 69] Rod M. Burstall and Peter J. Landin. Programs and their proofs: an algebraic approach. In
Machine Intelligence, Volume 4(2), pp. 17–44. Edinburgh University PRess, 1969.

[Chakravarty 03] Manuel M.T. Chakravarty, Gabriele Keller and Patryk Zadarnowski. A Functional Perspec-
tive on SSA Optimisation Algorithms. In Electronic Notes in Theoretical Computer Science,
Volume 82(2), pp. 347–361. Elsevier, April 2004.

[Chirica 86] Laurian M. Chirica and David F. Martin. Toward compiler implementation correctness
proofs. ACM Transactions on Programming Languages and Systems, Volume 8(2), pp. 185–
214, 1986.

[Church 36] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. American Journal
of Mathematics, Volume 58(2), pp. 345–363, April 1936.

[Church 40] Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic,
Volume 5(2), pp. 56–68, June 1940.

[Church 41] Alonzo Church. The Calculi of Lambda Conversion, Princeton University Press, 1941.
[Cleaveland 80] J. Craig Cleaveland. Programming languages considered as abstract data types. In Proceed-

ings of the ACM 1980 annual conference (ACM’80), pp. 236–245. ACM Press, 1980.

348 BIBLIOGRAPHY

[Clemmensen 84] Geert B. Clemmensen and Ole N. Oest. Formal specification and development of an Ada
compiler: a VDM case study. In Proceedings of the Seventh International Conference on
Software Engineering, pp. 430–440, Orlando, FL, USA. IEEE Press, 1984.

[Cohn 78] Avra Cohn. High level proof in LCF, Department of Computer Science, University of Edin-
burgh, CSR-35-78, November 1978.

[Cohn 88] Avra Cohn. A proof of correctness of the Viper microprocessor: The first level. In VLSI
Specification, Verification and Synthesis, pp. 1–91. Kluwer Academic Publishers, 1988.

[Cohn 89] Avra Cohn. Correctness properties of the Viper block model: The second level. In Current
Trends in Hardware Verification and Automated Theorem Proving, pp. 27–72. Springer-
Verlag, 1989.

[Conway 58] Melvin E. Conway. Proposal for an UNCOL. Communications of the ACM, Volume 1(10),
pp. 5–8, 1958.

[Cook 94a] Jeffrey V. Cook, Eve Cohen and Tim Redmond. A Formal Denotational Semantics for C,
Trusted Information Systems, Technical Report 409D, September 1994.

[Cook 94b] Jeffrey V. Cook and Sakthi Subramanian. A Formal Semantics for C in Nqthm, Trusted
Information Systems, Technical Report 517D, October 1994.

[Coquand 86] Thierry Coquand and Gérard Huet. The Calculus of Constructions, INRIA, N°530, May
1986.

[Crary 03] Karl Crary. Toward a foundational typed assembly language. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’03),
pp. 198–212, New Orleans, Louisiana, USA. ACM Press, 2003.

[Curien 07] Pierre-Louis Curien. Definability and Full Abstraction. Electronic Notes in Theoretical
Computer Science, Volume 172, pp. 301–310, April 2007.

[Currie 95] I.F. Currie. TDF Specification, Issue 4.0, DERA, DRA/CIS(SE2)/CR/94/36/4.0, June 1995.

[Curry 58] Haskell B. Curry and Robert Feys. Combinatory Logic I, North-Holland, 1972.

[Curry 72] Haskell B. Curry, J. Roger Hindley and Jonathan P. Seldin. Combinatory Logic II, North-
Holland, 1972.

[Curzon 91] Paul Curzon. A Verified Compiler for a Structured Assembly Language. In International
Workshop on Higher Order Logic Theorem Proving and its Applications, pp. 253–262. IEEE
Computer Society Press, 1991.

[Cytron 91] Ron K. Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman and Kenneth F. Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, Volume 13(4), pp. 451–490, 1991.

[da Silva 92] Fabio Q. B. da Silva. Observational Equivalence and Compiler Correctness, University of
Edinburgh, Laboratory for Foundations of Computer Science, ECS-LFCS-92-240, September
1992.

[Danvy 03] Olivier Danvy. A New One-Pass Transformation into Monadic Normal Form, Warsaw,
Poland. Springer Verlag, April 2003.

[Denney 98] Ewen W.K.C. Denney. A Theory of Program Refinement, PhD Thesis, University of Edin-
burgh, 1998.

[Despeyroux 86] Joëlle Despeyroux. Proof of Translation in Natural Semantics. In Proceedings of the First
Symposium on Logic in Computer Science, LICS, pp. 16–18, Cambridge, MA, USA. IEEE
Computer Society, June 1986.

[Diehl 96] Stephan Diehl. Semantics-Directed Generation of Compilers and Abstract Machines, PhD
Thesis, Universität des Saarlandes, 1996.

[Dijkstra 76] Edsger W. Dijkstra. A Discipline of Programming, Prentice Hall, 1976.

[Dold 98] Axel Dold, Thilo Gaul, Vincent Vialard and Wolf Zimmermann. ASM-Based Mechanized
Verification of Compiler Backends. In Proceedings of the 5th International Workshop on
Abstract State Machines, pp. 50–67, Magdeburg, Germany, 1998.

BIBLIOGRAPHY 349

[Flanagan 93] Cormac Flanagan, Amr Sabry, Bruce F. Duba and Matthias Felleisen. The essence of compil-
ing with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation (PLDI’93), pp. 237–247, Albuquerque, New
Mexico, USA. ACM Press, 1993.

[Floyd 67] Robert W. Floyd. Assigning Meanings to Programs. In Proceedings of a Symposium in
Applied Mathematics, New York City. American Mathematical Society, April 1966.

[Gaul 99] Thilo Gaul, Andreas Heberle, Wolf Zimmermann and Wolfgang Goerigk. Construction of
Verified Software Systems with Program-Checking: An Application To Compiler Back-
Ends. In Proceedings of the Workshop on Run-Time Result Verification, Federated Logic
Conference, Trento, Italy, 1999.

[Gettier 63] Edmund L. Gettier. Is Justified True Belief Knowledge?. Analysis, Volume 23(6), pp. 121–
123, June 1963.

[Giesl 04] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp and Stephan Falke. Automated Termi-
nation Proofs with AProVE. In RTA ’2004: Rewriting Techniques and Applications, Lecture
Notes in Computer Science, Volume 3091, pp. 210–220. Springer-Verlag, 2004.

[Glesner 02] Sabine Glesner, Rubino Geiß and Boris Boesler. Verified Code Generation for Embedded
Systems. In Electronic Notes in Theoretical Computer Science, Volume 65(2), pp. 19–36.
Elsevier, 2002.

[Glesner 03] Sabine Glesner. Using Program Checking to Ensure the Correctness of Compiler Implemen-
tations. Journal of Universal Computer Science, Volume 9(3), pp. 191–222, 2003.

[Gödel 31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme. Monatshefte für Mathematik und Physik, Volume 38, pp. 173–198, 1931.

[Gödel 40] Kurt Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum
Hypothesis with the Axioms of Set Theory, Princeton University Press, 1940.

[Goerigk 96] Wolfgang Goerigk, Axel Dold, Thilo Gaul, Gerhard Goos, Andreas Heberle, Friedrich W. von
Henke, Ulrich Hoffmann, Hans Langmaack, Holger Pfeifer, Harald Ruess and Wolf Zimmer-
mann. Compiler Correctness and Implementation Verification: The Verifix Approach. In
International Conference on Compiler Construction, Linkøping, Sweden, 1996.

[Goos 99] Gerhard Goos and Wolf Zimmermann. Verification of Compilers. In Correct System Design,
Recent Insight and Advances (to Hans Langmaack on the occasion of his retirement from his
professorship at the University of Kiel), Lecture Notes in Computer Science, Volume 1710,
pp. 201–230. Springer-Verlag, 1999.

[Goos 00] Gerhard Goos and Wolf Zimmermann. Verification of Compilers. In Abstract State Ma-
chines: Theory and Applications, Lecture Notes in Computer Science, Volume 1912, pp.
281–297, Monte Verità, Switzerland. Springer-Verlag, March 2000.

[Gordon 88] Michael J.C. Gordon. HOL: A proof generating system for higher order logic. In VLSI
Specification, Verification and Synthesis, pp. 73–128. Kluwer Academic Publishers, 1988.

[Gurevich 88] Yuri Gurevich and James M. Morris. Algebraic Operational Semantics and Modula-2. In
Proceedings of the 1st Workshop on Computer Science Logic, Lecture Notes in Computer
Science, Volume 329, pp. 81–101. Springer-Verlag, 1988.

[Gurevich 90] Yuri Gurevich and Lawrence S. Moss. Algebraic Operational Semantics and Occam. In
Proceedings of the Third Workshop on Computer Science Logic, Lecture Notes in Computer
Science, Volume 440, pp. 176–192. Springer-Verlag, 1990.

[Gurevich 93] Yuri Gurevich and James K. Huggins. The Semantics of the C Programming Language,
February 1993.

[Hannan 93] John Hannan. Searching for semantics. In Proceedings of the 1993 ACM SIGPLAN sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation, pp. 1–12, Copen-
hagen, Denmark. ACM Press, 1993.

[Harper 87] Robert Harper, Furio Honsell and Gordon Plotkin. A Framework for Defining Logics. In
Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science, LICS’87,
pp. 194–204, Ithaca, NY, USA. IEEE Computer Society Press, July 1987.

350 BIBLIOGRAPHY

[Hatcliff 94] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In
Proceedings of the Twenty-First Annual ACM Symposium on Principles of Programming
Languages, pp. 458–471, Portland, Oregon, USA. ACM Press, January 1994.

[Hoare 69] Sir Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, Volume 12(10), pp. 576–580, 1969.

[Hoare 73] Sir Charles Antony Richard Hoare and Niklaus Wirth. An Axiomatic Definition of the
Programming Language PASCAL. Acta Informatica, Volume 2, pp. 335–355, 1973.

[Hoare 03] Sir Charles Antony Richard Hoare. The verifying compiler: A grand challenge for computing
research. Journal of the ACM, Volume 50(1), pp. 63–69, 2003.

[Hopper 57] Grace M. Hopper. Automatic Programming for Business Applications. In Proceedings of the
Fourth Annual Computer Applications Symposium. Armour Research Foundation, Illinois
Institute of Technology, October 1957.

[Howard 69] William A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus, and Formalism, pp. 479–490. Academic Press,
1980.

[Hudak 07] Paul Hudak, John Hughes, Simon Peyton Jones and Philip Wadler. A history of Haskell:
being lazy with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pp. 12-1–12-55, San Diego, California. ACM Press,
2007.

[IEEE 91] IEEE Standard for the Scheme Programming Language, IEEE Standard 1178-1990, Institute
of Electrical and Electronics Engineers, 1991.

[IEEE 754] IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, American National
Standards Institute, 1985.

[INRIA 02] The Coq Proof Assistant Reference Manual, Version 7.2, INRIA, Technical Report 255, 2002.
[Jones 00] Mark P. Jones. Type Classes with Functional Dependencies. In ESOP ’00: Proceedings

of the 9th European Symposium on Programming Languages and Systems, pp. 230–244.
Springer-Verlag, 2000.

[Jones 03] Cliff Jones. Operational Semantics Revisited. In Proceedings of the 2003 ETAPS SE-WMT
Workshop on Structured Programming: The Hard Core of Software Engineering, Warsaw,
Poland, April 2003.

[Kaufmann 00] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-Aided Reasoning:
An Approach, Kluwer Academic Publishers, June 2000.

[Kelsey 95] Richard A. Kelsey. A correspondence between continuation passing style and static single
assignment form. In Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Rep-
resentations, pp. 13–22, San Francisco, CA, USA. ACM Press, 1995.

[Kelsey 98] Richard A. Kelsey et al.. Revised5 Report on the Algorithmic Language Scheme. Higher-
Order and Symbolic Computation, Volume 11(1), August 1998.

[Kernighan 78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Prentice-Hall,
1978.

[Kleene 43] Stephen C. Kleene. Recursive Predicates and Quantifiers. In Transactions of the American
Mathematical Society, Volume 53(1), pp. 41–73, January 1943.

[Knuth 84] Donald E. Knuth. Computers & Typesetting, Addison-Wesley, 1984–1986.
[Knuth 86] Donald E. Knuth. The TEXbook, Addison-Wesley, 1983.
[Knuth 05] Donald E. Knuth. MMIX: A RISC Computer for the New Millennium, Addison-Wesley, 2005.
[Kutter 96] Philipp W. Kutter. Dynamic Semantics of the Oberon Programming Language, ETH Zürich,

TIK Report 25, February 1996.
[Kutter 97] Philipp W. Kutter and Alfonso Pierantonio. The Formal Specification of Oberon. Journal of

Universal Computer Science, Volume 3(5), pp. 443–503, 1997.
[Landin 63] Peter J. Landin. Correspondence Between ALGOL 60 and Church’s Lambda-Notation: Part

I. Communications of the ACM, Volume 8(2), pp. 89–101, 1965.
[Langmaack 89] H. Langmaack and M. Müller-Olm. First Steps in Proven Correct Compiler Development in

ProCoS, Christian-Albrechts-Universität zu Kiel, October 1989.

BIBLIOGRAPHY 351

[Langmaack 90] H. Langmaack, M. Fränzle and M. Müller-Olm. Development of Proven Correct Compilers
in ProCoS, Christian-Albrechts-Universität zu Kiel, 1990.

[Lorenzen 61] Paul Lorenzen. Ein dialogisches Konstruktivitätskriterium. In Infinitistic Methods, pp. 193–
200. Pergamon Press, 1961.

[Macrakis 92] Stavros Macrakis. The Structure of ANDF: Principles and Examples, Open Software Foun-
dation, RI-ANDF-RP1-1, January 1992.

