
From Assembly Language
To Lambda Calculus

or

How to Trick a FORTRAN Hacker
Into Writing a Functional Program

Patryk Zadarnowski

University of New South Wales

Sydney



MOTIVATION

➀ Data-flow analysis

➁ Simplify compiler design

➂ Communication between functional and imperative research

communities

➃ Common backend for FORTRAN and Haskell

➄ Formal reasoning about program transformation

➅ Search for better data structures!

MOTIVATION 1



THE TARGET LANGUAGE

Administrative Normal Form (ANF):

Restricted form of a direct-style lambda calculus:

➜ no nested let’s

➜ no nested function applications

➜ no anonymous lambda expressions

THE TARGET LANGUAGE 2



ADMINISTRATIVE NORMAL FORM

e ::=
Syntax:

ADMINISTRATIVE NORMAL FORM 3



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e
Syntax:

• copy

ADMINISTRATIVE NORMAL FORM 3-A



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e

Syntax:

• copy

• calls

ADMINISTRATIVE NORMAL FORM 3-B



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e |

v̄

Syntax:

• copy

• calls

• returns

ADMINISTRATIVE NORMAL FORM 3-C



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e |

v̄ |

v(v̄)

Syntax:

• copy

• calls

• returns

• jumps

ADMINISTRATIVE NORMAL FORM 3-D



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e |

v̄ |

v(v̄) |

if v then e1 else e2

Syntax:

• copy

• calls

• returns

• jumps

• branches

ADMINISTRATIVE NORMAL FORM 3-E



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e |

v̄ |

v(v̄) |

if v then e1 else e2 |

letrec f̄ in e

f ::= x(x̄) = e

Syntax:

• copy

• calls

• returns

• jumps

• branches

• code labels

ADMINISTRATIVE NORMAL FORM 3-F



ADMINISTRATIVE NORMAL FORM

e ::= let x̄ = v̄ in e |

let x̄ = v(v̄) in e |

v̄ |

v(v̄) |

if v then e1 else e2 |

letrec f̄ in e

f ::= x(x̄) = e

v ::= x | c

Syntax:

• copy

• calls

• returns

• jumps

• branches

• code labels

ADMINISTRATIVE NORMAL FORM 3-G



THE SOURCE LANGUAGE

Control Flow Graph:

Symbolic (pre-register allocation) assembly language

(three address code) organized into a control flow graph:

➜ Program organized as a collection of procedures

(and an entry point)

➜ Each procedure organized as a collection of basic blocks

(and an entry point)

➜ Each basic block consists of a sequence of assignments

followed by a control transfer (jmp or ret)

➜ Data passed to basic blocks in preset named locations

(variables or registers)

THE SOURCE LANGUAGE 4



CONTROL FLOW GRAPHS

x← input

r ← 1

r ← r ∗ x

x← x− 1

x = 0?

return r

yes

no

Basic blocks of a procedure form a

directed rooted graph with nodes

representing basic blocks and

edges representing control transfer

between basic blocks.

CONTROL FLOW GRAPHS 5



THE CONTROL FLOW SYNTAX

s ::=

Syntax:

THE CONTROL FLOW SYNTAX 6



THE CONTROL FLOW SYNTAX

s ::= e; p̄

Syntax:

• program

THE CONTROL FLOW SYNTAX 6-A



THE CONTROL FLOW SYNTAX

s ::= e; p̄

p ::= proc x(x̄) { e; b̄ } Syntax:

• program

• procedures

THE CONTROL FLOW SYNTAX 6-B



THE CONTROL FLOW SYNTAX

s ::= e; p̄

p ::= proc x(x̄) { e; b̄ }

b ::= x: e
Syntax:

• program

• procedures

• basic blocks

THE CONTROL FLOW SYNTAX 6-C



THE CONTROL FLOW SYNTAX

s ::= e; p̄

p ::= proc x(x̄) { e; b̄ }

b ::= x: e

e ::= x̄ = call x(v̄); e |

x̄ = mov v̄; e |

jmp x; |

ret v̄; |

br v, x; e

Syntax:

• program

• procedures

• basic blocks

• expressions

THE CONTROL FLOW SYNTAX 6-D



THE CONTROL FLOW SYNTAX

s ::= e; p̄

p ::= proc x(x̄) { e; b̄ }

b ::= x: e

e ::= x̄ = call x(v̄); e |

x̄ = mov v̄; e |

jmp x; |

ret v̄; |

br v, x; e

v ::= x | c

Syntax:

• program

• procedures

• basic blocks

• expressions

THE CONTROL FLOW SYNTAX 6-E



TRANSLATION — OVERVIEW

C CFG SSA ANF
parsing [Cytron, 1990] [CKZ, 2003]

TRANSLATION — OVERVIEW 7



TRANSLATION — OVERVIEW

C CFG SSA ANF
parsing [Cytron, 1990] [CKZ, 2003]

• Direct

• Formal

• Efficient

• Incremental

TRANSLATION — OVERVIEW 8



TRANSLATION — PART 1

➜ Assignments converted to a chain of let bindings using name

hiding to avoid renaming during translation:

y = add x, 1;

y = mul y, 2;

ret y;

−→

let y = add(x, 1) in

let y = mul(y, 2) in

y

➜ Each basic block converted to a separate function.

