
Intermediate Representations
for

Register Allocation

Patryk Zadarnowski

27 June 2003

University of New South Wales

Sydney



THE PLAN

➀ Overview

➁ Graph coloring

• the degree < k rule (the good news)

• the bad news

• optimal coloring

➂ Preparation and recovering from trouble

• Variable webs

• Register coalescing

➃ Cleaning up the mess

• Control Flow Graphs

• Static Single Assignment Form

• Value/State Dependance Graphs

• Exotic Approaches

THE PLAN 1



MOTIVATION

Structure of a typical compiler:

C IRs IRr ASM
parsing register

allocation

output

• Different representations required for symbolic code (IRs)

and register-allocated code (IRr)

• Optimizations performed on both IRs and IRr

X Hampers code reuse

X Makes verification cumbersome

X Introduces phase ordering problems

MOTIVATION 2



OVERVIEW OF REGISTER ALLOCATION

➜ Register Allocation: select the set of variables that will reside in

registers at a point in the program.

➜ Register Assignment: assign physical register to hold values of

variables during evaluation.

OVERVIEW OF REGISTER ALLOCATION 3



OVERVIEW OF REGISTER ALLOCATION

➜ Register Allocation: select the set of variables that will reside in

registers at a point in the program.

➜ Register Assignment: assign physical register to hold values of

variables during evaluation.

➀ Greedy heuristics-based local approaches:

• Use the structure of the program.

• Greedily allocate variables to registers based of frequency

of use, beginning with inner loops.

• When combined with heuristics, quite workable.

OVERVIEW OF REGISTER ALLOCATION 3-A



OVERVIEW OF REGISTER ALLOCATION

➜ Register Allocation: select the set of variables that will reside in

registers at a point in the program.

➜ Register Assignment: assign physical register to hold values of

variables during evaluation.

➀ Greedy heuristics-based local approaches:

• Use the structure of the program.

• Greedily allocate variables to registers based of frequency

of use, beginning with inner loops.

• When combined with heuristics, quite workable.

➁ Register assignment by graph coloring.

OVERVIEW OF REGISTER ALLOCATION 3-B



GRAPH COLORING — I

➜ Construct register-interference graph for all variables in a

procedure/program:

➜ Nodes represent symbolic registers.

➜ Edges connect two nodes if one is live at the point where other

is defined:

s1 ← arg1

s2 ← arg2

s3 ← add(s1, s2)
s4 ← add(s1, s3)
s5 ← mul(s1, 1)
s6 ← mul(s4, 2)
ret(s5, s6)

−→

s2 s4 s6

s3 s1 s5

➜ Colour the nodes using k colours in such a way that no two

adjacent nodes have the same colour (the map coloring

problem.)

GRAPH COLORING — I 4



GRAPH COLOURING — II

➜ Graph coloring is NP-complete in general, but:

➜ The degree < k rule: A graph containing a node with less than k

neighbours is k-colourable iff the graph without that node is

k-colourable.

➜ The following greedy algorithm works extremely well in practice:

1. Find a node with less than k neighbours. Remove it from the

graph.

2. Repeat until the graph has only one node left. Colour that

node.

3. Begin adding the removed nodes back to the graph, in

reverse order.

4. Each time we add a node back, colour it with a colour

different from any of its neighbours.

GRAPH COLOURING — II 5



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3, s1

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3, s1, s4

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3, s1, s4, s5

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3, s1, s4

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3, s1

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2, s3

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

Removed nodes: s2

GRAPH COLOURING EXAMPLE 6



GRAPH COLOURING EXAMPLE

s2 s4 s6

s3 s1 s5

GRAPH COLOURING EXAMPLE 6



THE BAD NEWS

➜ We still haven’t solved the whole problem!

➜ Some graphs are simply not colourable:

s2 s4 s6

s3 s1 s5

➜ Others can’t be reduced using the degree < k rule:

s1

s2 s3

s4

s5

➜ But mostly, the technique works suprisingly well. Why?!

THE BAD NEWS 7



OPTIMAL GRAPH COLOURING — I

Interference graphs are special!

Some Terminology:

➜ The smallest k for which a graph G is colourable is called its

chromatic number χ(G).

➜ A safe lower bound for χ(G) is the clique number ω(G).