[Martin-Löf 71] Per Martin-Löf. A Theory of Types, University of Stockholm, Technical Report 71-3, 1971.
[Martin-Löf 83] Per Martin-Löf. On the Meanings of the Logical Constants and the Justifications of the

Logical Laws. Nordic Journal of Philosophical Logic, Volume 1(1), pp. 11–60, 1996.
[Martin-Löf 96] Per Martin-Löf. On the meanings of the logical constants and the justifications of logical

laws. Nordic Journal of Philosophical Logic, Volume 1(1), pp. 11–60, 1996.
[McCarthy 58] John McCarthy. Programs with Common Sense. In Proceedings of the Teddington Con-

ference on the Mechanization of Thought Processes, pp. 75–91. Her Majesty’s Stationary
Office, 1959.

[McCarthy 59] John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by
Machine, Part I. Communications of the ACM, Volume 3(4), pp. 184–195, 1960.

[McCarthy 60] John McCarthy, Robert Brayton, Daniel J. Edwards, Phyllis A. Fox, Louis Hodes, David
C. Luckham, Klim Maling, David M.R. Park and Steven R. Russell. LISP I Programmer’s
Manual, MIT Press, 1960.

[McCarthy 62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hard and Michael I.
Levin. LISP 1.5 Programmer’s Manual, MIT Press, 1962.

[McCarthy 67] John McCarthy and James Painter. Correctness of a Compiler for Arithmetic Expressions.
In Mathematical Aspects of Computer Science, Proceedings of the Symposium in Applied
Mathematics, Volume 19, pp. 33–41. American Mathematical Society, 1967.

[Milner 72a] Robin Milner. Implementation and Applications of Scott’s Logic for Computable Functions.
In Proceedings of the ACM Conference on Proving Assertions about Programs, New Mexico
State University. ACM Press, 1972.

[Milner 72b] Robin Milner and R. Weyhauch. Proving compiler correctness in a mechanised logic. In
Machine Intelligence, Volume 7(3), pp. 51–70. Edinburgh University PRess, 1972.

[Milner 73] Robin Milner. Models of LCF, Stanford Artificial Intelligence Laboratory, STAN-CS-73-332,
1973.

[Milner 77] Robin Milner. Fully Abstract Models of Typed Lambda Calculi. Theoretical Computer
Science, Volume 4(1), pp. 1–22, 1977.

[Milner 90] Robin Milner, Mads Tofte and Robert Harper. The Definition of Standard ML, MIT Press,
February 1990.

[Milner 91] Robin Milner and Mads Tofte. Commentary on Standard ML, MIT Press, November 1990.
[Milner 92a] Robin Milner, Joachim Parrow and David Walker. A calculus of mobile processes, Part I.

Information and Computation, Volume 100(1), pp. 1–40, 1992.
[Milner 92b] Robin Milner, Joachim Parrow and David Walker. A calculus of mobile processes, Part II.

Information and Computation, Volume 100(1), pp. 41–77, 1992.
[Moggi 89] Eugenio Moggi. An Abstract View of Programming Languages, University of Edinburgh,

Laboratory for Foundations of Computer Science, ECS-LFCS-90-113, 1990.
[Moggi 91] Eugenio Moggi. Notions of computation and monads. Information and Computation, Vol-

ume 93(1), pp. 55–92, July 1991.
[Moore 89] J Strother Moore. A Mechanically Verified Language Implementation. Journal of Automated

Reasoning, Volume 5(4), pp. 461–492, 1989.
[Morris 73] F. Lockwood Morris. Advice on Structuring Compilers and Proving Them Correct. In Pro-

ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages (POPL’73), pp. 144–152, Boston, Massachusetts. ACM Press, 1973.

[Morris 88] James M. Morris. Algebraic Operational Semantics for Modula-2, PhD Thesis, University of
Michigan, 1988.

352 BIBLIOGRAPHY

[Morrisett 95] Greg Morrisett. Compiling with Types, PhD Thesis, Carnegie Mellon University, December
1995.

[Morrisett 99] Greg Morrisett, David Walker, Karl Crary and Neal Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, Volume 21(3), pp.
527–568, 1999.

[Mulmuley 85] Ketan D. Mulmuley. Full Abstraction and Semantic Equivalence, MIT Press, 1987.
[Necula 97] George C. Necula. Proof-Carrying Code. In Conference Record of POPL’97: The 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 106–
119, Paris, France, January 1997.

[Norrish 97] Michael Norrish. An Abstract Dynamic Semantics for C, University of Cambridge, TR421,
May 1997.

[Okuma 03] Koji Okuma and Yasuhiko Minamide. Executing Verified Compiler Specification. In Pro-
gramming Languages and Systems, Lecture Notes in Computer Science, Volume 2895, pp.
178–194. Springer, 2003.

[Orejas 81] Fernando Orejas. Even more on advice on structuring compilers and proving them correct:
changing an arrow. SIGPLAN Notices, Volume 16(3), pp. 82–84, 1981.

[Owre 92] S. Owre, J.M. Rushby and N. Shankar. PVS: A Prototype Verification System. In CADE 11:
Proceedings of the 11th International Conference on Automated Deduction, Lecture Notes in
Artificial Intelligence, Volume 607, pp. 748–752, Saratoga, NY, USA. Springer-Verlag, June
1992.

[Palsberg 92] Jens Palsberg. A Provably Correct Compiler Generator. In Proceedings of the Fourth Euro-
pean Symposium on Programming (ESOP’92), Lecture Notes in Computer Science, Volume
582, pp. 418–434, Rennes, France. Springer-Verlag, February 1992.

[Papaspyrou 98] Nikolaos S. Papaspyrou. A Formal Semantics for the C Programming Language, PhD Thesis,
National Technical University of Athens, February 1998.

[Paulson 90] Lawrence C. Paulson. Isabelle: The Next 700 Theorem Provers. Logic and Computer
Science, 1990.

[Paulson 05] Lawrence C. Paulson with contributions by Tobias Nipkow and Markus Wenzel. The Isabelle
Reference Manual, University of Cambridge Computer Laboratory, 2005.

[Pedersen 80] Jan Storbank Pedersen. A Formal Semantics Definition of Sequential Ada. In Towards a
Formal Description of Ada, Lecture Notes in Computer Science, Volume 98, pp. 213–308.
Springer-Verlag, 1980.

[Peyton Jones 87] Simon Peyton Jones. The Implementation of Functional Programming Languages, Prentice
Hall, 1987.

[Peyton Jones 93] Simon Peyton Jones and Philip Wadler. Imperative functional programming. In POPL ’93:
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 71–84. ACM, 1993.

[Peyton Jones 96] Simon Peyton Jones. Compiling Haskell by program transformation: a report from the
trenches. In Proceedings of the Sixth European Symposium on Programming Languages
and Systems, Lecture Notes in Computer Science, Volume 1058, pp. 18–44. Springer-Verlag,
January 1996.

[Peyton Jones 98] Simon Peyton Jones and André L.M. Santos. A transformation-based optimiser for Haskell.
Science of Computer Programming, Volume 32(1–3), pp. 3–47, September 1998.

[Peyton Jones 98b] Simon Peyton Jones, Thomas Nordin and Dino Oliva. C--: A Portable Assembly Language.
In Implementation of Functional Languages, Lecture Notes in Computer Science, Volume
1467, pp. 1–19. Springer-Verlag, 1998.

[Peyton Jones 03] Simon Peyton Jones et al.. Haskell 98 Language and Libraries: The Revised Report, Cam-
bridge University Press, 2003.

[Peyton Jones 06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich and Geoffrey Washburn. Sim-
ple unification-based type inference for GADTs. SIGPLAN Notices, Volume 41(9), pp. 50–
61, 2006.

BIBLIOGRAPHY 353

[Pitman 79] Kent Pitman. A Fortran ! Lisp Translator. In Proceedings of the 1979 Macsyma User’s
Conference, Washington, D.C., USA, June 1979.

[Plotkin 77] Gordon D. Plotkin. LCF Considered as a Programming Language. Theoretical Computer
Science, Volume 5(3), pp. 225–255, 1977.

[Plotkin 81] Gordon D. Plotkin. A Structural Approach to Operational Semantics, University of Aarhus,
DAIMI FN-19, 1981.

[Polak 81] Wolfgang Polak. Compiler Specification and Verification, Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1981.

[Reynolds 82] John C. Reynolds. The essence of ALGOL. In International Symposium on Algorithmic
Languages, pp. 345–372, Amsterdam, The Netherlands. North-Holland, 1982.

[Rosser 36] Alonzo Church and J.B. Rosser. Some Properties of Conversion. In Transactions of the
American Mathematical Society, Volume 39(3), pp. 472–482, May 1936.

[Sabry 92] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style..
In Proceedings of the 1992 ACM conference on LISP and functional programming, pp. 288–
298, San Francisco, California, USA. ACM Press, 1992.

[Sampaio 90] A. Sampaio. A Comparative Study of Theorm Provers: Proving Correctness of Compil-
ing Specifications, Oxford University Computing Laboratory, Technical Report PRG-20-90,
1990.

[Schönfinkel 24] Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen,
Volume 92, pp. 305–316, 1924.

[Scott 71] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer lan-
guages, Oxford University Computing Laboratory, Programming Research Group Technical
Monograph PRG-6, 1971.

[Scott 82] Dana Scott. Domains for Denotational Semantics. In International Colloquium on Automata,
Languages and Programs, Lecture Notes in Computer Science, Volume 140, pp. 577–613.
Springer-Verlag, 1982.

[Sewell 07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar and Rok Strniša. Ott: Effective Tool Support for the Working Semanticist. SIGPLAN
Notices, Volume 42(9), pp. 1–12, 2007.

[Shürmann 03] Carsten Schürmann and Frank Pfenning. A coverage checking algorithm for LF. In TPHOL
’03: Proceedings of the 16th International Conference on Theorem Proving in Higher Order
Logics, Lecture Notes in Computer Science, Volume 2758, pp. 120–135. Springer-Verlag,
2003.

[Simpson 90] Todd Simpson. Correctness of a Compiler Specification for the SECD Machine, Department
of Computer Science, The University of Calgary, 1990-410-34, October 1990.

[Smith 84] Brian Cantwell Smith. Reflection and semantics in LISP. In Proceedings of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, pp. 23–35, Salt Lake
City, Utah, USA. ACM Press, January 1984.

[Stringer-Calvert 98] David W.J. Stringer-Calvert. Mechanical Verification of Compiler Correctness, PhD Thesis,
University of York, March 1998.

[Tarditi 96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone and Robert Harper. TIL: a type-
directed, optimizing compiler for ML. SIGPLAN Notices, Volume 39(4), pp. 554–567, 2004.

[Thatcher 80] James W. Thatcher, Eric G. Wagner and Jesse B. Wright. More on advice on structuring com-
pilers and proving them correct. In Proceedings of a Workshop on Semantics-Directed Com-
piler Generation, Lecture Notes in Computer Science, Volume 94, pp. 165–188. Springer-
Verlag, 1980.

[Turing 36] Alan M. Turing. On Computable Numbers, with an Application to the Entscheidungsprob-
lem. In Proceedings of the London Mathematical Society, Volume 2(42), pp. 230–265, 1936.

[Twelf 98] Frank Pfenning and Carsten Schürmann. Twelf User’s Guide, Version 1.2, Carnegie Mellon
University, CMU-CS-98-173, 1998.

354 BIBLIOGRAPHY

[Vale 93] Marc Vale. The Evolving Algebra Semantics of COBOL. Part I: Programs and Control,
University of Michigan, Department of Electrical Engineering and Computer Science, CSE-
TR-162-93, 1993.

[Wadler 92] Philip Wadler. The Essence of Functional Programming. In Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 1–14, Albequerque, New Mexico, USA, January 1992.

[Wallace 93] Charles Wallace. The Semantics of the C++ Programming Language, University of Michi-
gan, Department of Electrical Engineering and Computer Science, CSE-TR-190-93, 1993.

[Wallace 95] Charles Wallace. The Semantics of the C++ Programming Language. In Specification and
validation methods, pp. 131–164. Oxford University Press, 1995.

[Wallace 97] Charles Wallace. The Semantics of the Java Programming Language, University of Michigan,
Department of Electrical Engineering and Computer Science, CSE-TR-355-97, 1997.

[Wasserman 97] Hal Wasserman and Manuel Blum. Software reliability via run-time result-checking. Journal
of the ACM, Volume 44(6), pp. 826–849, 1997.

[Wegman 91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems (TOPLAS), Volume 13(2), pp.
181–210, 1991.

[Wegner 72] Peter Wegner. The Vienna Definition Language. ACM Computing Surveys (CSUR), Volume
4(1), pp. 5–63, 1972.

[Wolczko 87] Mario Wolczko. Semantics of Smalltalk-80. In Proceedings of the European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science, Volume 276, pp. 108–
120. Springer-Verlag, 1987.

[Young 89] William D. Young. Verified Compilation in micro-Gypsy. In Proceedings of the ACM
SIGSOFT ’89 third symposium on Software Testing, Analysis, and Verification, pp. 20–26,
Key West, FL, USA. ACM Press, 1989.

[Zimmermann 97] Wolf Zimmermann and Thilo Gaul. On the Construction of Correct Compiler Back-Ends:
An ASM Approach. Journal of Universal Computer Science, Volume 3(5), pp. 504–567,
August 1997.

IMPLEMENTATION
OF C COMPILERS

In order to complete the translation semantics of C programs presented in Chapter 5, we
must now provide a concrete Haskell implementation of every language parameter that
was left unspecified in the earlier generic fragment of the language. On the following
pages, I present one such implementation that is suitable for the MMIX architecture
described in Chapter 6. The design choices made below represent the typical interpre-
tation of the C Standard common to virtually all compilers for the language that are
deployed in the industry.

First and foremost, every C compiler must settle on a concrete mapping between C
types and Etude formats. On MMIX, these are assigned as follows:

φ [[.]] :: type ! format

φ [[signed char]] = [[Z.8]]
φ [[signed short]] = [[Z.16]]
φ [[signed int]] = [[Z.32]]
φ [[signed long]] = [[Z.64]]
φ [[char]] = [[Z.8]]
φ [[int]] = [[Z.32]]
φ [[unsigned char]] = [[N.8]]
φ [[unsigned short]] = [[N.16]]
φ [[unsigned int]] = [[N.32]]
φ [[unsigned long]] = [[N.64]]
φ [[float]] = [[R.64]]
φ [[double]] = [[R.64]]
φ [[long double]] = [[R.64]]
φ [[t(popt)]] = [[F.64]]
φ [[enum t ν]] = [[Z.32]]
φ [[type-qualifier t]] = φ(t)

Observe that, since the MMIX architecture from Chapter 6 provides for only one
representation of all floating point values, in our C compiler all three floating types
“float”, “double” and “long double” share the common rational format “R.64”.

