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THE PLAN

➀ Motivation — an overview of the status quo

➁ Translating the static single assignment (SSA) form into the

administrative normal form (ANF) of lambda calculus

➂ Applying the technique to the sparse conditional constant

propagation (SCC) algorithm
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MOTIVATION

➜ We need a verified optimizing compiler

➜ Optimization algorithms are:

X complex

X inadequately specified

➜ Fix the data structures before fixing the algorithms!

Contributions:

➀ Formalize the correspondance between the Static Single

Assignment form and a direct-style lambda calculus

➁ Redefine Wegman-Zadeck’s Sparse Conditional Constant

Propagation using our intermediate representation

➂ Formally establish soundness of the new algorithm
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CONTROL FLOW GRAPHS

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Summary:

• Low-level representation

• Informal semantics

• Emphasis on control flow
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CONTROL FLOW GRAPHS

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Summary:

• Low-level representation

• Informal semantics

• Emphasis on control flow

However, many (most?)

optimizations require data flow

information:

• Expensive to compute

• Reusable
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CONTROL FLOW GRAPHS & DATAFLOW INFORMATION

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Summary:

• Def-Use chains: defs refer to uses

and uses refer to defs

• Analyses need a dense mapping

of variables to abstract values

X Expensive to represent

and update!
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STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Overview:

• Each variable has exactly one

defining occurence

• Values from different control flows

merged via φ functions

• φ functions placed by

computing the dominator tree

of the procedure
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STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Evaluation I:

V Sparse representation

V Split variables improve

the accuracy of analyses

V Significantly reduces complexity

of optimizations, such as:

• constant propagation

• partial redundancy elimination

• value numbering

• . . .
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STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Evaluation II:

X Still no scoping

X Still only informal semantics

X Difficult to add a type system:
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STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Evaluation II:

X Still no scoping

X Still only informal semantics

X Difficult to add a type system:

• φ parameters out of context

• Analysis requires a

large environment

V However, there are improved

versions, such as Gated SSA
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In every FORTRAN program

hides a functional program trying to get out

STATIC SINGLE ASSIGNMENT FORM 8



ADMINISTRATIVE NORMAL FORM

Restricted direct-style lambda calculus:

➜ no nested let’s

➜ no nested function applications

➜ no anonymous lambda expressions
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ADMINISTRATIVE NORMAL FORM

e ::=

Syntax:
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e

Syntax:

• copy
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e

Syntax:

• copy

• calls
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e |

v

Syntax:

• copy

• calls

• returns
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e |

v |

v(v̄)

Syntax:

• copy

• calls

• returns

• jumps
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e |

v |

v(v̄) |

if v then e1 else e2

Syntax:

• copy

• calls

• returns

• jumps

• branches
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e |

v |

v(v̄) |

if v then e1 else e2 |

letrec f̄ in e

f ::= x(x̄) = e

Syntax:

• copy

• calls

• returns

• jumps

• branches

• code labels
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ADMINISTRATIVE NORMAL FORM

e ::= let x = v in e |

let x = v(v̄) in e |

v |

v(v̄) |

if v then e1 else e2 |

letrec f̄ in e

f ::= x(x̄) = e

Evaluation:

V Natural scoping

V Clean operational

semantics

V Easily type-checked

V Yet still close

to assembly language!
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ADMINISTRATIVE NORMAL FORM

So where do I get some?
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ADMINISTRATIVE NORMAL FORM

So where do I get some?

Translate an SSA program!

➜ Semi-formal correspondence between programs in SSA form

and CPS [Kelsey, 1995]

➜ Semi-formal translation from SSA form into lambda calculus

[Appel, 1998]

➜ We present a formal translation from SSA form to ANF

(based on dominator trees)
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STRUCTURED SSA FORM

proc fac(x) {

goto L1

L1: {

r 0 ← φ(start:1, L 1:r 1)

x0 ← φ(start:x, L 1:x 1)

if x 0 then goto L 1 else ret r 0

L2: r 1 ← mul(r 0, x 0)

x1 ← sub(x 0, 1)

goto L 1

}

}

. . .
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TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

}

. . .

letrec fac(x) =

in

. . .
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TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

L1:{

L2:

}

}

. . .

letrec fac(x) =

letrec fac’( ) =

letrec fac”() =

in

in

in

. . .
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TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

L1:{

if x0 else ret r 0

L2: r 1 ← mul(r 0, x0)

x1 ← sub(x 0, 1)

}

}

. . .

letrec fac(x) =

letrec fac’( ) =

letrec fac”() =

let r 1 = mul(r 0, x0)

let x 1 = sub(x 0, 1)

in

in

if x 0 else r 0

in

in

. . .
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TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

goto L 1

L1:{

if x0 goto L 1 else ret r 0

L2: r 1 ← mul(r 0, x0)

x1 ← sub(x 0, 1)

goto L 1

}

}

. . .

letrec fac(x) =

letrec fac’( ) =

letrec fac”() =

let r 1 = mul(r 0, x0)

let x 1 = sub(x 0, 1)

in fac’( )

in

if x 0 fac”() else r 0

in

fac’( )

in

. . .

TRANSLATING STRUCTURED SSA TO ANF 14-C



TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

goto L 1

L1:{

r 0 ← φ( )

x0 ← φ( )

if x0 goto L 1 else ret r 0

L2: r 1 ← mul(r 0, x0)

x1 ← sub(x 0, 1)

goto L 1

}

}

. . .

letrec fac(x) =

letrec fac’(x 0, r 0) =

letrec fac”() =

let r 1 = mul(r 0, x0)

let x 1 = sub(x 0, 1)

in fac’( )

in

if x 0 fac”() else r 0

in

fac’( )

in

. . .
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TRANSLATING STRUCTURED SSA TO ANF

proc fac(x) {

goto L 1

L1:{

r 0 ← φ( start:1, L 1:r 1)

x0 ← φ(start:x, L1:x 1)

if x0 goto L 1 else ret r 0

L2: r 1 ← mul(r 0, x0)

x1 ← sub(x 0, 1)

goto L 1

}

}

. . .

letrec fac(x) =

letrec fac’(x 0, r 0) =

letrec fac”() =

let r 1 = mul(r 0, x0)

let x 1 = sub(x 0, 1)

in fac’(r 1, x 1)

in

if x0 fac”() else r 0

in

fac’(x, 1)

in

. . .