➜ A graph G in which, for every subgraph G′, χ(G′) = ω(G′) is

called perfect.

➜ A graph G for which χ(G) = ω(G) is called 1-perfect.

➜ For most graphs, χ(G)− ω(G) is large.

OPTIMAL GRAPH COLOURING — I 8



OPTIMAL GRAPH COLOURING — II

➜ Andersson investigates 27,921 real-life interference graphs and

found that all of them are 1-perfect.

➜ Although finding ω(G) is NP-complete, there exists the so-called

Shannon function ϑ(G), such that:

1. ω(G) ≤ ϑ(G) ≤ χ(G)

2. For all graphs, ϑ(G) is computable in polynomial time.

➜ Nobody knows how to compute ϑ(G) in polynomial time for an

arbitriary graph.

➜ Andersson presents a backtracking-search solution that

performs optimal coloring of an arbitriary graph and has

approximately O(V ) complexity for 1-perfect graphs.

OPTIMAL GRAPH COLOURING — II 9



PREPARING FOR REGISTER ASSIGNMENT — I

The Allocatable Objects:

➜ Cannot use source variables (name reuse.)

➜ Cannot use definition points (multiple definitions may have a

common use.)

➜ Instead, combine definitions with a common use into

maximal webs of values:

y ← . . .

x ← . . .

y ← . . .

x← . . .

read y

read x

read y

read x

x← . . .

read x

PREPARING FOR REGISTER ASSIGNMENT — I 10



PREPARING FOR REGISTER ASSIGNMENT — II

Register Coalescing (Subsumption):

➜ A variety of copy propagation

➜ Eliminates assignments of the form x← y when x and y do not

interfere by replacing all occurances of x with y

➜ Easy to perform given the interference graph

➜ The interference graph can be updated incrementally for each

eliminated assignment.

PREPARING FOR REGISTER ASSIGNMENT — II 11



RECOVERY STRATEGIES

Recovering from degree < k:

➜ Don’t panic just yet; pick a node for removal based on some

plausible heuristics and hope for the best.

➜ If we run out of colours while poping nodes back into the graph,

spill something and repeat the process.

When things get really crowded, we can try:

➀ moving some instructions closer to their use

(undoing loop invariant code motion)

➁ cloning a calculation to avoid keeping its result

(undoing common subexpression elimination)

➂ collapsing unrolled loops

. . .

➃ spilling some variables into memory.

RECOVERY STRATEGIES 12



CLEANING UP THE MESS

Graph coloring gave us a systematic method of performing

register assignment, but it is combined with ad hoc register

allocation and spilling, complicating the structure of the

compiler:

C IRs IRr ASM

IRw

parsing

web calculation register allocation

output

register coalescing

CLEANING UP THE MESS 13



CONTROL FLOW GRAPHS

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Overview:

V All variables are updatable,

just like physical registers.

V Same representation for

both IRs and IRr.

X Emphasis on control flow,

introduces artificial register

dependencies.

CONTROL FLOW GRAPHS 14



CONTROL FLOW GRAPHS

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Data Flow:

• For web calculation, data flow

information is required

• Represented by DU-chains

linking definitions (assignments)

with their respective uses.

V Usually encoded efficiently

as bit arrays.

CONTROL FLOW GRAPHS 15



CONTROL FLOW GRAPHS

x← input
r ← 1

r ← r ∗ x
x← x− 1

x = 0?

return r

yes

no

Problems:

X Dense representation of

data flow.

X Expensive to compute and

update.

X Makes many common

optimizations prohibitively

expensive.

• Went out of fashion in mid-1980’s.

CONTROL FLOW GRAPHS 16



STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Overview:

• Each variable has exactly one

defining occurence

• Values from different control flows

merged via φ functions

V Efficient sparse representation of

data flow

V Split variables improve accuracy

of analysis

• The most popular representation

used in compiles today.

STATIC SINGLE ASSIGNMENT FORM 17



STATIC SINGLE ASSIGNMENT FORM

x0 ← input
r0 ← 1

x1 ← φ(x0, x2)

r1 ← φ(r0, r2)
r2 ← r1 ∗ x1

x2 ← x1 − 1

x2 = 0?

return r2

yes

no

Problems:

X Cannot be used for IRr

X Control flow still in our way

X φ nodes introduce new problems:

– translate to extra mov’s

– complicates web calculations

– cannot express register

coalescing

– live-range identification

expensive

V Efficient O(nα(n)) algorithm exists

which combines all of the above.

