Intermediate Representations for Register Allocation

Patryk Zadarnowski

27 June 2003

University of New South Wales Sydney

THE PLAN

- ① Overview
- ② Graph coloring
 - the degree < k rule (the good news)
 - the bad news
 - optimal coloring
- ③ Preparation and recovering from trouble
 - Variable webs
 - Register coalescing
- ④ Cleaning up the mess
 - Control Flow Graphs
 - Static Single Assignment Form
 - Value/State Dependance Graphs
 - Exotic Approaches

MOTIVATION

Structure of a typical compiler:

- Different representations required for symbolic code (IR_s) and register-allocated code (IR_r)
- Optimizations performed on both IR_s and IR_r
- X Hampers code reuse
- X Makes verification cumbersome
- Introduces phase ordering problems

OVERVIEW OF REGISTER ALLOCATION

- → Register Allocation: select the set of variables that will reside in registers at a point in the program.
- → Register Assignment: assign physical register to hold values of variables during evaluation.

OVERVIEW OF REGISTER ALLOCATION

- → Register Allocation: select the set of variables that will reside in registers at a point in the program.
- Register Assignment: assign physical register to hold values of variables during evaluation.
- ① Greedy heuristics-based local approaches:
 - Use the structure of the program.
 - Greedily allocate variables to registers based of frequency of use, beginning with inner loops.
 - When combined with heuristics, quite workable.

OVERVIEW OF REGISTER ALLOCATION

- → Register Allocation: select the set of variables that will reside in registers at a point in the program.
- Register Assignment: assign physical register to hold values of variables during evaluation.
- ① Greedy heuristics-based local approaches:
 - Use the structure of the program.
 - Greedily allocate variables to registers based of frequency of use, beginning with inner loops.
 - When combined with heuristics, quite workable.
- 2 Register assignment by graph coloring.

GRAPH COLORING — I

- Construct register-interference graph for all variables in a procedure/program:
- → Nodes represent symbolic registers.
- Edges connect two nodes if one is live at the point where other is defined:

→ Colour the nodes using k colours in such a way that no two adjacent nodes have the same colour (the map coloring problem.)

GRAPH COLOURING — II

- \rightarrow Graph coloring is NP-complete in general, but:
- → The degree < k rule: A graph containing a node with less than k neighbours is k-colourable iff the graph without that node is k-colourable.
- → The following greedy algorithm works extremely well in practice:
 - 1. Find a node with less than k neighbours. Remove it from the graph.
 - 2. Repeat until the graph has only one node left. Colour that node.
 - 3. Begin adding the removed nodes back to the graph, in reverse order.
 - 4. Each time we add a node back, colour it with a colour different from any of its neighbours.

Removed nodes: s_2

Removed nodes: s_2 , s_3

Removed nodes: s_2 , s_3 , s_1

Removed nodes: s_2 , s_3 , s_1 , s_4

Removed nodes: s_2 , s_3 , s_1 , s_4 , s_5

Removed nodes: s_2 , s_3 , s_1 , s_4

Removed nodes: s_2 , s_3 , s_1

Removed nodes: s_2 , s_3

Removed nodes: s_2

THE BAD NEWS

- → We still haven't solved the whole problem!
- \rightarrow Some graphs are simply not colourable:

→ Others can't be reduced using the degree < k rule:

→ But mostly, the technique works suprisingly well. Why?!

OPTIMAL GRAPH COLOURING - I

Interference graphs are special!

Some Terminology:

- → The smallest k for which a graph G is colourable is called its chromatic number $\chi(G)$.
- → A safe lower bound for $\chi(G)$ is the clique number $\omega(G)$.
- → A graph G in which, for every subgraph G', $\chi(G') = \omega(G')$ is called perfect.
- → A graph G for which $\chi(G) = \omega(G)$ is called 1-perfect.
- → For most graphs, $\chi(G) \omega(G)$ is large.

OPTIMAL GRAPH COLOURING — II

- → Andersson investigates 27,921 real-life interference graphs and found that all of them are 1-perfect.
- → Although finding $\omega(G)$ is NP-complete, there exists the so-called Shannon function $\vartheta(G)$, such that:

1. $\omega(G) \leq \vartheta(\overline{G}) \leq \chi(G)$

- 2. For all graphs, $\vartheta(G)$ is computable in polynomial time.
- → Nobody knows how to compute $\vartheta(G)$ in polynomial time for an arbitriary graph.
- → Andersson presents a backtracking-search solution that performs optimal coloring of an arbitriary graph and has approximately O(V) complexity for 1-perfect graphs.

PREPARING FOR REGISTER ASSIGNMENT - I

The Allocatable Objects:

- \rightarrow Cannot use source variables (name reuse.)
- Cannot use definition points (multiple definitions may have a common use.)
- → Instead, combine definitions with a common use into maximal webs of values:

PREPARING FOR REGISTER ASSIGNMENT - II

Register Coalescing (Subsumption):

- → A variety of copy propagation
- → Eliminates assignments of the form $x \leftarrow y$ when x and y do not interfere by replacing all occurances of x with y
- \rightarrow Easy to perform given the interference graph
- → The interference graph can be updated incrementally for each eliminated assignment.