➜ Formal parameters to block functions obtained from the list of

variables occurring free in the block (including any blocks

reachable from it.)

➜ Arguments to jumps syntatically identical to the parameter list.

TRANSLATION — PART 1 9



TRANSLATION — PART 1

➜ Assignments converted to a chain of let bindings using name

hiding to avoid renaming during translation:

y = add x, 1;

y = mul y, 2;

ret y;

−→

let y = add(x, 1) in

let y = mul(y, 2) in

y

➜ Each basic block converted to a separate function.

➜ Formal parameters to block functions obtained from the list of

variables occurring free in the block (including any blocks

reachable from it.)

➜ Arguments to jumps syntatically identical to the parameter list.

V Simple and fast

V Results in (almost) lambda-lifted program

X Very long parameter lists

TRANSLATION — PART 1 9-A



TRANSLATION — PART 2

Minimizing Parameter Lists:

➜ Nest function definitions!

• Variables defined in the environment do not need to be

passed as a parameter.

➜ Function f defined within g iff all control-flow paths to f lead

through g.

➜ This is known as the dominance property.

[Lowry, 1969]

➜ Can be formalized as:

⊢ start ≥ x

∀z.z → y => z ≥ x ⊢ x ≥ y

TRANSLATION — PART 2 10



DOMINATOR TREES FOR ANF — 1

Tree Programs:

A

B

C D

E

CFG

DOMINATOR TREES FOR ANF — 1 11



DOMINATOR TREES FOR ANF — 1

Tree Programs:

A

B

C D

E

CFG

A

B

C D

E

DT

DOMINATOR TREES FOR ANF — 1 12



DOMINATOR TREES FOR ANF — 2

Cross-jumps:

A

B

C D

E

CFG

DOMINATOR TREES FOR ANF — 2 13



DOMINATOR TREES FOR ANF — 2

Cross-jumps:

A

B

C D

E

CFG

A

B

C D

E

DT

DOMINATOR TREES FOR ANF — 2 14



DOMINATOR TREES FOR ANF — 3

Sibling edges:

A

B

C D

E

CFG

DOMINATOR TREES FOR ANF — 3 15



DOMINATOR TREES FOR ANF — 3

Sibling edges:

A

B

C D

E

CFG

A

B

C D

E

DT

DOMINATOR TREES FOR ANF — 3 16



DOMINATOR TREES FOR ANF — 3

Sibling edges:

A

B

C D

E

CFG

A

B

C D

E

DT

DOMINATOR TREES FOR ANF — 3 17



IMPLEMENTATION

insert dc dt (src, dst)

| processed dt dst = lift dc dt (src, dst)

| otherwise = process dst (dc ∪ dst) (dt ∪ (src, dst))

lift dc dt (src, dst) =

| (parent dt dst) ∈ dc = dt

| otherwise = lift dc (lift’ dt (src, dst)) (src, dst)

lift’ dt src dst =

foldS lift” (dt ∪ (parent dt (parent dt dst)), dst) cfg dst

lift” dt sib =

| parent dt sib == parent dt dst = lift’ dt sib

| otherwise = dt

IMPLEMENTATION 18



EVALUATION

➜ Simple: 15 lines of Haskell code.

➜ Fast: O(n2).

➜ Incremental: the dominator tree always valid for the subset of

the CFG explored so far.

➜ The traversal order doesn’t affect the output

➜ . . . but it affects complexity!

EVALUATION 19



USING THE INFORMATION

➀ Traverse the CFG constructing the dominator tree for the

procedure.

➁ Compute the list of formal parameters for each function.

➂ Traverse the DT constructing an ANF function for each block x:

• For leaf blocks, simply translate the expression as above.

• Otherwise, create a letrec defining functions for all blocks

dominated by x, with the translated expression in the letrec

body.

USING THE INFORMATION 20



PARAMETER COMPUTATION

A

B

C D

E

DT

PARAMETER COMPUTATION 21



PARAMETER COMPUTATION

A

B

C D

E

DT

• Parameters of A include all

variables redefined on the

path from A to D (along

the DT spine).

• In general, parameters to x

include all variables rede-

fined along the dominator

chain to x from the com-

mon dominator of each

caller and x.

• Can this information be

maintained while comput-

ing the DT?

PARAMETER COMPUTATION 21-A



CONCLUSIONS

➜ Dominators: can be formalized.

➜ The SSA form: reduntant.

➜ Lambda calculus: usable as a low-level representation.

➜ GHC: doesn’t need an imperative back-end.

Future Work:

➜ Implementation in FunCC.

➜ One pass translation from a parse tree.

➜ Improvements?

CONCLUSIONS 22