Otherwise every signed bit field type t of a given width n is associated with the
format “Z.n” and every unsigned such bit field is assigned the format “N.n”. Further, all
pointers to an object or incomplete type t and all arrays of such a type are represented
by the object format corresponding to φ(t), while function pointers depict the same

IMPLEMENTATION OF C COMPILERS 357

standard function format “F.64”. Finally, the format of a structure or union type is al-
ways derived from its member list using the construction φ(m̄(t)) that will be described
shortly. Formally:

φ [[t]] BF(t) ^ ST(t) = [[Z.[[W (t)]]]]
BF(t) ^ UT(t) = [[N.[[W (t)]]]]
(PTR(t) _ ARR(t)) ^ (OBJ(B(t)) _ INC(B(t))) = O(φ(B(t)))
PTR(t) ^ FUN(t) = [[F.64]]
SU(t) = φ(m̄(t))

In particular, all incomplete structure or union types are always assigned the same stan-
dard object format “O.64”, since their empty member list cannot provide any specific
information about the alignment of such objects. However, if m̄ contains at least one
member, then the format is defined as the greatest object format corresponding to the
type of any mk 2 m̄, with all bit field members taken to have the bit field format Ψ.
Formally:

φ [[.]] :: members ! format

φ [[∅]] = [[O.64]]
φ [[m̄]] = max(fO(φ(T (mk))) mk m̄, :BF(T (mk))g

[fO(Ψ) mk m̄, BF(T (mk)) ^ W (T (mk)) > 0g)

Further, in Chapter 5, certain properties of C programs were formalised with the help
of five designated C types “char_t”, “wchar_t”, “int_t”, “ptrdiff_t” and
“size_t” that were originally introduced in Section 5.4.2. Traditionally, these types
have been selected as follows:

char_t, wchar_t, int_t, ptrdiff_t, size_t :: type

char_t = [[signed char]]
wchar_t = [[signed int]]
int_t = [[signed int]]
ptrdiff_t = [[signed long]]
size_t = [[unsigned long]]

Like most other compilers, we also choose to represent every object of an enumeration
type uniformly as a plain integer, regardless of the precise set of enumerator values in-
troduced by that type. In Section 5.8.5, the C type corresponding to a given enumerator
list x̄ was represented by the implementation-specified construct TENL(t), which we can
now settle as follows:

TENL[[.]] :: [integer] ! type

TENL[[el]] = [[int]]

Next on the agenda is the member layout function L , that was utilised in Section
5.8.4 for completion of the structure and union type definitions. However, before
introducing a concrete definition of that function, we should associate every well-
formed object type with one additional property known as alignment. Intuitively, such
an alignment represents the greatest common divisor of all integer values that are

358 IMPLEMENTATION OF C COMPILERS

suitable for representation of pointers to objects of that type. Formally, the alignment
of a given type t is written as A(t). Its almost universally accepted implementation is
represented by the following simple algorithm:

A [[.]] :: type ! integer

A [[t]] SCR (t) = S(t)
ARR(t) = A(B(t))
SU (t) = lcm[A(T (mk)) mk m̄(t)]

In other words, the alignment of all scalar types is always equal to their size, while,
for arrays, it is determined by the alignment of the element type B(t). For structure
and union types, however, the alignment is defined as the least common multiple of
the individual alignments of the type’s members m̄(t), so that, by definition, the size of
every object and bit field type always represents an integral multiple of its alignment.

Using this auxiliary definition, we can now specify the precise behaviour of the
member layout function L . First of all, we must ensure that the total size of the result-
ing member list, defined in Section 5.4.6 as the greatest value among the sums of each
member’s size S(T (mk)) with its offset O(mk) within the entire entity, always repre-
sents an integral multiple of its alignment, as required for a proper implementation of
C arrays containing structure or union objects. The most direct way of guaranteeing
this property is to extend every member list m̄0 with an additional anonymous member
located at the offset 0, whose type represents an array of ds/ae � a characters, recalling
that the “char” type always has the predetermined size of 1. The C standard explicitly
allows for an implicit incorporation of such padding into a structure or union type, so
that the following definition of L also reflects the indented behaviour of these constructs
envisioned by the authors of the C Standard:

L [[.]] :: (struct-or-union . members) ! members

L [[su . m̄]] = m̄0 ++ [[char[[[ds/ae � a]]] @ 0]]

where m̄0 = L 0(su . m̄)
s = max[O(mk) + S(T (mk)) mk m̄0]
a = lcm [A(T (mk)) mk m̄0]

The actual assignment of offsets to the individual members of the list m̄ is then per-
formed by a separate function L 0. In particular, if the supplied member list m̄ belongs to
a union type, then L 0 assigns the same byte and bit offset of 0 to every member mk 2 m̄,
as if by the Z(mk) function described earlier in Section 5.8.4, except that any bit field
members of a zero or negative width are always purged from the result. However, the
behaviour of L 0 is more complicated if the supplied list is intended for incorporation
into a structure object. In that case, L 0(struct . m̄) iterates over all members mk 2 m̄,
assigning to each mk a successive byte and bit offset within the structure:

L 0[[.]] :: (struct-or-union . members) ! members

L 0[[union . m̄]] = [Z(mk) mk m̄, :BF(T (mk)) _ W (T (mk)) > 0]
L 0[[struct . m̄]] = L 00(0, 0, ? . m̄)

IMPLEMENTATION OF C COMPILERS 359

In particular, the construction L 00(σ , ω , ς . m̄) performs the actual allocation of mem-
ber offsets using three integer parameters σ , ω and ς , all of which are assigned the
initial values of 0 at the beginning of the structure. Intuitively, σ specifies the total size
of all members process thus far, ω determines the number of bits left vacant in the bit
field container preceding the current member and ς represents the offset of that partially
populated container whenever ω > 0. Using these three parameters, the precise layout
of a given list m̄ can be obtained by the following recursive algorithm:

1 If m̄ is empty, then the entire structure has been allocated and the algorithm termi-
nates with an empty member list ∅.

2 Otherwise, if σ does not represent an integral multiple of the alignment appropriate
for the type t of the first member in m̄, then the supplied member list is reprocessed
with a new value of that parameter equal to dσ/A(t)e �A(t), also setting ω to 0
and leaving ς undefined.

3 Once the correct alignment of σ has been attained, we can use its value directly as
the offset for the first member of m̄, provided that that member has a well-formed
object type t. Any remaining members in m̄ are then processed, after incrementing
σ by the size S(t) of the newly-allocated member and resetting ω to 0.

4 On the other hand, if the first member has a bit field type of a positive width W (t)
no greater than the current ω value, then, the member’s type is adjusted with a bit
offset equal to ω �W (t), also placing the entire bit field member at the offset ς .
The remainder of the list is then processed with the same values of the σ and ς

parameters, but with ω decreased by W (t).
5 If, however, the bit field is too wide for the number of bits ω available in the previ-

ously allocated container member, then the current container, if any, is abandoned
and a new one is introduced into the structure. In particular, we set ς to the original
value of σ , increment σ itself by the size of the bit field container format Ψ and,
finally, set ω to the width W (Ψ) of the newly allocated container member. The bit
field member is then reprocessed under these new parameter values.

6 Finally, we always reset ω to 0 whenever a bit field container with a zero or negative
width is encountered within the structure. The member itself is always dropped
from the resulting list.

Formally:

L 00[[.]] :: (integer, integer, integer . members) ! members

L 00[[σ , ω , ς . m̄]] m̄ = ∅ = ∅

σ mod A(t) 6= 0 = L 00(dσ/A(t)e � A(t), 0, ? . m̄)
OBJ(t) = [[t x @ σ]] ++ L 00(σ + S(t), 0, ? . tail(m̄))
BF(t) ^ 0 < W (t) � ω = [[t0 x @ ς]] ++ L 00(σ , ω �W (t0), ς . tail(m̄))
BF(t) ^ W (t) > ω = L 00(σ + S [[Ψ]], W (Ψ), σ . m̄)
BF(t) ^ W (t) � 0 = L 00(σ , 0, ? . tail(m̄))

where [[t x @ n]] = head(m̄)
t0 = tq(t) ++ [[[[B(t)]]:[[W (t)]].[[ω �W (t)]]]]

360 IMPLEMENTATION OF C COMPILERS

In Section 5.7.2, a similar construction L(V) was also employed during preparation of
the argument values for calls to C functions with a variable parameter list. In particular,
given a set V of all temporary local variables allocated for storage of these arguments’
values, L(V) produces a mapping of each variable νk 2 dom(V) to successive offsets
within a conglomerated “va_list” object, with every argument allocated at an ad-
dress aligned to the MMIX word boundary. Formally:

L [[.]] :: V ! (ν ! integer)

L [[V]] V = ∅ = ∅

W 0 = ∅ = fν :0g
otherwise = W 0 [fν :max[d(nk + S(V(νk)))/8e � 8 νk:nk W 0]g

where W 0 = L(Vnfνg)
ν = max(dom(V))

A precise manipulation of bit field l-values also introduces a number of further imple-
mentation-defined aspects into the language. In Section 5.7.1.2, a pair of constructions
U(t . α) and P (t, α . α 0) were used to, respectively, extract the value of a given bit
field t from its container atom α and to populate that container with a new value α 0 for
that bit field. On MMIX, the first of these constructions can be represented as follows:

U[[.]] :: (type . atomν) ! atomν

U[[t . α]] = [[(α �N.64 #[[64�W (t)� O(t)]]N.64) �[[γ(φ(t))]].64 #[[64�W (t)]]N.64]]

Intuitively, this expression discards the most significant 64�W (t)� O(t) bits of α

using an appropriate “�N.64” operation, and shifts the resulting bit field value right
by 64�W (t) bit positions using “�N.64” or “�Z.64”, as appropriate for the genre of t,
essentially sign-extending its value to 64 bits and placing the result at the bit offset of 0.

The dual operation P (t, α . α 0) begins by applying the supplied bit container
value α to the bit mask 264 � 2W (t) + O(t) + 2O(t) � 1, using an appropriate bitwise AND
operation, effectively discarding the existing content of the specified bit field in α , then
shifts α 0 into place, while also truncating any of its unnecessary most significant bits.
It delivers a bitwise OR of the resulting two atomic values. Formally:

P [[.]] :: (type, atomν . atomν) ! atomν

P [[t, α . α 0]] = [[(α 4N.64 #[[264 � 2W (t) + O(t) + 2O(t) � 1]]N.64) 5Ψ

((α 0 �N.64 #[[64�W (t)]]N.64) �N.64 #[[64�W (t)� O(t)]]N.64)]]

In Section 5.8.12, one more bit field assembly construction is required to combine the
initial values of multiple bit fields that appear within a single memory-resident object,
each pre-packed into the bit field container “#0Ψ”. Intuitively, such feat can be achieved
by performing an inclusive OR of all atomic values involved in the operation. Formally,
this simple construction is implemented on MMIX as follows:

P [[.]] :: atomsν ! atomν

P [[ᾱ]] (ᾱ = ∅) = [[#0N.64]]

(ᾱ 6= ∅) = [[[[head(ᾱ)]] 5N.64 [[P (tail(ᾱ))]]]]

IMPLEMENTATION OF C COMPILERS 361

Finally, the two memory copy operations “set” and “setI” that, in Sections 5.7 and 5.8
were used to depict assignments and initialisations of structure and union objects, can
be represented naïvely by a sequence of one or more character copy operations, derived
from the size of the underlying object type t as follows:

set [[.]] to [[.]], setI [[.]] to [[.]] :: (type . atomν) ! (type . atomν) ! termν

set [[t1 . α1]] to [[t2 . α2]] = copy [[α1, α2, S(t2)]]
setI [[t1 . α1]] to [[t2 . α2]] = copy [[α1, α2, S(t2)]]

In both cases, an actual Etude term that performs the required movement of data is
constructed from the size of the source object t2 by the following recursive algorithm:

copy [[.]] :: (atomν , atomν , integer) ! termν

copy [[α1, α2, n]] n > 0 = [[LET () = [[copy(α1, α2, n� 1)]];
LET T1 = GET [α2 +O.64 #nZ.64]N.8;
SET [α1 +O.64 #nZ.64]N.8 TO T1]]

n � 0 = [[RET ()]]

Observe that, since our target architecture does not implement any memory access
attributes, there is no difference between the “set” and “setI” variants of this operation.
Further, it should be pointed out that the above definition of “copy” could be easily
enhanced to take advantage of the precise address alignment information included in
every Etude object format. For example, objects aligned on a word boundary could
be copied using the “GET [...]N.64” and “SET [...]N.64” term forms instead of the above
“GET [...]N.8” and “SET [...]N.8” variants, therefore reducing the length of the resulting
term sequence by 87.5%. However, in the interest of exposition, I leave all such
improvements open for a future work on optimising program transformations with
the Etude framework.

Last but not least, in Section 5.7.3 one additional notation V φ (α) was left open to
interpretation by individual C compilers. In Chapter 5, this construction was used to
obtain an actual numeric value corresponding to some closed Etude atom α that was
derived from a constant C expression of an arithmetic type associated with the Etude
format φ .