RECOVERY STRATEGIES

Recovering from degree < k:

- Don't panic just yet; pick a node for removal based on some plausible heuristics and hope for the best.
- ➔ If we run out of colours while poping nodes back into the graph, spill something and repeat the process.

When things get really crowded, we can try:

- moving some instructions closer to their use (undoing loop invariant code motion)
- ② cloning a calculation to avoid keeping its result (undoing common subexpression elimination)
- ③ collapsing unrolled loops

④ spilling some variables into memory.

. . .

CLEANING UP THE MESS

Graph coloring gave us a systematic method of performing register assignment, but it is combined with *ad hoc* register allocation and spilling, complicating the structure of the

CONTROL FLOW GRAPHS

Overview:

- All variables are updatable, just like physical registers.
- Some representation for both IR_s and IR_r .
- Emphasis on *control flow*, introduces artificial register dependencies.

CONTROL FLOW GRAPHS

Data Flow:

- For web calculation, data flow information is required
- Represented by DU-chains linking definitions (assignments) with their respective uses.
- Usually encoded efficiently as bit arrays.

CONTROL FLOW GRAPHS

Problems:

- Dense representation of data flow.
- Expensive to compute and update.
- Makes many common optimizations prohibitively expensive.
- Went out of fashion in mid-1980's.

STATIC SINGLE ASSIGNMENT FORM

no

Overview:

- Each variable has exactly one defining occurence
- Values from different control flows merged via ϕ functions
- Efficient sparse representation of data flow
- Split variables improve accuracy of analysis
- The most popular representation used in compiles today.

STATIC SINGLE ASSIGNMENT FORM Problems:

no

- \blacksquare Cannot be used for IR_r
- Control flow still in our way
- $\checkmark \phi$ nodes introduce new problems:
 - translate to extra mov's
 - complicates web calculations
 - cannot express register coalescing
 - live-range identification expensive
- ✓ Efficient $O(n\alpha(n))$ algorithm exists which combines all of the above.

VALUE STATE DEPENDENCE GRAPHS — I

- → A new intermediate representation designed specifically for register allocation
- → Intended to remove the control-flow bottleneck
- → Loosely based on the Gated Static Assignment Form
- \rightarrow Register allocation performed "in reverse":
 - 1. First, the program is restructured to make it colourable
 - 2. Then, register allocation is performed by graph colouring.
- → Register colouring is the final stage before code generation; all optimizations are performed on the VSDG.

VALUE STATE DEPENDENCE GRAPHS — II

- → Represents all necessary data and state dependencies explicitly.
- → Procedures represented by a graph $\langle N, E_v, E_s, N_0, N_\infty \rangle$ where:
 - N is a set of nodes
 - E_v is a set of value dependence edges
 - E_s is a set of state dependence edges
 - N_0 is a unique entry node
 - N_{∞} is a unique exit node
- → Nodes can represent instructions (value definitions) or special structural nodes \(\gamma(C,T,F)\) (lazy conditionals) and \(\theta(C,I,R,L,X)\) (natural loops.) Loops are nasty.
- → Except for θ nodes, VSDG is an acyclic graph.

VALUE STATE DEPENDENCE GRAPHS — III

VALUE STATE DEPENDENCE GRAPHS — IV

Benefits:

- Sparse representation of of data flow
- \checkmark No implicit control flow
- Has a strong normalizing effect
- Can represent program before and after register allocation
- Can be serialized to correspond to a CFG

VALUE STATE DEPENDENCE GRAPHS — V

Register Allocation Algorithm:

- 1. Calculate the DFR (maximal distance from N_0) for each node in the graph.
- 2. Partition the graph into "cuts": sets of nodes with the same DFR.
- 3. Calculate the set of live nodes for each cut: $S_{>d} \cap pred_v(S_{\leq d})$
- 4. Apply a forward snow-plough graph reshaping algorithm ensuring the size of each set is less than k.

REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — I

- \rightarrow A new approach not based on graph coloring.
- Designed to systematically combine all of the register allocation into a single formal framework.
- Based on the judgments as types correspondence: programs may be regarded as proofs of their types.
- Easily incorporated into a static type system to unify pre- and post-allocation representations into a single language.

REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — II

→ Imperative regarded as a sequent-style proof system which deduces typing properties of code, eg:

$$\Gamma, x: \tau \vdash \operatorname{ret}(x): \tau \qquad \qquad \frac{\Gamma' \vdash B: \tau}{\Gamma \vdash I; B * \tau}$$

- \rightarrow The method uses types to represent live ranges of variables.
- → Register allocation is a transformation from a proof system with implicit structural rules to one with explicit ones.
- \rightarrow Liveness analysis is done by type inference.
- → Register assignment is done by insertion of explicit memory-register moves and register allocation/deallocation instructions.

A promising new approach which incorporates all issues involved in register allocation into a single formal framework!

THE END