Formal definition presented in the paper.
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WHAT HAVE WE GAINED?

➜ A way of tricking hackers into writing functional programs

➜ A way of thinking about functional programs as SSA programs

• applying SSA algorithms to functional programs

➜ A way of thinking about SSA programs as functional programs

• applying formal techniques to SSA programs

So, let’s have a look at a concrete algorithm. . .

WHAT HAVE WE GAINED? 15



SPARSE CONDITIONAL CONSTANT PROPAGATION

proc seven(x) {

goto L1

L1:x 0 ← φ(start:1, L 1:x 1)

x1 ← sub(x 0, 1)

if x 1 then

goto L 1

else

ret 7

}

−→

proc seven(x) {

ret 7

}

The original SSA algorithm (Wegman & Zadeck, 1991)

rather informally presented. . .
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A FRAGMENT OF SCCANF

AJvK Γ Ω = 〈Γv, Γ, Ω〉

AJf ( v1 , . . . , vn ) K Γ Ω

| f ∈ Prim = E
Abs

Jf ( Γv1 , . . . , Γvn ) K

| otherwise = 〈Γ′f , Γ′, if changed then Ω ∪ {f} else Ω〉

where

f is defined as f ( x1 , . . . , xn) = e

Γ′ = Γ ⊓ [f 7→ ⊥, x1 7→ Γv1, . . . , xn 7→ Γvn ]

changed = ∃i.Γxi ⊏ Γvi — indicates whether Γ changed

AJletrec f1, . . . , fn in eKΓ Ω =

let

〈a, Γ′, Ω′〉 = AJeKΓ{}

〈Γ′′, Ω′′〉 = A
fix

Jf1, . . . , fnKΓ′(Ω ∪ Ω′)

in

if Γ′ == Γ′′
then 〈a, Γ′, Ω′′〉 else AJletrec f1, . . . , fn in eKΓ′′Ω′′

A
fix

Jfun1 , . . . , funn KΓΩ | ∄i.fi ∈ Ω = 〈Γ, Ω〉

| otherwise =

let

〈a, Γ′, Ω′〉 = AJeKΓ{}

Γ′′ = Γ′ ⊓ [fi 7→ a]

Ω′′ = Ω ∪ Ω′ \ {fi}
in

A
fix

Jfun1, . . . , funn KΓ′′(if Γfi ⊏ Γa then Ω′′ ∪ (Occ fi ∩ Dom Γ) else Ω′′)

where

(fi ( x1 , . . . , xm )= e) = funi

A FRAGMENT OF SCCANF 18



AN OVERVIEW OF SCCANF

➜ Denoted in TEX- ised Haskell

➜ Operates on programs in ANF

➜ Split into “analysis” and “simplification” stages

➜ Operates over the standard lattice N
⊤

⊥ for constant

propagation:

⊤

0 1 2 . . . n

⊥

(not a constant)

(no information available)
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SO, HOW DOES IT WORK?

➜ Analysis proceeds by abstract interpretation under an

environment Γ mapping variables to lattice values

➜ Maintains a work list Ω of functions to visit by

• inspecting call sites and

• tracking free variables for changes to abstract variables

➜ Functions added to the work list whenever any of its free

variables is refined in the environment

➜ letrec’s are processed recursively until the work list is emptied

➜ The resulting abstract environment contains all information

obtained about any constants

➜ Simplification phase replaces variables by constant values and

eliminates redundant branches

SO, HOW DOES IT WORK? 20



letrec f(x) =

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)
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letrec f(x) =

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

SO, HOW DOES IT WORK? 21-E



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

SO, HOW DOES IT WORK? 21-F



letrec f(x) =

let x’ = sub(x, 1)

in

if x’ then

f(x’)

else

x

in

f(7)
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

in

if x’ then

f(x’)

else

x

in

f(7)
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

else

x

in

f(7)
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)
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letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)

SO, HOW DOES IT WORK? 22-E



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

else

x

Γ = {f 7→⊤, x 7→⊤, x′ 7→⊤},Ω = {f}

in

f(7)

SO, HOW DOES IT WORK? 22-F



WORK COMPLEXITY

➀ Each variable updated at most three times

(same as SCCSSA)

➁ Each function processed once for each change to its free

variables

(in SCCSSA, processed once for each incoming SSA edge)

➂ Number of free variables corresponds directly to number of SSA

edges

➃ Therefore, SCCANF has the same work comlexity as SCCSSA.
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OBSERVATIONS

➀ SCCANF performs inter-procedural analysis transparently,

although alias analysis and performance still a problem

➁ Vanilla SCCANF cannot handle higher-order functions

➂ The algorithm does not preserve non-termination

➃ Optimistic algorithms are difficult to analyze:

• environment invalid until fixpoint reached

• very complex invariants

OBSERVATIONS 24



CONCLUSIONS

Benefits of ANF:

➜ Simplifies the operational semantics, the environment and

therefore static analysis and formal reasoning

➜ Allows us to view imperative programs as encodings of

functional programs

➜ Allows us to adopt SSA algorithms for compilation of functional

programs

➜ Integrates intra- and inter-procedural analysis

➜ Straight forward extension to higher-order functions
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