Although the C Standard admits a broad spectrum of different implementations
for V φ , including some that disagree with certain aspects of the true meanings of
normal Etude atoms, like most modern C compilers, ours will always ensure that
every arithmetic C constant has precisely the same meaning as a syntactically identical
expression evaluated during the actual program execution. Accordingly, in this section,
the function V φ is defined directly in terms of the actual operational semantics of
Etude atoms E that were described in Section 6.3.1. It differs from E only insofar as
its support for floating point arithmetic is restricted to operations over finite numeric
quantities. Further, the reader should observe that, unlike E , V φ is formulated as
a monadic construction rather than a partial Haskell function, in order to facilitate
proper diagnostics of malformed C programs. In particular, a typical implementation

362 IMPLEMENTATION OF C COMPILERS

of V φ can be derived from the evaluation function E of the underlying instruction set
architecture as follows:

V [[.]][[.]] :: (monad-fix M)) format ! atomν ! M(rational)

V [[φ
0

]][[#xφ]] = do
require ((γ(φ) 2 fN, Zg ^ 1 � ε(φ) � 64) _ φ = [[R.64]]) ^

((γ(φ 0) 2 fN, Zg ^ 1 � ε(φ 0) � 64) _ φ 0 = [[R.64]]) ^
(φ 0 6= [[R.64]] _ FIN(encφ (x)))

return (dec
φ

0(encφ (x)))

V [[φ
0 0

]][[φ
0
φ (α)]] = do

require ((γ(φ 0) 2 fN, Zg ^ 1 � ε(φ 0) � 64) _ φ 0 = [[R.64]])
x V φ (α)
z V

φ
0 0(E [[φ 0φ (#xφ)]])

return (z)

V [[φ
0

]][[opφ (α)]] = do
require (φ 6= [[R.64]] _ op 6= [[�]])
x V φ (α)
z V

φ
0 (E [[opφ (#xφ)]])

return (z)

V [[φ
0

]][[α1 opφ α2]] = do
require (φ 6= [[R.64]] _ op /2 f. ., 4, 5, 5, �, �g)
x V φ (α1)
y V φ (α2)
z V

φ
0 (E [[#xφ opφ #yφ]])

return (z)

V [[φ
0

]][[ν]] = reject

This final definition completes the entire specification of the C programming language
under the MMIX architecture. While, in theory, no portable C program should ever
rely on any of the details discussed in this section, most practical software projects tend
to require varying degrees of knowledge about the precise behaviour of the underlying
system, which, in most cases, goes beyond the somewhat relaxed guarantees that are
provided by the C Standard. Fortunately, as demonstrated by the above set of Haskell
definitions, the linear correctness approach to compiler design can readily facilitate
such programs, by furnishing them with multiple layers of semantic specifications,
each depicting the behaviour of actual computational hardware with an ever increasing
amount of detail.

DEFINITION INDEX

D.1 Theorems
ADD TRANS :: Transitivity of integer addition 64
ADD ZERO :: Zero element of integer addition 64
CON∆ :: Validity of object environment contractions 101, 286
CONA :: Object environment data after contraction 102, 286
CONE :: Object environment envelope after contraction 101, 286
CONI :: Object environment initialisers after contraction 101, 286
CONS :: Object environment stack after contraction 101, 286
DEFN :: Definitional equality of Haskell terms 59
EMAX :: Maximum exponent of well-formed rational formats 86, 270
EMIN :: Minimum exponent of well-formed rational formats 86, 270
ENUM :: Corresponding enumerator types 201
ENVE :: Validity of object environment envelopes 100, 285
ENVI :: Validity of object environment initialiser envelopes 100, 285
ENVS :: Validity of object environment stacks 100, 285
EQV+0 :: Equivalence of object atoms 94, 282
EQV+A :: Equivalence of arithmetic “+φ” operations 91, 281
EQV+N :: Equivalence of natural “+φ” operations 90, 282
EQV+O :: Equivalence of object “+φ” operations 94, 282
EQV�A :: Equivalence of arithmetic “�φ” operations 91, 282
EQV�N :: Equivalence of natural “�φ” operations 90, 282
EQV�O :: Equivalence of object “�φ” operations 94, 282
EQV:A :: Equivalence of arithmetic unary “�φ” operations 91, 282
EQV:N :: Equivalence of natural unary “�φ” operations 90, 282
EQV�A :: Equivalence of arithmetic “�φ” operations 91, 282
EQV�N :: Equivalence of natural “�φ” operations 90, 282
EQV�A :: Equivalence of arithmetic “�φ” operations 91, 282
EQV�I :: Equivalence of integral “�φ” operations 92, 282
EQV . .I :: Equivalence of integral “. .

φ” operations 92, 282
EQV= :: Equivalence of “=φ” operations 95, 282
EQV 6= :: Equivalence of “6=φ” operations 95, 282
EQV�N :: Equivalence of natural unary “�φ” operations 90, 282
EQV< :: Equivalence of “<φ” operations 93, 282
EQV� :: Equivalence of “�φ” operations 93, 282
EQV�N :: Equivalence of natural “�φ” operations 93, 282
EQV�Z :: Equivalence of integer “�φ” operations 93, 282
EQV> :: Equivalence of “>φ” operations 93, 282
EQV� :: Equivalence of “�φ” operations 93, 282
EQV� :: Equivalence of “�φ” operations 93, 282
EQV4 :: Equivalence of “4φ” operations 92, 282
EQV5 :: Equivalence of “5φ” operations 92, 282
EQV5 :: Equivalence of “5φ” operations 92, 282
EQVα1 :: Compatibility of unary atoms 90, 276

D.1 THEOREMS 365

EQVα2 :: Compatibility of binary atoms 90, 276
EQVα :: Equivalence of atoms 271
EQVβ :: Beta equivalence 107, 291
EQVτ :: Equivalence of terms 290
EQVAI :: Equivalence of integral conversions 92, 282
EQVAPP :: Compatibility of function applications 107, 291
EQVDEL :: Equivalence of “DEL” terms 108, 293
EQVE :: Equivalence of identical atoms 95, 272
EQVFF :: Equivalence of false “IF” terms 108, 292
EQVGET :: Compatibility of “GET” terms 109, 293
EQVGETO :: Reduction of “GET” terms 109, 293
EQVIF :: Compatibility of “IF” terms 108, 292
EQVIN :: Equivalence of natural conversions 90, 282
EQVINI :: Compatibility of “SETI” terms 110, 294
EQVINIO :: Reduction of “SETI” terms 109, 294
EQVLETM :: Reduction of “LET” binding groups 111, 296
EQVLETN :: Reduction of nested “LET” bindings 111, 295
EQVLETS :: Reduction of system calls “LET” bindings 111, 295
EQVNEW :: Equivalence of “NEW” terms 108, 293
EQVOO :: Equivalence of object conversions 94, 282
EQVPP :: Equivalence of pointer conversions 92, 282
EQVRA :: Equivalence of rational conversions 92, 282
EQVRET :: Compatibility of “RET” terms 106, 290
EQVSET :: Compatibility of “SET” terms 110, 294
EQVSETO :: Reduction of “SET” terms 109, 294
EQVSYS :: Compatibility of system calls 107, 292
EQVTT :: Equivalence of true “IF” terms 107, 292
Essential surjectivity of meanings 43
Essential surjectivity of sentences 43
EXTA :: Object environment data after extension 101, 286
EXTE :: Object environment envelope after extension 101, 286
EXTI :: Object environment initialisers after extension 101, 286
EXTS :: Object environment stack after extension 101, 286
Faithfullness of a linearly correct compiler 43
FLT :: Minimum representation requirements for floating C types 137
FLTα :: Properties of floating constant expressions 180
Fullness of a linearly correct compiler 42
GLBφ :: Greatest lower bound of well-formed formats 85, 271
GLBN :: Greatest lower bound of natural formats 86, 271
GLBR :: Greatest lower bound of rational formats 86, 271
GLBZ :: Greatest lower bound of integer formats 86, 271
IMME :: Normalisation of reducible atoms 95, 280
INT :: Minimum representation requirements for integral C types 136
INTα :: Properties of integral constant expressions 180
LAYOUT :: Layout of structure and union members 195
LC :: Linear correctness of the C compiler 298
LCα :: Preservation of atom semantics under compilation 309
LCν :: Preservation of variable semantics under compilation 302
LCτ :: Preservation of term semantics under compilation 317
Linearly-correct compiler 41
LINK :: Validity of linked Etude programs 117
LUBφ :: Least upper bound of well-formed formats 85, 271

366 DEFINITION INDEX

LUBN :: Least upper bound of natural formats 86, 271
LUBR :: Least upper bound of rational formats 86, 271
LUBZ :: Least upper bound of integer formats 86, 271
PACK :: Representation of bit field values 159
PACKI :: Superimposition of bit field initialisers 216
PREC :: Precision of well-formed rational formats 86, 270
RADIX :: Radix of well-formed rational formats 86, 270
REFL :: Reflexivity of definitional equality 61
REFLα :: Reflexivity of atom equivalence 89, 271
REFLτ :: Reflexivity of term equivalence 112, 290
REPR :: Properties of C formats 135
SET :: Properties of the “set ... to ...” operation 169
SETI :: Properties of the “setI ... to ...” operation 177
SET� :: Compatibility of object environment updates 103, 288
SET∆ :: Validity of object environment updates 103, 287
COPYα :: Object environment binding after a copy operation 169
SETα :: Object environment binding after an update 102, 288
COPYᾱ :: Object environment data after a copy operation 169
SETᾱ :: Object environment data after an update 102, 288
COPYα :: Object environment initialisers after a copy operation 169
COPYE :: Object environment envelope after a copy operation 169
SETE :: Object environment envelope after an update 103, 289
SETI :: Object environment initialisers after an update 102, 289
COPYS :: Object environment stack after a copy operation 169
SETS :: Object environment stack after an update 103, 289
COPYX :: Object environment extensions after a copy operation 169
SETX :: Object environment extensions after an update 103, 289
COPYN :: Object environment stack pointer after a copy operation 169
SETN :: Object environment stack pointer after an update 103, 289
SIZE :: Minimum size requirements for C types 138
SIZEφ :: Sizes of well-formed formats 85, 270
SIZEZ :: Sizes of integral formats 86, 270
SUBST :: Compatiblity of Haskell terms 61
SYMM :: Symmetry of definitional equality 61
SYMMα :: Symmetry of atom equivalence 89, 271
SYMMτ :: Symmetry of term equivalence 112, 290
TRANS :: Transitivity of definitional equality 61
TRANSα :: Transitivity of atom equivalence 89, 271
TRANSτ :: Transitivity of term equivalence 112, 290
TRIV :: Trivial proofs 65
TU :: Termination properties of the translation system 244
WF :: Validity of data constructors 63
WF :: Validity of envelope elements 98
WF+ :: Validity of the “+φ” operations 87, 282
WF� :: Validity of the “�φ” operations 87, 282
WF: :: Validity of the unary “�φ” operations 87, 282
WF� :: Validity of the “�φ” operations 87, 282
WF� :: Validity of the “�φ” operations 87, 282
WF . . :: Validity of the “. .

φ” operations 88, 282
WF� :: Validity of the unary “�φ” operations 88, 282
WF� :: Validity of the “�φ” operations 88, 282
WF� :: Validity of the “�φ” operations 88, 282

D.2 DATA TYPES 367

WF0 :: Validity of “#0φ” 87, 280
WF� :: Validity of equivalent atoms 89, 271
WF∆ :: Validity of object environments 285
WFλ :: Validity of Etude functions 97
WFΛ :: Validity of function environments 97
WFν :: Validity of Etude parameter lists 97
WFτ :: Validity of terms 290
WFΦ :: Validity of standard formats 85, 269
WFAPP :: Validity of function applications 106, 291
WFBIT :: Validity of the “4φ”, “5φ” and “5φ” operations 88, 282
WFCA :: Validity of arithmetic conversions 89, 282
WFchar_t :: Admissiblity of the “char_t” type 126
WFCN :: Validity of natural conversions 89, 282
WFCP :: Validity of pointer conversions 89, 282
WFDEL :: Validity of “DEL” terms 108, 293
WFE :: Validity of reducible atoms 95, 280
WFEQL :: Validity of the “=φ” and “6=φ” operations 89, 282
WFEQV :: Validity of equivalent Etude terms 112, 297
WFF :: Validity of function formats 268
WFFALSE :: Validity of the “false” constructor 62
WFFF :: Validity of false “IF” terms 107, 292
WFGET :: Validity of “GET” terms 109, 293
WFI :: Validity of integral atoms 87, 280
WFI :: Validity of integral formats 85, 269
WFINI :: Validity of “SETI” terms 109, 294
WFint_t :: Admissiblity of the “int_t” type 126
EQVLETA :: Reduction of trivial “LET” bindings 110, 295
EQVLETE :: Reduction of degenerate “LET” terms 110, 296
WFLETM :: Validity of “LET” binding groups 112, 296
WFM :: Validity of Etude modules 115
WFN :: Validity of natural formats 268
WFNC :: Validity of constant atoms 271
WFNEW :: Validity of “NEW” terms 108, 293
WFO :: Validity of object formats 268
WFOBJ :: Validity of stack addresses 108, 293
WFptrdiff_t :: Admissiblity of the “ptrdiff_t” type 126
WFR :: Validity of rational atoms 87, 280
WFR :: Validity of rational formats 268
WFREL :: Validity of the “<φ”, “>φ”, “�φ” and “�φ” operations 89, 282
WFRET :: Validity of “RET” terms 106, 290
WFSET :: Validity of “SET” terms 109, 294
WFsize_t :: Admissiblity of the “size_t” type 126
WFTRUE :: Validity of the “true” constructor 62
WFTT :: Validity of true “IF” terms 107, 292
WFwchar_t :: Admissiblity of the “wchar_t” type 126
WFZ :: Validity of integer formats 268
WIDTHφ :: Widths of well-formed formats 85, 270

