
SSA, CPS, ANF:
THREE APPROACHES

TO COMPILING FUNCTIONAL LANGUAGES
PATRYK ZADARNOWSKI

PATRYKZ @CSE.UNSW.EDU.AU

PATRYKZ@CSE.UNSW.EDU.AU 1



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:

INTRODUCTION 2



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete

INTRODUCTION 2-A



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete
➜ flexible

INTRODUCTION 2-B



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete
➜ flexible
➜ well-defined

INTRODUCTION 2-C



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete
➜ flexible
➜ well-defined
➜ robust

INTRODUCTION 2-D



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete
➜ flexible
➜ well-defined
➜ robust
➜ portable

INTRODUCTION 2-E



INTRODUCTION

➜ Intermediate Representation:
A programming language used by the com-

piler to represent the source program internally
throught the translation process:

source −→ HIR −→ LIR −→ assembly

➜ Features:
➜ complete
➜ flexible
➜ well-defined
➜ robust
➜ portable

➜ Compilation by correctness-preserving transformations

INTRODUCTION 2-F



EXAMPLE — THREE ADDRESS CODE

set i, 0

L1: add i, i, 1

cmp t, i, 5

breq L1

EXAMPLE — THREE ADDRESS CODE 3



DATA FLOW ANALYSIS

➜ Needed by many (most?) optimization algorithms

➜ Expensive to compute

➜ Reusable

➜ Should be stored in the IR

DATA FLOW ANALYSIS 4



DATA FLOW ANALYSIS

➜ Needed by many (most?) optimization algorithms

➜ Expensive to compute

➜ Reusable

➜ Should be stored in the IR
➜ D-U chains (Dragon Book)
➜ SSA (most traditional compilers)
➜ Lambda calculus

DATA FLOW ANALYSIS 4-A



DATA FLOW ANALYSIS

➜ Needed by many (most?) optimization algorithms

➜ Expensive to compute

➜ Reusable

➜ Should be stored in the IR
➜ D-U chains (Dragon Book)
➜ SSA (most traditional compilers)
➜ Lambda calculus

➜ CPS (most Scheme & ML compilers)
➜ ANF (GHC, TIL)

DATA FLOW ANALYSIS 4-B



SSA — STATIC SINGLE ASSIGNMENT FORM

➜ Only one definition of each variable

➜ Every definition “dominates” each use

SSA — STATIC SINGLE ASSIGNMENT FORM 5



SSA — STATIC SINGLE ASSIGNMENT FORM

➜ Only one definition of each variable

➜ Every definition “dominates” each use

➜ Example:

i0 = 0

L1: i1 = φ i0, i2

i2 = add i1, 1

t = sub i2, 5

breq L1

SSA — STATIC SINGLE ASSIGNMENT FORM 5-A



SSA — STATIC SINGLE ASSIGNMENT FORM

➜ Only one definition of each variable

➜ Every definition “dominates” each use

➜ Example:

i0 = 0

L1: i1 = φ i0, i2

i2 = add i1, 1

t = sub i2, 5

breq L1

➜ Quasi-functional three-address code

➜ Still uses control flow graph

➜ Explicit data-flow information

SSA — STATIC SINGLE ASSIGNMENT FORM 5-B



SSA — EVALUATION

➜ Uses:
➜ Simplifies data-flow based algorithms
➜ New optimization opportunities

SSA — EVALUATION 6



SSA — EVALUATION

➜ Uses:
➜ Simplifies data-flow based algorithms
➜ New optimization opportunities

➜ Pitfalls:
➜ Arrays difficult to represent
➜ Poor choice for formal reasoning
➜ Horrible for strong typing
➜ Can’t move code across basic block

SSA — EVALUATION 6-A



CPS — CONTINUATION-PASSING STYLE

➜ A lambda-calculus variant

➜ All control flow information explicit

➜ Only tail-calls allowed

CPS — CONTINUATION-PASSING STYLE 7



CPS — CONTINUATION-PASSING STYLE

➜ A lambda-calculus variant

➜ All control flow information explicit

➜ Only tail-calls allowed

➜ Purely-functional

➜ Data-flow information explicit

➜ Each function takes the rest of the program as an argument

CPS — CONTINUATION-PASSING STYLE 7-A



CPS — EVALUATION

➜ Uses:
➜ Good for formal reasoning
➜ Can express more optimization algorithms
➜ Easily expresses even most complex control flow constructs

(longjmp, exceptions)

CPS — EVALUATION 8



CPS — EVALUATION

➜ Uses:
➜ Good for formal reasoning
➜ Can express more optimization algorithms
➜ Easily expresses even most complex control flow constructs

(longjmp, exceptions)

➜ Pitfalls:
➜ Verbose!!!
➜ Too much information confuses function returns and jumps
➜ Most control-flow information redundant
➜ Encourages repeated analysis along each execution path
➜ Difficult to translate into assembly language

CPS — EVALUATION 8-A



ANF — A- NORMAL FORM

➜ Direct-style lambda-calculus

➜ Each subexpression named explicitely

➜ Normal and tail-calls distinguished

ANF — A-NORMAL FORM 9



ANF — A- NORMAL FORM

➜ Direct-style lambda-calculus

➜ Each subexpression named explicitely

➜ Normal and tail-calls distinguished

➜ Example:

let fun(i0) =

let i1 = add i0, 1 in

let t = sub i1, 5 in

if0 t then 0 else fun i1

in fun 0

ANF — A-NORMAL FORM 9-A



ANF — A- NORMAL FORM

➜ Direct-style lambda-calculus

➜ Each subexpression named explicitely

➜ Normal and tail-calls distinguished

➜ Example:

let fun(i0) =

let i1 = add i0, 1 in

let t = sub i1, 5 in

if0 t then 0 else fun i1

in fun 0

➜ Purely-functional

➜ Explicit data-flow information

➜ Control-flow driven by data-flow

➜ Similar to three-address code

ANF — A-NORMAL FORM 9-B



ANF — EVALUATION

➜ Uses:
➜ Perfect for data flow algorithms
➜ Easy to type-check
➜ No duplication of mechanisms for intra- and inter-procedural data

flow
➜ Trivial to translate into assembly language

ANF — EVALUATION 10



ANF — EVALUATION

➜ Uses:
➜ Perfect for data flow algorithms
➜ Easy to type-check
➜ No duplication of mechanisms for intra- and inter-procedural data

flow
➜ Trivial to translate into assembly language

➜ Pitfalls:
➜ Complex control-flow constructs hard to express

ANF — EVALUATION 10-A



COMPARISON

➜ SSA-CPS by Kelsey

➜ SSA-ANF by Chakravarty, Keller & Zadarnowski

➜ Flexibility:
➀ CPS
➁ ANF
➂ SSA

➜ ANF ideal w.r.t. efficiency-to-flexibility tradeoff

COMPARISON 11



B IBLIOGRAPHY

Appel Modern Compiler implementation in ML

Chakravarty, Keller, Zadarnowski A Functional Perspective on SSA
Optimization Algorithms

Cytron, et.al. Efficiently computing SSA form and the control
dependance graph

Flanagan, Sabry, Duba and Felleisen The Essence of Compiling
with Continuations

Kelsey A correspondence between continuation-passing style and
SSA form

BIBLIOGRAPHY 12