STATIC SINGLE ASSIGNMENT FORM 18



VALUE STATE DEPENDENCE GRAPHS — I

➜ A new intermediate representation designed specifically for

register allocation

➜ Intended to remove the control-flow bottleneck

➜ Loosely based on the Gated Static Assignment Form

➜ Register allocation performed “in reverse”:

1. First, the program is restructured to make it colourable

2. Then, register allocation is performed by graph colouring.

➜ Register colouring is the final stage before code generation; all

optimizations are performed on the VSDG.

VALUE STATE DEPENDENCE GRAPHS — I 19



VALUE STATE DEPENDENCE GRAPHS — II

➜ Represents all necessary data and state dependencies

explicitely.

➜ Procedures represented by a graph 〈N, Ev, Es, N0, N∞〉 where:

• N is a set of nodes

• Ev is a set of value dependence edges

• Es is a set of state dependence edges

• N0 is a unique entry node

• N∞ is a unique exit node

➜ Nodes can represent instructions (value definitions) or special

structural nodes γ(C, T, F ) (lazy conditionals) and θ(C, I, R,L, X)

(natural loops.) Loops are nasty.

➜ Except for θ nodes, VSDG is an acyclic graph.

VALUE STATE DEPENDENCE GRAPHS — II 20



VALUE STATE DEPENDENCE GRAPHS — III

s1 ← arg1

s2 ← arg2

s3 ← add(s1, s2)
s4 ← add(s1, s3)
s5 ← mul(s1, 1)
s6 ← mul(s4, 2)
ret(s5, s6)

−→

arg1 arg2

add

1 add 2

add mul

ret1 ret2

s5
s6

s1

s4

s1

s3

s1 s2

VALUE STATE DEPENDENCE GRAPHS — III 21



VALUE STATE DEPENDENCE GRAPHS — IV

Benefits:

V Sparse representation of

of data flow

V No implicit control flow

V Has a strong normalizing effect

V Can represent program before

and after register allocation

V Can be serialized to correspond

to a CFG

arg1 arg2

add

1 add 2

add mul

ret1 ret2

s5
s6

s1

s4

s1

s3

s1 s2

VALUE STATE DEPENDENCE GRAPHS — IV 22



VALUE STATE DEPENDENCE GRAPHS — V

Register Allocation Algorithm:

1. Calculate the DFR (maximal

distance from N0) for each node

in the graph.

2. Partition the graph into “cuts”:

sets of nodes with the same DFR.

3. Calculate the set of live nodes for

each cut: S>d ∩ predv(S≤d)

4. Apply a forward snow-plough

graph reshaping algorithm

ensuring the size of each set is

less than k.

arg1 (4) arg2 (4)

add (3)

1 (2) add (2) 2 (2)

add (1) mul (1)

ret1 (0) ret2 (0)

s5
s6

s1

s4

s1

s3

s1 s2

VALUE STATE DEPENDENCE GRAPHS — V 23



REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — I

➜ A new approach not based on graph coloring.

➜ Designed to systematically combine all of the register allocation

into a single formal framework.

➜ Based on the judgments as types correspondence: programs

may be regarded as proofs of their types.

➜ Easily incorporated into a static type system to unify pre- and

post-allocation representations into a single language.

REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — I 24



REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — II

➜ Imperative regarded as a sequent-style proof system which

deduces typing properties of code, eg:

Γ, x : τ ⊢ ret(x) : τ
Γ′ ⊢ B : τ

Γ ⊢ I; B ∗ τ

➜ The method uses types to represent live ranges of variables.

➜ Register allocation is a transformation from a proof system with

implicit structural rules to one with explicit ones.

➜ Liveness analysis is done by type inference.

➜ Register assignment is done by insertion of explicit

memory-register moves and register allocation/deallocation

instructions.

A promising new approach which incorporates all issues

involved in register allocation into a single formal framework!

REGISTER ALLOCATION BY PROOF TRANSFORMATIONS — II 25



THE END

THE END 26