D.2 Data Types
f[[.]]g ::] !] 341
[[.]] : [[.]] ::] !] !] 336

368 DEFINITION INDEX

[[.]] = [[.]] :: 8 K, T :: K) T ! T ! V 59
[[.]] � [[.]] :: (ord ν)) atomν ! atomν ! V 271
[[.]] � [[.]] :: (ord ν)) (f-envν , o-env . termν) ! (f-envν , o-env . termν) ! V 290
] 57
V 57
[[.]] . [[.]] ::] !] !] 336
[[.]]! [[.]] ::] !] !] 343
[[.]], [[.]] ::] !] !] 336
ν ::] 124
A ::] 282
abstract-declarator ::] 207
action[[.]] :: (ord ν)) ν !] 289
actions[[.]] :: (ord ν)) ν !] 289
additive-expression ::] 151
AND-expression ::] 151
argument-expression-list ::] 176
assignment-expression ::] 151
assignment-operator ::] 151
atom[[.]] :: (ord ν)) ν !] 82
atoms[[.]] :: (ord ν)) ν !] 82
mode ::] 98
B ::] 222
binary-op ::] 82
binding[[.]] :: (ord ν)) ν !] 104
bindings[[.]] :: (ord ν)) ν !] 104
bool ::] 334
C ::] 222
cast-expression ::] 151
character-constant ::] 149
compound-statement ::] 221
conditional-expression ::] 151
constant ::] 149
constant-expression ::] 180
D ::] 145
data[[.]] :: (ord ν)) ν !] 113
declaration ::] 190
declaration-list ::] 190
declaration-specifiers ::] 191
declarator ::] 203
designator ::] 145
direct-abstract-declarator ::] 207
direct-declarator ::] 203
encoding ::] 268
enum [[.]] 334
enumeration-constant ::] 150
enumerator ::] 201
enumerator-list ::] 201
enum-specifier ::] 200
envelope ::] 98
envelope-element ::] 98
eq [[.]] 334
equality-expression ::] 151

D.2 DATA TYPES 369

exclusive-OR-expression ::] 151
exports[[.]] :: (ord ν)) ν !] 113
expression ::] 151
expression-statement ::] 221
external-declaration ::] 236
floating-constant ::] 149
format ::] 84
function[[.]] :: (ord ν)) ν !] 96
function-definition ::] 237
f-env[[.]] :: (ord ν)) ν !] 96
genre ::] 84
I ::] 145
identifier ::] 124
identifier-list ::] 205
inclusive-OR-expression ::] 151
initialiser ::] 212
initialiser-list ::] 212
init-declarator ::] 208
init-declarator-list ::] 208
integer ::] 334
integer-constant ::] 149
integer-specifier ::] 125
item[[.]] :: (ord ν)) ν !] 113
items[[.]] :: (ord ν)) ν !] 113
iteration-statement ::] 221
J ::] 222
jump-statement ::] 221
L ::] 222
labelled-statement ::] 221
linkage ::] 146
logical-AND-expression ::] 151
logical-OR-expression ::] 151
M ::] 282
member ::] 125
members ::] 125
MMIX-data ::] 260
MMIX-instr ::] 260
MMIX-module ::] 260
MMIX-opcode ::] 261
MMIX-section ::] 260
MMIX-symbol ::] 260
MMIX-symbols ::] 260
MMIX-text ::] 260
MMIX-var ::] 263
module[[.]] :: (ord ν)) ν !] 113
modules[[.]] :: (ord ν)) ν !] 115
monad [[.]] 336
monad-fix [[.]] 336
multiplicative-expression ::] 151
num [[.]] 334
[[.]]opt ::] !] 335
ord [[.]] 334

370 DEFINITION INDEX

o-env ::] 282
parameters[[.]] :: (ord ν)) ν !] 96
parameter-declaration ::] 205
parameter-list ::] 205
parameter-type-list ::] 205
pointer ::] 203
postfix-expression ::] 151
primary-expression ::] 151
prototype ::] 125
pure-term ::] 70
pure-variable ::] 70
rational ::] 334
relational-expression ::] 151
S ::] 145
selection-statement ::] 221
shift-expression ::] 151
show [[.]] 334
specifier-qualifier-list ::] 198
stack ::] 100
stack-frame ::] 100
statement ::] 221
statement-list ::] 234
storage-class-specifier ::] 192
string ::] 334
string-literal ::] 149
struct-declaration ::] 198
struct-declaration-list ::] 198
struct-declarator ::] 199
struct-declarator-list ::] 199
struct-or-union ::] 194
struct-or-union-specifier ::] 194
term[[.]] :: (ord ν)) ν !] 104
translation-unit ::] 235
type ::] 125
typedef-name ::] 208
types ::] 125
type-name ::] 207
type-qualifier ::] 203
type-qualifier-list ::] 203
type-specifier ::] 193
unary-expression ::] 151
unary-op ::] 82
unary-operator ::] 151
V ::] 153
WF [[.]] :: (ord ν)) atomν ! V 271
WF[[.]] :: bool ! V 62
WF[[.]] :: envelope-element ! V 98
WF [[.]] :: format ! V 268
WF[[.]] :: (ord ν)) functionν ! V 97
WF[[.]] :: (ord ν)) f-envν ! V 97
WF[[.]] :: o-env ! V 285
WF[[.]] :: (ord ν)) parametersν ! V 97

D.3 DATA CONSTRUCTORS 371

WF[[.]] :: 8 T ::]) T ! V 63
WF [[.]] :: (ord ν)) (f-envν , o-env . termν) ! V 290

D.3 Data Constructors
[[.]] :: (ord ν)) ν ! atomν 82
[[.]] :: additive-expression ! shift-expression 151
[[.]] :: AND-expression ! exclusive-OR-expression 151
[[.]] :: assignment-expression ! argument-expression-list 176
[[.]] :: assignment-expression ! expression 151
[[.]] :: assignment-expression ! initialiser 212
[[.]] [[.]] [[.]] [[.]] :: (ord ν)) atomν ! binary-op ! format ! atomν ! atomν 82
[[.]] :: cast-expression ! multiplicative-expression 151
[[.]] :: compound-statement ! statement 221
[[.]] :: conditional-expression ! assignment-expression 151
[[.]] :: conditional-expression ! constant-expression 180
[[.]] :: constant ! primary-expression 151
[[.]] :: declaration ! declaration-list 190
[[.]] :: declaration ! external-declaration 236
[[.]] [[.]] :: declaration-list ! declaration ! declaration-list 190
[[.]] [[.]] :: declaration-specifiers ! abstract-declaratoropt ! parameter-declaration 205
[[.]] [[.]] :: declaration-specifiers ! declarator ! parameter-declaration 205
[[.]] [[.]] [[.]] [[.]] :: declaration-specifiersopt ! declarator ! declaration-listopt !

compound-statement ! function-definition 237
[[.]] :: declarator ! init-declarator 208
[[.]] :: declarator ! struct-declarator 199
[[.]] :: enumerator ! enumerator-list 201
[[.]] :: enum-specifier ! type-specifier 193
[[.]] :: equality-expression ! AND-expression 151
[[.]] :: exclusive-OR-expression ! inclusive-OR-expression 151
[[.]] :: expression-statement ! statement 221
[[.]] :: external-declaration ! translation-unit 235
[[.]] :: format ! unary-op 82
[[.]] :: (ord ν)) functionν ! itemν 113
[[.]] :: function-definition ! external-declaration 236
[[.]] :: identifier ! ν 124
[[.]] :: identifier ! direct-declarator 203
[[.]] :: identifier ! enumeration-constant 150
[[.]] :: identifier ! enumerator 201
[[.]] :: identifier ! identifier-list 205
[[.]] :: identifier ! primary-expression 151
[[.]] :: identifier ! typedef-name 208
[[.]] :: inclusive-OR-expression ! logical-AND-expression 151
[[.]] :: initialiser ! initialiser-list 212
[[.]] :: iteration-statement ! statement 221
[[.]] :: jump-statement ! statement 221
[[.]] :: labelled-statement ! statement 221
[[.]] :: logical-AND-expression ! logical-OR-expression 151
[[.]] :: logical-OR-expression ! conditional-expression 151
[[.]] :: multiplicative-expression ! additive-expression 151
[[.]] :: parameter-declaration ! parameter-list 205
[[.]] :: parameter-list ! parameter-type-list 205

372 DEFINITION INDEX

[[.]] :: pointer ! abstract-declarator 207
[[.]] [[.]] :: pointeropt ! direct-abstract-declarator ! abstract-declarator 207
[[.]] [[.]] :: pointeropt ! direct-declarator ! declarator 203
[[.]] :: postfix-expression ! unary-expression 151
[[.]] :: primary-expression ! 151
[[.]] [[.]] :: pure-term ! pure-term ! pure-term 70
[[.]] :: pure-variable ! pure-term 70
[[.]] :: relational-expression ! equality-expression 151
[[.]] :: selection-statement ! statement 221
[[.]] :: shift-expression ! relational-expression 151
[[.]] [[.]] :: specifier-qualifier-list ! abstract-declaratoropt ! type-name 207
[[.]] [[.]] :: storage-class-specifier ! declaration-specifiersopt ! declaration-specifiers 191
[[.]] :: string ! identifier 124
[[.]] :: string-literal ! primary-expression 151
[[.]] :: struct-declaration ! struct-declaration-list 198
[[.]] [[.]] :: struct-declaration-list ! struct-declaration ! struct-declaration-list 198
[[.]] :: struct-declarator ! struct-declarator-list 199
[[.]] [[.]] :: struct-or-union ! identifier ! struct-or-union-specifier 194
[[.]] [[.]] [[.]] :: struct-or-union ! ν ! members ! type 125
[[.]] :: struct-or-union-specifier ! type-specifier 193
[[.]] :: 8 T) T ! Topt 335
[[.]] [[.]] :: translation-unit ! external-declaration ! translation-unit 235
[[.]] :: typedef-name ! type-specifier 193
[[.]] :: types ! prototype 125
[[.]] :: type-qualifier ! type-qualifier-list 203
[[.]] [[.]] :: type-qualifier ! declaration-specifiersopt ! declaration-specifiers 191
[[.]] [[.]] :: type-qualifier ! specifier-qualifier-listopt ! specifier-qualifier-list 198
[[.]] [[.]] :: type-qualifier-list ! type-qualifier ! type-qualifier-list 203
[[.]] [[.]] :: type-specifier ! declaration-specifiersopt ! declaration-specifiers 191
[[.]] [[.]] :: type-specifier ! specifier-qualifier-listopt ! specifier-qualifier-list 198
[[.]] :: unary-expression ! cast-expression 151
[[.]] [[.]] [[.]] :: unary-expression ! assignment-operator ! assignment-expression !

assignment-expression 151
[[.]] [[.]] [[.]] :: (ord ν)) unary-op ! format ! atomν ! atomν 82
[[.]] [[.]] :: unary-operator ! unary-expression ! unary-expression 151
([[.]]) :: abstract-declarator ! direct-abstract-declarator 207
[[.]]([[.]]) :: (ord ν)) atomν ! atomsν ! termν 104
([[.]]) :: declarator ! direct-declarator 203
[[.]] ([[.]]) :: direct-abstract-declaratoropt ! parameter-type-listopt ! direct-abstract-declarator 207
[[.]] ([[.]]) :: direct-declarator ! identifier-listopt ! direct-declarator 203
[[.]] ([[.]]) :: direct-declarator ! parameter-type-list ! direct-declarator 203
([[.]]) :: expression ! primary-expression 151
[[.]] ([[.]]) :: postfix-expression ! argument-expression-listopt ! postfix-expression 151
[[.]]([[.]]) :: (ord ν)) prim ! atomsν ! termν 104
[[.]] ([[.]]) :: type ! prototypeopt ! type 125
([[.]]) [[.]] :: type-name ! cast-expression ! cast-expression 151
[[.]] [[[.]]] :: direct-abstract-declaratoropt ! constant-expressionopt ! direct-abstract-declarator 207
[[.]] [[[.]]] :: direct-declarator ! constant-expressionopt ! direct-declarator 203
[[.]] [[[.]]] :: postfix-expression ! expression ! postfix-expression 151
[[.]] [[.]] :: rational ! format ! atomν 82
[[.]] [[[.]]] :: type ! integeropt ! type 125
{ [[.]] [[.]] } :: declaration-listopt ! statement-listopt ! compound-statement 221

D.3 DATA CONSTRUCTORS 373

{ [[.]] } :: initialiser-list ! initialiser 212
[[.]] [[.]] { [[.]] } :: struct-or-union ! identifieropt ! struct-declaration-list ! struct-or-union-specifier 194
{ [[.]] , } :: initialiser-list ! initialiser 212
[[.]] | [[.]] :: inclusive-OR-expression ! exclusive-OR-expression ! inclusive-OR-expression 151
[[.]] || [[.]] :: logical-OR-expression ! logical-AND-expression ! logical-OR-expression 151
|= :: assignment-operator 151
+ :: unary-operator 151
[[.]] + [[.]] :: additive-expression ! multiplicative-expression ! additive-expression 151
+ :: binary-op 82
[[.]] ++ :: postfix-expression ! postfix-expression 151
++ [[.]] :: unary-expression ! unary-expression 151
+= :: assignment-operator 151
- :: unary-operator 151
[[.]] - [[.]] :: additive-expression ! multiplicative-expression ! additive-expression 151
� :: binary-op 82
� :: unary-op 82
[[.]] -- :: postfix-expression ! postfix-expression 151
-- [[.]] :: unary-expression ! unary-expression 151
-= :: assignment-operator 151
[[.]] -> [[.]] :: postfix-expression ! identifier ! postfix-expression 151
� :: binary-op 82
� :: binary-op 82
. . :: binary-op 82
[[.]] : [[.]] :: declaratoropt ! constant-expression ! struct-declarator 199
[[.]] : [[.]] :: identifier ! statement ! labelled-statement 221
[[.]] : [[.]] :: 8 T) T ! [T] ! [T] 340
[[.]] : [[.]] :: 8 T , U) T ! U ! (T , U) 336
[[.]] : [[.]] . [[.]] :: type ! integer ! integer ! type 125
= :: assignment-operator 151
[[.]] = [[.]] :: declarator ! initialiser ! init-declarator 208
[[.]] = [[.]] :: identifier ! constant-expression ! enumerator 201
= :: binary-op 82
[[.]] == [[.]] :: equality-expression ! relational-expression ! equality-expression 151
6= :: binary-op 82
� :: unary-op 82
~ :: unary-operator 151
[[.]] < [[.]] :: relational-expression ! shift-expression ! relational-expression 151
< :: binary-op 82
[[.]] <= [[.]] :: relational-expression ! shift-expression ! relational-expression 151
[[.]] << [[.]] :: shift-expression ! additive-expression ! shift-expression 151
<<= :: assignment-operator 151
� :: binary-op 82
� :: binary-op 82
[[.]] > [[.]] :: relational-expression ! shift-expression ! relational-expression 151
> :: binary-op 82
[[.]] >= [[.]] :: relational-expression ! shift-expression ! relational-expression 151
[[.]] >> [[.]] :: shift-expression ! additive-expression ! shift-expression 151
>>= :: assignment-operator 151
� :: binary-op 82
� :: binary-op 82
[[.]] / [[.]] :: multiplicative-expression ! cast-expression ! multiplicative-expression 151
/= :: assignment-operator 151

