From Assembly Language
To Lambda Calculus

or

How to Trick a FORTRAN Hacker
Into Writing a Functional Program

Patryk Zadarnowski

University of New South Wales
Sydney

0 Data-flow analysis

]

Simplify compiler design

0 Communication between functional and imperative research
communities

0 Common backend for FORTRAN and Haskell

[0 Formal reasoning about program transformation

[0 Search for better data structures!

MOTIVATION

THE TARGET LANGUAGE

Administrative Normal Form (ANF):

Restricted form of a direct-style lambda calculus:
[0 no nested let’s
[0 no nested function applications
[0 no anonymous lambda expressions

THE TARGET LANGUAGE

ADMINISTRATIVE NORMAL FORM

€

\

4

Syntax:

ADMINISTRATIVE NORMAL FORM

ADMINISTRATIVE NORMAL FORM

e »=1let z=0In e \\\\\

€

4

o COPY

Syntax:

ADMINISTRATIVE NORMAL FORM

3-A

ADMINISTRATIVE NORMAL FORM

€

let
let

rT=7vin e |

T=v()In e

\

4

o COPY
o Calls

Syntax:

ADMINISTRATIVE NORMAL FORM

3-B

ADMINISTRATIVE NORMAL FORM

\ Syntax:
e n=let z=vin e |
v(v)in e | * COpY

v e Calls

e retfurns

ADMINISTRATIVE NORMAL FORM

3-C

ADMINISTRATIVE NORMAL FORM

/ \ Syntax:
e n=let z=vin e |
let Z=v(®)in e | e COPY

v e calls
e retfurns

e JUMPS

ADMINISTRATIVE NORMAL FORM

3-D

ADMINISTRATIVE NORMAL FORM

€

if vthen e; else es

4

Syntax:

copy
calls

returns
jumps

branches

ADMINISTRATIVE NORMAL FORM

3-E

Syntax:
e == let z=vin e |
let Z=o(®)in e | * COpY

v e calls

v() |

. e returns

if vthen e; else ey |

letrec fin e e jUMPS
f o= x(z) =e

e branches
\ / e COde labels

ADMINISTRATIVE NORMAL FORM

3-F

e x==let T=vin e \
let zZ=v(®)In e |

if vthen e; else ey |
letrec fin e

f o= x(z) =e

v =z | ¢ /

Syntax:

copy
calls

returns
jumps
branches

code labels

ADMINISTRATIVE NORMAL FORM

3-G

Control Flow Graph:

Symbolic (pre-register allocation) assembly language
(three address code) organized into a control flow graph:
[J Program organized as a collection of procedures
(and an enftry point)
[1 Each procedure organized as a collection of basic blocks
(and an enftry point)
[0 Each basic block consists of a sequence of assignments
followed by a control fransfer (jmp or ret)
0 Data passed to basic blocks in preset named locations
(variables or registers)

THE SOURCE LANGUAGE

.
|
@:TWJ .

l yes

[retum r}

Basic blocks of a procedure form a
directed rooted graph with nodes
representing basic blocks and
edges representing control transfer
between basic blocks.

CONTROL FLOW GRAPHS

THE CONTROL FLOW SYNTAX

e \
Syntax:

THE CONTROL FLOW SYNTAX

THE CONTROL FLOW SYNTAX

Syntax:

e program

THE CONTROL FLOW SYNTAX

6-A

THE CONTROL FLOW SYNTAX

Syntax:
e program

e procedures

THE CONTROL FLOW SYNTAX

6-B

THE CONTROL FLOW SYNTAX

S = €ep
p == proc z(x){e
b .= x:e

Syntax:

e program
e procedures

e basic blocks

THE CONTROL FLOW SYNTAX

6-C

Syntax:

program
procedures
basic blocks

expressions

THE CONTROL FLOW SYNTAX

6-D

Syntax:

program
procedures
basic blocks

expressions

THE CONTROL FLOW SYNTAX

6-E

TRANSLATION — OVERVIEW

parsing (Cytron, 1990) (CKZ, 2003)

TRANSLATION — OVERVIEW

parsing (Cytron, 1990) (CKZ, 2003)

e Direct
e FOrmal
o Efficient

e INCcremental

TRANSLATION — OVERVIEW

O Assignments converted to a chain of let bindings using name
hiding to avoid renaming during franslation:

y = add x, 1; let y =add(x, 1)in
y = mul y, 2; — let y = mul(y, 2) in
ret v; Y

[0 Each basic block converted to a separate function.