374 DEFINITION INDEX

∅ :: 8 T) [T] 340
[[.]] . [[.]] :: genre ! encoding ! format 84
[[.]] . [[.]] :: MMIX-symbol ! integer ! MMIX-var 263
[[.]] . [[.]] :: postfix-expression ! identifier ! postfix-expression 151
[[.]] ... :: types ! prototype 125
* :: unary-operator 151
[[.]] * [[.]] :: multiplicative-expression ! cast-expression ! multiplicative-expression 151
[[.]] * :: type ! type 125
* [[.]] :: type-qualifier-listopt ! pointer 203
* [[.]] [[.]] :: type-qualifier-listopt ! pointer ! pointer 203
*= :: assignment-operator 151
4 :: binary-op 82
5 :: binary-op 82
5 :: binary-op 82
[[.]] . [[.]] :: 8 T , U) T ! U ! (T , U) 336
[[.]] , [[.]] :: argument-expression-list ! assignment-expression ! argument-expression-list 176
[[.]] , [[.]] :: enumerator-list ! enumerator ! enumerator-list 201
[[.]] , [[.]] :: expression ! assignment-expression ! expression 151
[[.]] , [[.]] :: identifier-list ! identifier ! identifier-list 205
[[.]] , [[.]] :: initialiser-list ! initialiser ! initialiser-list 212
[[.]] , [[.]] :: init-declarator-list ! init-declarator ! init-declarator-list 208
[[.]] , [[.]] :: parameter-list ! parameter-declaration ! parameter-list 205
[[.]] , [[.]] :: struct-declarator-list ! struct-declarator ! struct-declarator-list 199
[[.]], [[.]] :: 8 T , U) T ! U ! (T , U) 336
[[.]] , ... :: parameter-list ! parameter-type-list 205
[[.]] [[.]] , [[.]] , [[.]] @ [[.]] :: MMIX-opcode ! integer ! integer ! integer ! MMIX-symbolopt !

MMIX-instr 260
[[.]] [[.]] ; :: declaration-specifiers ! init-declarator-listopt ! declaration 190
[[.]] ; :: expressionopt ! expression-statement 221
[[.]] [[.]] ; :: specifier-qualifier-list ! struct-declarator-list ! struct-declaration 198
[[.]] [[.]] @ [[.]] :: type ! identifieropt ! integer ! member 125
[[.]] [[.]] @ [[.]] :: linkage ! type ! I ! designator 145
$ [[.]] :: integer ! MMIX-var 263
[[.]] & [[.]] :: AND-expression ! equality-expression ! AND-expression 151
& :: unary-operator 151
&= :: assignment-operator 151
[[.]] && [[.]] :: logical-AND-expression ! inclusive-OR-expression ! logical-AND-expression 151
%= :: assignment-operator 151
[[.]] % [[.]] :: multiplicative-expression ! cast-expression ! multiplicative-expression 151
[[.]] :: integer ! MMIX-symbol 260
[[.]] ^ [[.]] :: exclusive-OR-expression ! AND-expression ! exclusive-OR-expression 151
^= :: assignment-operator 151
! :: unary-operator 151
[[.]] != [[.]] :: equality-expression ! relational-expression ! equality-expression 151
[[.]] ? [[.]] : [[.]] :: logical-OR-expression ! expression ! conditional-expression !

conditional-expression 151
ε :: 8 T) Topt 335
λ [[.]] . [[.]] :: (ord ν)) parametersν ! termν ! functionν 96
λ [[.]] . [[.]] :: pure-variable ! pure-term ! pure-term 70
ADDU :: MMIX-opcode 261
AND :: MMIX-opcode 261
auto :: storage-class-specifier 192

D.3 DATA CONSTRUCTORS 375

auto [[.]] :: ν ! linkage 146
break ; :: jump-statement 221
BZ :: MMIX-opcode 261
C :: mode 98
case [[.]] : [[.]] :: constant-expression ! statement ! labelled-statement 221
char :: integer-specifier 125
char :: type 125
char :: type-specifier 193
CMP :: MMIX-opcode 261
CMPU :: MMIX-opcode 261
const :: type-qualifier 203
const [[.]] :: integer ! linkage 146
continue ; :: jump-statement 221
default : [[.]] :: statement ! labelled-statement 221
DEL ([[.]]) :: (ord ν)) envelope ! termν 104
DIV :: MMIX-opcode 261
DIVU :: MMIX-opcode 261
double :: type 125
double :: type-specifier 193
do [[.]] while ([[.]]) ; :: statement ! expression ! iteration-statement 221
enum [[.]] :: identifier ! enum-specifier 200
enum [[.]] [[.]] :: type ! ν ! type 125
enum [[.]] { [[.]] } :: identifieropt ! enumerator-list ! enum-specifier 200
extern :: storage-class-specifier 192
extern [[.]] :: ν ! linkage 146
F :: genre 84
FADD :: MMIX-opcode 261
false :: bool 334
FCMP :: MMIX-opcode 261
FDIV :: MMIX-opcode 261
FIX :: MMIX-opcode 261
FIXU :: MMIX-opcode 261
float :: type 125
float :: type-specifier 193
FLOT :: MMIX-opcode 261
FLOTU :: MMIX-opcode 261
FMUL :: MMIX-opcode 261
for ([[.]] ; [[.]] ; [[.]]) [[.]] :: expressionopt ! expressionopt ! expressionopt ! statement !

iteration-statement 221
FSUB :: MMIX-opcode 261
GET :: MMIX-opcode 261
GET [[[.]]] [[.]] :: (ord ν)) atomν , fmodeg ! format ! termν 104
GETA :: MMIX-opcode 261
GOI :: MMIX-opcode 261
goto [[.]] ; :: identifier ! jump-statement 221
if ([[.]]) [[.]] :: expression ! statement ! selection-statement 221
if ([[.]]) [[.]] else [[.]] :: expression ! statement ! statement ! selection-statement 221
IF [[.]] THEN [[.]] ELSE [[.]] :: (ord ν)) atomν ! termν ! termν ! termν 104
IMP [[.]] :: (ord ν)) string ! itemν 113
INCH :: MMIX-opcode 261
INCMH :: MMIX-opcode 261
INCML :: MMIX-opcode 261

376 DEFINITION INDEX

[[.]] :: init-declarator ! init-declarator-list 208
int :: integer-specifier 125
int :: type 125
int :: type-specifier 193
intern [[.]] :: ν ! linkage 146
LDBI :: MMIX-opcode 261
LDBUI :: MMIX-opcode 261
LDOI :: MMIX-opcode 261
LDOUI :: MMIX-opcode 261
LDTI :: MMIX-opcode 261
LDTUI :: MMIX-opcode 261
LDWI :: MMIX-opcode 261
LDWUI :: MMIX-opcode 261
LET [[.]] ; [[.]] :: (ord ν)) bindingsν ! termν ! termν 104
LOC :: MMIX-symbol 260
long :: integer-specifier 125
long :: type-specifier 193
long double :: type 125
MODULE [[.]] EXPORT [[.]] WHERE [[.]] :: (ord ν)) termν ! exportsν ! itemsν ! moduleν 113
MULU :: MMIX-opcode 261
N :: genre 84
NEW ([[.]]) :: (ord ν)) envelope ! termν 104
O :: genre 84
OBJ ([[.]]) OF ([[.]]) :: (ord ν)) dataν ! envelope ! itemν 113
OR :: MMIX-opcode 261
private [[.]] :: ν ! linkage 146
PUT :: MMIX-opcode 261
R :: genre 84
register :: storage-class-specifier 192
register [[.]] :: ν ! linkage 146
RET ([[.]]) :: (ord ν)) atomsν ! termν 104
return [[.]] ; :: expressionopt ! jump-statement 221
rR :: MMIX-var 263
SETI [[[.]]] [[.]] TO [[.]] :: (ord ν)) atomν , fmodeg ! format ! atomν ! termν 104
SETL :: MMIX-opcode 261
SET [[[.]]] [[.]] TO [[.]] :: (ord ν)) atomν , fmodeg ! format ! atomν ! termν 104
short :: integer-specifier 125
short :: type-specifier 193
signed :: type-specifier 193
signed [[.]] :: integer-specifier ! type 125
sizeof ([[.]]) :: type-name ! unary-expression 151
sizeof [[.]] :: unary-expression ! unary-expression 151
SLU :: MMIX-opcode 261
SR :: MMIX-opcode 261
SRU :: MMIX-opcode 261
[[.]] :: statement ! statement-list 234
[[.]] [[.]] :: statement-list ! statement ! statement-list 234
static :: storage-class-specifier 192
STBUI :: MMIX-opcode 261
STOUI :: MMIX-opcode 261
struct :: struct-or-union 194
STTUI :: MMIX-opcode 261

D.4 TERM FORMS 377

STWUI :: MMIX-opcode 261
SUBU :: MMIX-opcode 261
switch ([[.]]) [[.]] :: expression ! statement ! selection-statement 221
T[[.]] :: integer ! ν 124
TRAP :: MMIX-opcode 261
true :: bool 334
type :: linkage 146
typedef :: storage-class-specifier 192
[[.]] [[.]] :: type-qualifier ! type ! type 125
union :: struct-or-union 194
unsigned :: type-specifier 193
unsigned [[.]] :: integer-specifier ! type 125
V :: mode 98
V[[.]] :: integer ! ν 124
void :: type 125
void :: type-specifier 193
volatile :: type-qualifier 203
while ([[.]]) [[.]] :: expression ! statement ! iteration-statement 221
XOR :: MMIX-opcode 261
Z :: genre 84
ZSNI :: MMIX-opcode 261
ZSNNI :: MMIX-opcode 261
ZSNPI :: MMIX-opcode 261
ZSNZI :: MMIX-opcode 261
ZSPI :: MMIX-opcode 261
ZSZI :: MMIX-opcode 261

D.4 Term Forms
[[.]] :: initialiser ! expression 213
[[.]] :: initialiser ! string-literal 213
[[.]] :: integer ! rational 335
[[.]] :: (enum T)) integer ! T 334
[[.]] [[.]] :: integer ! integer ! integer 339
[[.]] [[.]] :: integer ! [integer] ! integer 339
[[.]] :: members ! (identifier! member) 130
[[.]] :: MMIX-var ! integer 300
[[.]] :: rational ! integer 335
[[.]] :: (enum T)) T ! integer 334
[[.]] [[.]] :: (num T)) T ! T ! T 338
[[.]][[.]] :: (num T)) T ! T ! T 339
[[.]] [[.]] [[.]] [[.]] [[.]] :: T ! T ! U ! bool ! U ! U ! V ! bool ! V ! bool 337
[[.]] :: (ord T)) [T] ! fTg 342
[[.]] :: (ord T)) fTg ! [T] 342
[[.]] :: 8 U) (ord T)) [T , U] ! (T ! U) 343
[[.]] [[.]] :: 8 U) (ord T)) (T ! U) ! T ! U 343
[[.]] :: 8 U) (ord T)) (T ! U) ! [T , U] 343
[[.]] :: 8 T) Topt ! T 335
d[[.]]e :: rational ! integer 338
db[[.]]ec :: rational ! integer 338
b[[.]]c :: rational ! integer 338
[[.]] [[.]] :: 8 T) (monad M)) Topt ! Topt ! M(T) 336

378 DEFINITION INDEX

[[.]] :: (num T)) T ! T 338
[[.]] :: (ord T)) fTg ! integer 342
[[.]] :: 8 U) (ord T)) (T ! U) ! integer 343

[[.]] [[.]] :: 8 T , U) [T] ! [U] ! [T , U] 341
[[.]] ++ [[.]] :: [type-qualifier] ! type ! type 134
[[.]] + [[.]] :: (num T)) T ! T ! T 338
[[.]] � [[.]] :: dataν ! integer ! dataν 216
[[.]] � [[.]] :: envelope ! integer ! envelope 99
[[.]] � [[.]] :: MMIX-var ! integer ! MMIX-var 263
[[.]] ++ [[.]] :: 8 T) [T] ! [T] ! [T] 341
�[[.]] :: (num T)) T ! T 338
[[.]] � [[.]] :: (num T)) T ! T ! T 338
:[[.]] :: bool ! bool 336
[[.]] � [[.]] :: (num T)) T ! T ! T 338
[[.]] � [[.]] :: (ord T , ord U)) fTg ! fUg ! fT , Ug 342
[[.]] = [[.]] :: (eq T)) T ! T ! bool 337
[[.]] 6= [[.]] :: (eq T)) Teq ! Teq ! bool 337
[[.]] � [[.]] :: prototypeopt ! prototypeopt ! bool 142
[[.]] � [[.]] :: type ! type ! bool 141
[[.]] < [[.]] :: (ord T)) T ! T ! bool 337
[[.]] � [[.]] :: (ord T)) T ! T ! bool 337
[[.]] � [[.]] :: (ord T)) fTg ! fTg ! bool 342
[[.]] � [[.]] :: format ! format ! bool 303
[[.]] � [[.]] :: (ord T)) fTg ! fTg ! bool 342
[[.]] > [[.]] :: (ord T)) T ! T ! bool 337
[[.]] � [[.]] :: (ord T)) T ! T ! bool 337
[[.]] / f[[.]]g :: pure-term ! (pure-variable :pure-term) ! pure-term 74
[[.]] // [[.]] :: o-env ! (integer, envelope, integer, envelope) ! o-env 169
[[.]] / [[.]] :: (ord ν)) atomν ! (ν ! atomν) ! atomν 83
[[.]] / [[.]] :: (ord ν)) atomsν ! (ν ! atomsν) ! atomsν 83
[[.]] / [[.]] :: (ord ν)) bindingsν ! (ν ! atomν) ! bindingsν 106
[[.]] / [[.]] :: (ord ν)) functionν ! (ν ! atomν) ! functionν 97
[[.]] / [[.]] :: (ord ν)) itemν ! (ν ! atomν) ! itemsν 114
[[.]] / [[.]] :: (ord ν)) itemsν ! (ν ! atomν) ! itemsν 114
[[.]] / [[.]] :: o-env ! envelope ! o-env 100, 285
[[.]] / [[.]] :: (ord ν)) o-env ! (integer, format, atomν) ! o-env 102, 287
[[.]] / [[.]] :: (num T)) T ! T ! T 338
[[.]] / [[.]] :: (ord ν)) termν ! (ν ! atomν) ! termν 105
[[.]] / [[.]] :: 8 U) (ord T)) (T ! U) ! (T ! U) ! (T ! U) 344
[[.]] n [[.]] :: envelope ! (integer, integer) ! envelope 99
[[.]] n [[.]] :: o-env ! envelope ! o-env 100, 286
[[.]] n [[.]] :: (ord T)) fTg ! fTg ! fTg 342
[[.]] n [[.]] :: 8 U) (ord T)) (T ! U) ! fTg ! (T ! U) 344
∅ :: (ord T)) fTg 341
∅ :: 8 U) (ord T)) (T ! U) 343
�[[.]] :: 8 T) [T ! T] ! (T ! T) 340
[[.]] � [[.]] :: 8 T U V) (U ! V) ! (T ! U) ! (T ! V) 340
[[.]] � [[.]] :: 8 V) (ord T , ord U)) (U ! V) ! (T ! U) ! (T ! V) 343
[[.]] _ [[.]] :: bool ! bool ! bool 336
W

[[.]] :: [bool] ! bool 337
[[.]] [[[.]] :: (ord T)) fTg ! fTg ! fTg 342
S

[[.]] :: 8 U) (ord T)) [T ! U] ! (T ! U) 343

D.4 TERM FORMS 379

[[.]] [[[.]] :: 8 U) (ord T)) (T ! U) ! (T ! U) ! (T ! U) 343
[[.]] [[[.]] :: ftype-qualifierg ! members ! members 134
[[.]] [[[.]] :: ftype-qualifierg ! type ! type 134
[[.]] t×+ [[.]] :: type ! type ! type 140
[[.]] t [[.]] :: integeropt ! integeropt ! integeropt 143
[[.]] t [[.]] :: member ! member ! member 143
[[.]] t [[.]] :: members ! members ! members 143
[[.]] t [[.]] :: prototypeopt ! prototypeopt ! prototypeopt 144
[[.]] t [[.]] :: type ! type ! type 142
[[.]] ^ [[.]] :: bool ! bool ! bool 336
V

[[.]] :: [bool] ! bool 337
S

[[.]] :: (ord T)) [fTg] ! fTg 342
[[.]] \ [[.]] :: (ord T)) fTg ! fTg ! fTg 342
[[.]] \ [[.]] :: 8 U) (ord T)) (T ! U) ! fTg ! (T ! U) 344
? :: 8 T) T 334
{�0} :: (ord ν)) fatomνg 274
+0 :: (ord ν)) atomν 274
�0 :: (ord ν)) atomν 274
{�1} :: (ord ν)) fatomνg 274
+1 :: (ord ν)) atomν 274
�1 :: (ord ν)) atomν 274
[[.]]; [[.]] :: (ord ν)) termν ! termν ! termν ! termν 112
[[.]]; [[.]] :: (ord ν)) (termν ! termν) ! (termν ! termν) ! (termν ! termν) 112
$K :: MMIX-var 299
$S :: MMIX-var 299
$T :: MMIX-var 299
$U :: MMIX-var 299
$V :: MMIX-var 299
$W :: MMIX-var 299
ᾱ[[.]] :: (ord ν)) (o-env . integer, format) ! atomν 100, 283
γ [[.]] :: format ! genre 84
δ̄[[.]] :: type ! dataν 211
ε [[.]] :: format ! encoding 84
[[.]] 2 [[.]] :: (ord T)) T ! fTg ! bool 342
[[.]] 2A [[.]] :: envelope-element ! envelope ! bool 99
[[.]] /2 [[.]] :: (ord T)) T ! fTg ! bool 342
ῑ[[.]] :: (ord ν)) moduleν ! itemsν 114
µ̄[[.]] :: type ! fmodeg 138
µ [[.]] :: type-qualifier ! mode 134
ν̄G :: [MMIX-var] 299
ν̄P :: [MMIX-var] 299
ν[[.]] :: D ! ν 147
ν [[.]] :: linkage ! ν 147
ξ̄[[.]] :: (ord ν)) moduleν ! exportsν 114
ξ̄[[.]] :: (ord ν)) modulesν ! (string! atomν) 116
ξ̄[[.]] :: o-env ! envelope 99, 283
ξ̄[[.]] :: type ! envelope 138
ξ̄i[[.]] :: o-env ! envelope 99, 283
ξ̄R[[.]] :: (ν , type) ! V 241
π :: parametersMMIX-var 263
Q

[[.]] :: (num T)) [T] ! T 338
P

[[.]] :: (num T)) [T] ! T 338

380 DEFINITION INDEX

σc[[.]] :: (o-env . envelope) ! integer 101, 284
τ [[.]] :: (ord ν)) moduleν ! termν 114
Φ :: encoding 85, 269
φ [[.]] :: members ! format 357
φ [[.]] :: type ! format 135, 356
Ψ :: format 158
ψ̄[[.]] :: o-env ! stack 100, 283
ω :: integer 86, 268
Aν [[.]] :: (MMIX-var . MMIX-var) ! MMIX-var 299
A [[.]] :: type ! integer 358
AGGR[[.]] :: initialiser ! bool 212
ap[[.]] :: type ! type 140
ARR[[.]] :: type ! bool 131
AT[[.]] :: type ! bool 129
Aα [[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg . atomυ) ! MMIX-var 303
b :: integer 273
B[[.]] :: type ! type 133
BF[[.]] :: type ! bool 127
BIT :: ftypeg 127
BV[[.]] :: (ord ν)) bindingsν ! fνg 105
C [[.]] :: (ord υ)) moduleυ ! MMIX-module 297
C [[.]] :: (type . S) ! S 148
C [[.]] :: V ! (termν ! termν) 219
char_t :: type 357
CHR[[.]] :: type ! bool 129
codom[[.]] :: 8 T) (ord U)) (T ! U) ! fUg 343
copy [[.]] :: (atomν , atomν , integer) ! termν 361
Cᾱ[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, [MMIX-var] . atomsυ) ! [MMIX-instr] 308
Cα [[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var . atomυ) ! [MMIX-instr] 303
Cκ [[.]] :: (ord υ)) (υ ! MMIX-var . termυ) ! [MMIX-instr] 310
Cλ [[.]] :: (ord υ)) (υ ! MMIX-var . functionυ) ! [MMIX-instr] 310
Cν̄[[.]] :: ([MMIX-var] . [MMIX-var]) ! [MMIX-instr] 301
Cν [[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr] 301
Cτ [[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, [MMIX-var] . termυ) ! [MMIX-instr] 312
CC[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode, MMIX-opcode . atomυ , atomυ) !

[MMIX-instr] 308
CU[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode, integer . atomυ) !

[MMIX-instr] 305
CA[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ , atomυ) !

[MMIX-instr] 306
CA[[.]] :: (integer . type) ! type 215
CB[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ , atomυ) !

[MMIX-instr] 307
CJ[[.]] :: integer ! [MMIX-instr] 312
CLD[[.]] :: (ord υ)) (υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ) !

[MMIX-instr] 315
CM[[.]] :: (type . members) ! members 149
CP[[.]] :: (type . prototypeopt) ! prototypeopt 149
CST[[.]] :: (ord υ))

(υ ! MMIX-var, fMMIX-varg, MMIX-var, MMIX-opcode . atomυ , atomυ) !

[MMIX-instr] 316
CT[[.]] :: (type . type) ! type 148

D.4 TERM FORMS 381

D[[.]] :: V ! (termν ! termν) 219
dec[[.]][[.]] :: (ord ν)) format ! atomν ! rational 274
dom[[.]] :: 8 U) (ord T)) (T ! U) ! fTg 343
drop[[.]] :: 8 T) (integer, [T]) ! [T] 341
DAA[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 171
DACE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν) 185
DADDR[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν) 188
DAE[[.]] :: (monad-fix M)) (S, S, D, I, typeopt . expression) ! M(S, S, D, V , V , termν) 176
DAEL[[.]] :: (monad-fix M)) (S, S, D, I, prototypeopt . argument-expression-listopt) !

M(S, S, D, V , V , bindingsν) 178
DAES[[.]] :: (monad-fix M)) (S, S, D, I, typesopt . [expression]) ! M(S, S, D, V , V , bindingsν) 178
DALE[[.]] :: (monad-fix M)) (S, S, D, I . constant-expressionopt) ! M(S, S, D, integeropt) 204
DALV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 156
DAO[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 162
DAR[[.]] :: (monad-fix M)) (S, S, D, I, type . abstract-declaratoropt) ! M(S, S, D, type) 207
DIACE[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, type, atomν) 187
DBACE[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, type, atomν) 187
DBICE[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, type, integer) 181, 182
DC[[.]] :: (monad-fix M)) (S . constant) ! M(type, rational) 150
DCC[[.]] :: (monad-fix M)) character-constant ! M(type, integer) 149
DCLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν) 188
DCTRL[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, termν) 229
DD[[.]] :: (monad-fix M)) (S, S, D, I . declaration-listopt) ! M(S, S, D, V , termν) 190
DDAI[[.]] :: (monad-fix M)) (S, S, D, I, type . initialiser) ! M(S, S, D, type, dataν) 220
DDI[[.]] :: (monad-fix M)) (S, S, D, I, type, atomν . initialiser) ! M(S, S, D, type, termν) 219
DDIL[[.]] :: (monad-fix M)) (S, S, D, I, members . [initialiser]) !

M(S, S, D, dataν , integer, [initialiser]) 220
DDS[[.]] :: (monad-fix M)) declaration-specifiersopt !

M(fstorage-class-specifierg, ftype-qualifierg, ftype-specifierg) 191
DE[[.]] :: (monad-fix M)) (S, S, D, I . expressionopt) ! M(S, S, D, V , termν) 175
DEDL[[.]] :: (monad-fix M)) (S, S, D . translation-unit) ! M(S, S, D, V , termν) 236
DEN[[.]] :: (monad-fix M)) (S, S, D, I . enumerator-list) ! M(S, S, D, [integer]) 201
DENS[[.]] :: (monad-fix M)) (S, S, D, I . enum-specifier) ! M(S, S, D, type) 200
DEO[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 165
DFC[[.]] :: (monad-fix M)) floating-constant ! M(type, rational) 149
DFD[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 154
DFD[[.]] :: (monad-fix M)) (S, S, D . function-definition) ! M(S, S, D, V , termν) 239
DFPL[[.]] :: (monad-fix M)) (S, S, D . parameter-list) ! M(S, S, D, V , types) 242
DFPTL[[.]] :: (monad-fix M)) (S, S, D, I . parameter-type-list) ! M(S, S, D, V , prototype) 241
DFR[[.]] :: (monad-fix M)) (S, S, D, I, type . declarator) !

M(S, S, S, S, D, V , type, identifier, fidentifierg) 239
DI[[.]] :: (MMIX-var . MMIX-instr) ! functionMMIX-var 264
DĪ[[.]] :: (MMIX-var! integer, MMIX-var . MMIX-section) ! f-envMMIX-var 302
DIA[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 170
DIC[[.]] :: (monad-fix M)) integer-constant ! M(type, integer) 149

382 DEFINITION INDEX

DFCE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, integer) 181, 182
DICE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, integer) 181
DIO[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 163
DIR[[.]] :: (monad-fix M)) (S, S, D, I, [storage-class-specifier], type . init-declarator-list) !

M(S, S, D, V , termν) 209
DLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 154
DM[[.]] :: MMIX-module ! moduleMMIX-var 262
DMLV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 156
DNULL[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν) 184
DP[[.]] :: (type . pointer) ! type 204
DPDL[[.]] :: (monad-fix M)) (S, S, D . declaration-listopt) ! M(S, S, D, V , fidentifierg) 243
DPL[[.]] :: (monad-fix M)) (S, S, D, I . parameter-list) ! M(S, S, D, types) 206
DPRL[[.]] :: (monad-fix M))

(S, S, D, fidentifierg, storage-class-specifieropt, type . init-declarator-list) !
M(S, S, D, V , fidentifierg) 243

DPTL[[.]] :: (monad-fix M)) (S, S, D, I . parameter-type-listopt) ! M(D, prototypeopt) 206
DR[[.]] :: (monad-fix M)) (S, S, D, I, type . declarator) ! M(S, S, D, type, identifier) 204
DRACE[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, type, atomν) 187
DRICE[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, type, integer) 181, 183
DRO[[.]] :: (monad-fix M)) (S, S, D, I, binary-op . expression, expression) !

M(S, S, D, V , type, termν) 164
DS[[.]] :: (monad-fix M))

(S, S, D, B, L, V , I, type, typeopt, ν , νopt, νopt, termν . statement-listopt) !

M(S, S, D, B, L, C, J, termν) 225
DSC[[.]] :: (monad-fix M)) (S, S, D, I . [storage-class-specifier]) ! M(linkage) 193
DSC[[.]] :: (monad-fix M)) string-literal ! M(type, dataν) 149
DSD[[.]] :: (monad-fix M)) (S, S, D, I . struct-declaration-list) ! M(S, S, D, members) 198
DSI[[.]] :: (monad-fix M)) (S, S, D, I, type . initialiser) ! M(S, S, D, type, dataν) 215
DSIE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, type, atomν) 185
DSIL[[.]] :: (monad-fix M)) (S, S, D, I, members . [initialiser]) !