[0 Formal parameters o block functions obtained from the list of
variables occurring free in the block (including any blocks
reachable from it.)

0 Arguments To jumps syntatically identical to the parameter list.

TRANSLATION — PART 1

Assignments converted to a chain of let bindings using name
hiding to avoid renaming during franslation:

y = add x, 1; let y =add(x, 1)in
y = mul y, 2; — let y = mul(y, 2) in
ret v; Y

Each basic block converted to a separate function.

Formal parameters to block functions obtained from the list of
variables occurring free in the block (including any blocks
reachable from it.)

Arguments to jumps syntafically identical to the parameter list.

v Simple and fast
v Results in (almost) lambda-liffed program
x Very long parameter lists

TRANSLATION — PART 1

9-A

Minimizing Parameter Lists:
[0 Nest function definitions!
e Variables defined in the environment do not need fo be
passed as a parameter.
[Function f defined within g iff all control-flow paths fo f lead
through g.

[0 This is known as the dominance property.
(Lowry, 1969)

[0 Can be formalized as:

- start >«
Vzz—y = z>2x F x>y

TRANSLATION — PART 2

10

DOMINATOR TREES FOR ANF — 1

Tree Programs:

A

/N

/ N\

C D

CFG

DOMINATOR TREES FOR ANF — 1

DOMINATOR TREES FOR ANF — 1

Tree Programs:

A A

/N /N

:
/ N\ / N\

C D C D

CFG DT

DOMINATOR TREES FOR ANF — 1

DOMINATOR TREES FOR ANF — 2

Cross-jumps:

A

/N

B E

/ N\

C D

CFG

DOMINATOR TREES FOR ANF — 2

DOMINATOR TREES FOR ANF — 2

Cross-jumps:

A A

/N /

B E B

/N /

C D C D

CFG DT

DOMINATOR TREES FOR ANF — 2

DOMINATOR TREES FOR ANF — 3

Sibling edges:

A

/N

/ N\

D

CFG

DOMINATOR TREES FOR ANF — 3

DOMINATOR TREES FOR ANF — 3

Sibling edges:
A A
/N /
B E B
/ N\ /
CcC — D C D
CFG DT

DOMINATOR TREES FOR ANF — 3

DOMINATOR TREES FOR ANF — 3

Sibling edges:

/N 71\
B E V
/NS /

D C D

CFG DT

DOMINATOR TREES FOR ANF — 3

iInsert dc dt (src, dst)
| processed dt dst = lift dc dt (src, dst)
| otherwise = process dst (dc U dst) (dt U (src, dst))

lift dc dt (src, dst) =
| (parent dt dst) c dc = dt
| otherwise = lift dc (lift" dt (src, dst)) (src, dst)

ift' dt src dst =
foldS [ift” (dt U (parent dt (parent dt dst)), dst) cfg dst

lift” dt sib =
| parent dt sib == parent dt dst = lift' dt sib
| otherwise = dt

IMPLEMENTATION

18

Simple: 15 lines of Haskell code.

Fast: O(n?).

Incremental: the dominator free always valid for the subset of
the CFG explored so far.

The traversal order doesn’t affect the output

... but it affects complexity!

EVALUATION

19

O Traverse the CFG constructing the dominator tree for the
procedure.

0 Compute the list of formal parameters for each function.

[0 Traverse the DT constructing an ANF function for each block x:

e Forleaf blocks, simply franslate the expression as above.

e Otherwise, creafte aletrec defining functions for all blocks
dominated by x, with the franslated expression in the letrec
body.

USING THE INFORMATION

20

PARAMETER COMPUTATION

/TN

/ N\

C D

DT

PARAMETER COMPUTATION

DT

e Parameters of A include all

variables redefined on the
path from A to D (along
the DT spine).

In general, parameters to «
include all variables rede-
fined along the dominator
chain fo z from the com-
mon dominafor of each
caller and .

Can this informatfion be
maintained while comput-
ing the DT?

PARAMETER COMPUTATION

21-A

CONCLUSIONS

Dominators: can be formalized.
The SSA form: reduntant.
Lambda calculus: usable as a low-level representation.

(N I R I B

GHC: doesn’t need an imperative back-end.

Future Work:
O Implementation in FunCC.
[0 One pass translation from a parse tree.
0 Improvements?

CONCLUSIONS

22