M(S, S, D, dataν , integer, [initialiser]) 217
DSQL[[.]] :: (monad-fix M)) specifier-qualifier-listopt ! M(ftype-qualifierg, ftype-specifierg) 198
DSR[[.]] :: (monad-fix M)) declarator ! M(identifier) 239
DSR[[.]] :: (monad-fix M)) (S, S, D, I, type . struct-declarator-list) ! M(S, S, D, members) 199
DSUS[[.]] :: (monad-fix M)) (S, S, D, I . struct-or-union-specifier) ! M(S, S, D, type) 194
DTAG[[.]] :: (monad-fix M)) (S, S, D, I . declaration-specifiers) ! M(S, S, D, type) 202
DTDN[[.]] :: (monad-fix M)) (S, S, D, I . typedef-name) ! M(S, S, D, type) 208
DTN[[.]] :: (monad-fix M)) (S, S, D, I . type-name) ! M(S, S, D, type) 207
DTQ[[.]] :: type-qualifier-listopt ! [type-qualifier] 203
DTS[[.]] :: (monad-fix M)) (S, S, D, I . [type-specifier]) ! M(S, S, D, type) 194
DTU[[.]] :: (monad-fix M)) translation-unit ! M(moduleν) 236
DUND[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 154
DV[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 157
DVE[[.]] :: (monad-fix M)) (S, S, D, I . expression) ! M(S, S, D, V , type, termν) 174
DX[[.]] :: (monad-fix M)) (S, S, D, I, [storage-class-specifier], type . identifier) ! M(designator) 209
E [[.]] :: (ord ν)) atomν ! atomν 95, 275
E [[.]] :: (ord ν)) atomsν ! atomsν 275
EA[[.]] :: pure-term ! pure-term 76
Emax[[.]] :: format ! integer 86, 270

D.4 TERM FORMS 383

Emin[[.]] :: format ! integer 86, 270
EN[[.]] :: pure-term ! pure-term 77
enc[[.]][[.]] :: (ord ν)) format ! rational ! atomν 273
ET[[.]] :: type ! bool 127
EXPR[[.]] :: initialiser ! bool 212
E 0[[.]] :: (ord ν)) atomν ! atomν 276
Eδ [[.]] :: (ord ν)) (f-envν , o-env, prim . atomsν) ! (o-env, atomsν) 291
Eτ [[.]] :: (ord ν)) (f-envν , o-env . termν) ! (o-env, actionsν , atomsν) 289
FIN[[.]] :: (ord ν)) atomν ! bool 275
FLT[[.]] :: type ! bool 129
fold [[.]] [[.]] [[.]] :: 8 T U) (T ! U ! T) ! T ! [U] ! T 340
FUN[[.]] :: type ! bool 131
FV[[.]] :: (ord ν)) atomν ! fνg 83
FV[[.]] :: (ord ν)) atomsν ! fνg 83
FV[[.]] :: (ord ν)) bindingsν ! fνg 105
FV[[.]] :: (ord ν)) exportsν ! fνg 114
FV[[.]] :: (ord ν)) functionν ! fνg 97
FV[[.]] :: (ord ν)) itemν ! fνg 114
FV[[.]] :: (ord ν)) itemsν ! fνg 114
FV[[.]] :: pure-term ! fpure-variableg 74
FV[[.]] :: (ord ν)) termν ! fνg 105
gcd[[.]] :: (integer, integer) ! integer 339
GL[[.]] :: linkage ! bool 146
glb[[.]] :: format ! rational 85, 271
glb[[.]] :: type ! rational 136
head[[.]] :: 8 T) [T] ! T 341
I [[.]] :: designator ! integer 146
id [[.]] :: 8 T) T ! T 340
IMM[[.]] :: (ord ν)) atomν ! bool 95
INC[[.]] :: type ! bool 132
init[[.]] :: 8 T) [T] ! [T] 341
INT[[.]] :: type ! bool 129
int_t :: type 357
INV[[.]] :: type ! bool 139
ip[[.]] :: type ! type 139
J [[.]] :: (B, V . ν) ! termν 223
L [[.]] :: designator ! linkage 146
L [[.]] :: (struct-or-union . members) ! members 195, 358
L [[.]] :: (ord ν)) (moduleν ! (ν ! atomν)) ! (f-envν , o-env . termν) 117
L [[.]] :: V ! (ν ! integer) 179, 360
last[[.]] :: 8 T) [T] ! T 341
lcm[[.]] :: (integer, integer) ! integer 339
lcm[[.]] :: [integer] ! integer 339
length[[.]] :: 8 T) [T] ! integer 341
length[[.]] :: type ! integer 131
list[[.]] :: argument-expression-listopt ! [expression] 176
list[[.]] :: identifier-listopt ! [identifier] 205
list[[.]] :: initialiser ! [initialiser] 213
load[[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr] 300
dlog2[[.]]e :: rational ! integer 339
blog2[[.]]c :: rational ! integer 339
lub[[.]] :: format ! rational 85, 270

384 DEFINITION INDEX

lub[[.]] :: type ! rational 136
LV[[.]] :: linkage ! bool 147
L 0[[.]] :: (struct-or-union, integer, integer, integer . members) ! members 358
L 00[[.]] :: (integer, integer, integer . members) ! members 359
L∆[[.]] :: (ord ν)) (integer! itemν) ! o-env 117
LF[[.]] :: (ord ν)) atomν ! integer 115, 284
LO[[.]] :: (ord ν)) atomν ! integer 116, 284
m̄[[.]] :: type ! members 131
m̄I[[.]] :: type ! members 213
max[[.]] :: (ord T)) (T , T) ! T 337
max[[.]] :: (ord T)) [T] ! T 337
max[[.]] :: (ord T)) fTordg ! T 342
min[[.]] :: (ord T)) (T , T) ! T 337
min[[.]] :: (ord T)) [T] ! T 337
min[[.]] :: (ord T)) fTordg ! T 342
[[.]] mod [[.]] :: integer ! integer ! integer 339
n[[.]] :: linkage ! integer 148
N [[.]] :: member ! identifieropt 130
NaN[[.]] :: (ord ν)) atomν ! bool 275
+NaN :: (ord ν)) atomν 274
�NaN :: (ord ν)) atomν 274
NULL[[.]] :: (S, S, D, I . expression) ! bool 184
O[[.]] :: format ! format 99, 269
O[[.]] :: member ! integer 130
O[[.]] :: type ! integer 128
OBJ[[.]] :: type ! bool 131
p :: integer 273
P [[.]] :: (type, atomν . atomν) ! atomν 159, 360
P [[.]] :: atomsν ! atomν 216, 360
P [[.]] :: dataν ! dataν 216
p[[.]] :: format ! integer 86, 270
P [[.]] :: 8 T) (integer, [T]) ! [T] 341
pp[[.]] :: type ! type 139
prot[[.]] :: type ! prototypeopt 132
PTR[[.]] :: type ! bool 129
ptrdiff_t :: type 357
pure-add :: pure-term 73
pure-and :: pure-term 72
pure-exp :: pure-term 73
pure-false :: pure-term 72
pure-first :: pure-term 73
pure-fix :: pure-term 77
pure-four :: pure-term 73
pure-if :: pure-term 72
pure-mul :: pure-term 73
pure-not :: pure-term 72
pure-one :: pure-term 73
pure-or :: pure-term 72
pure-pair :: pure-term 73
pure-second :: pure-term 73
pure-three :: pure-term 73
pure-true :: pure-term 72

D.4 TERM FORMS 385

pure-two :: pure-term 73
pure-zero :: pure-term 73
r[[.]] :: format ! integer 86, 270
reject :: 8 T) (monad M)) M(T) 336
require [[.]] :: (monad M)) bool ! M() 336
restore[[.]] :: [MMIX-var] ! [MMIX-instr] 314
return [[.]] :: 8 T) (monad M)) T ! M(T) 336
reverse[[.]] :: 8 T) [T] ! [T] 341
round[[.]] :: rational ! integer 338
rtq[[.]] :: type ! ftype-qualifierg 134
S [[.]] :: envelope ! integer 99
S [[.]] :: format ! integer 85, 269
S [[.]] :: type ! integer 138
save[[.]] :: [MMIX-var] ! [MMIX-instr] 313
SCR[[.]] :: type ! bool 129
setI [[.]] to [[.]] :: (type . atomν) ! (type . atomν) ! termν 177, 361
set [[.]] to [[.]] :: (type . atomν) ! (type . atomν) ! termν 169, 361
size_t :: type 357
SL[[.]] :: linkage ! bool 146
ST[[.]] :: type ! bool 128
store[[.]] :: (MMIX-var . MMIX-var) ! [MMIX-instr] 301
STR[[.]] :: initialiser ! bool 212
SU[[.]] :: type ! bool 130
su[[.]] :: type ! struct-or-union 131
succ[[.]] :: (enum T)) T ! T 335
T [[.]] :: designator ! type 146
T [[.]] :: member ! type 130
tag[[.]] :: D ! ν 148
tag[[.]] :: type ! ν 130
tail[[.]] :: 8 T) [T] ! [T] 341
take[[.]] :: 8 T) (integer, [T]) ! [T] 341
tq[[.]] :: type ! ftype-qualifierg 133
TENL[[.]] :: [integer] ! type 201, 357
U[[.]] :: (type . atomν) ! atomν 159, 360
ulp[[.]][[.]] :: format ! rational ! rational 91
unq[[.]] :: type ! type 133
UT[[.]] :: type ! bool 128
V [[.]][[.]] :: (monad-fix M)) format ! atomν ! M(rational) 180, 362
V [[.]] :: (type . termν) ! termν 159
VT[[.]] :: type ! bool 132
W [[.]] :: format ! integer 85, 269
W [[.]] :: type ! integer 128
wchar_t :: type 357
WF[[.]] :: member ! bool 196
WF[[.]] :: prototypeopt ! bool 132
Z[[.]] :: member ! member 195

	1. Introduction
	1.1 History of the Problem
	1.2 Contributions
	1.3 Rules of the Game
	1.4 Roadmap

	2. Easier by Design
	2.1 Defining Correctness
	2.2 Accounting for Optimisations
	2.3 Correctness as a Category
	2.4 Linear Correctness
	2.5 Designing a Linear Compiler

	3. Haskell as a Notation
	3.1 Presenting Algorithms
	3.2 Type Signatures
	3.3 Language Syntax
	3.4 Curry-Howard Isomorphism
	3.5 Coverage and Termination
	3.6 Reasoning About Programs
	3.7 Inductive Proofs
	3.8 Implementation

	4. Lambda Calculus
	4.1 Lambda Calculus
	4.1.1 Examples
	4.1.2 Free Variables
	4.1.3 Capture-Avoiding Substitution
	4.1.4 Operational Semantics
	4.1.5 Normal Order Evaluation

	4.2 Extending the Calculus
	4.3 A Language with a Distinction
	4.4 Atoms and Their Formats
	4.5 State of the Matter
	4.6 Terms of the Game
	4.7 Modules and Programs

	5. The C Programming Language
	5.1 Overview
	5.2 Notation and Lexical Syntax
	5.3 Identifiers and Variables
	5.4 Types
	5.4.1 Abstract Syntax
	5.4.2 Corresponding Types
	5.4.3 Properties of Types
	5.4.4 Type Qualifiers
	5.4.5 Representation of Values
	5.4.6 Storage Requirements
	5.4.7 Integral Promotion
	5.4.8 Pointer Promotion
	5.4.9 Default Argument Promotion
	5.4.10 Usual Arithmetic Conversions
	5.4.11 Type Compatibility
	5.4.12 Composite Types

	5.5 Name Spaces and Scopes
	5.6 Constants
	5.7 Expressions
	5.7.1 Meanings of Expressions
	5.7.1.1 Function Designators
	5.7.1.2 L-Values
	5.7.1.3 Values
	5.7.1.4 Void Expressions

	5.7.2 Function Arguments
	5.7.3 Constant Expressions
	5.7.3.1 Integral Constant Expressions
	5.7.3.2 Null Pointer Constants
	5.7.3.3 Static Initialiser Expressions
	5.7.3.4 Arithmetic Constant Expression
	5.7.3.5 Address Constants

	5.8 Declarations
	5.8.1 Declaration Specifiers
	5.8.2 Storage Class Specifiers
	5.8.3 Type Specifiers
	5.8.4 Structure and Union Specifiers
	5.8.5 Enumeration Specifiers
	5.8.6 Tag Declarations
	5.8.7 Type Qualifiers
	5.8.8 Declarators
	5.8.9 Type Names
	5.8.10 Type Definitions
	5.8.11 Initialised Declarators
	5.8.12 Initialisation
	5.8.12.1 Static Initialisers
	5.8.12.2 Dynamic Initialisers

	5.9 Statements
	5.9.1 Labelled Statements
	5.9.2 Compound Statements or Blocks
	5.9.3 Expression and Null Statements
	5.9.4 Selection Statements
	5.9.5 Iteration Statements
	5.9.6 Jump Statements
	5.9.7 Lists of Statements

	5.10 External Definitions
	5.10.1 External Declarations
	5.10.2 Function Definitions

	5.11 Extended Example

	6. Generating Code
	6.1 The MMIX Architecture
	6.2 Semantics of MMIX
	6.3 Etude on MMIX
	6.3.1 Atoms and Their Formats
	6.3.2 Evaluation State
	6.3.3 Terms

	6.4 Code Generation
	6.4.1 Variables and Registers
	6.4.2 Atoms
	6.4.3 Functions and Terms

	6.5 Example Translation

	7. Conclusion
	Assumed Notation
	A.1 Standard Types
	A.2 Type Combinators
	A.3 Logical Operations
	A.4 Relational Operations
	A.5 Arithmetic Operations
	A.6 Function Combinators
	A.7 List Operations
	A.8 Finite Sets
	A.9 Finite Maps

	Bibliography
	Implementation of C Compilers
	Definition Index
	D.1 Theorems
	D.2 Data Types
	D.3 Data Constructors
	D.4 Term Forms

