The Problem:
- Layout of basic blocks in LLVM is brain-dead.

The Solution:
- Calculate the probability of each branch being taken.
- Arrange the most probably control flow path in a straight line.

Possible Approaches:
- Code annotations
- Static heuristics
- Profiling
- Value range propagation
Value Range Propagation

for (x = 0; x < 10; ++x)
{
 if (x > 7)
 y = 1;
 else
 y = x;
 // ...
 if (y == 1)
 // SOME CODE
 // ...
}

Need information on possible ranges for variable values!
Interpret the program sequentially as if executing it, but:
Instead of run-time values, operates over abstract values arranged into a lattice. Eg:

When interpretation terminates, the environment contains information for all variables in the program encoded as abstract values.
But what do we do about the loops?
Fixpoint Calculation

- Interpret the program along every possible path through the control flow graph (CFG).
- For \(\phi \) nodes, merge the values calculated along each path using a suitable \(\sqcap \) (meet) function.
- If \(\sqcap \) changed the abstract value, re-evaluate the block.
- To ensure termination, define \(\sqcap \) so that an abstract value can change only a finite number of times:
 - For each change, make sure that \(\sqcap \) raises the value to a higher level in the lattice.
- When nothing changes, we’ve reached the fixpoint!
Infinite Lattices

Problem: value range propagation lattices are TALL!
Reducing the Problem

No merging, no problem.
REDUCING THE PROBLEM II

With cross-edges, number of merges is bound.
Reducing the Problem III

But with back-edges (i.e. loops) we hit the brick wall!
SYMBOLIC EVALUATION

- Flatten the matrix to a single level for all “constant cells”.
- Allow non-raising \sqcap when following normal edges.
- To handle back-edges, introduce a symbolic level into the lattice:

$$
\begin{align*}
\top & \quad \sqcap \\
\text{op}_0(x_0) & \quad \text{op}_1(x_1) & \quad \text{op}_2(x_2) & \cdots & \quad \text{op}_n(x_n) \\
V_0 & \quad V_1 & \quad V_2 & \cdots & \quad V_n
\end{align*}
$$

- (value not representable)

- (value unknown)

- Always raise the level when merging along back-edges.
- Computes symbolic expressions instead of constant values for loop-indexed variables.
- Symbolic values can be folded once the fixpoint is reached.
OUR ITERATIVE APPROACH I

- Similar to SCC$_{ANF}$ (see: (CKZ2003))
- We adopt it for SSA and extend to support value numbering.
- Numerous advantages compared to other published approaches:
 - An iterative approach, therefore works with our symbolic lattice.
 - Good asymptotic complexity.
 - Supports inter-procedural analysis transparently.
 - Rigorous formal definition and soundness proof.
 - Can be extended to handle higher-order programs (function pointer variables.)
Our Iterative Approach II

→ Collects rich information about integers:
 • minimum, maximum, stride
 • bits known to be set and cleared
 • lists of the above qualified by boolean predicates
→ Collects probabilities for boolean conditions.
→ Supports multiple predicated ranges in each lattice cell.
→ The \(\cap \) function:
 \[
 \begin{align*}
 \{0.7[32 : 256 : 1], 0.3[3 : 21 : 3]\} \\
 + \{0.6[16 : 100 : 4], 0.4[8 : 8 : 0]\} \\
 = \{0.42[48 : 356 : 1], 0.28[40 : 264 : 1], \}
 \quad 0.18[19 : 121 : 1], 0.12[11 : 29 : 3]\}
 \end{align*}
 \]
Our Iterative Approach III

→ **Data Structures:**

- A work list Ω of blocks to be processed.
- Environment Γ mapping variables to abstract values.
- Environment R mapping blocks to abstract values.

→ **Operation:**

- ϕ nodes treated as formal parameters to blocks in which they appear.
- Start with the entry block of `main` in Ω.
- Iterate until Ω empty.
- Update items in Γ and R using \sqcap whenever recomputing a variable already there. For jumps and function calls simply use the current information from R.
- If \sqcap changes Γ or R, add all blocks (functions) referencing that variable back to Ω.

CONCLUSIONS

➡ Collects a lot of inter-procedural data-flow information:
 • value ranges
 • value probabilities
 • flow of data across conditional branches

➡ Many different optimizations can utilize range information:
 • basic block layout
 • branch prediction hints
 • inter-procedural conditional constant propagation
 • variable retyping and resizing
 • data packing for vector instructions
 • data speculation on IA-64.

➡ The statically-computed results of the analysis can complement profiling information in the same analysis group.

➡ The algorithm is not restricted to collecting a particular kind of information.
letrec f(x) =

 let x’ = sub(x, x)

 in

 if x’ then
 f(x’)
 else
 x

 in

 f(7)
letrec f(x) =

 let x' = sub(x, x)

 in
 if x' then
 f(x')
 else
 x

 in
 f(7)

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ f \} \]
letrec f(x) =

\[\Gamma = \{ f \mapsto \perp, x \mapsto 7 \}, \Omega = \{ \} \]

let \(x' = \text{sub}(x, x) \)

in

if \(x' \) then

\(f(x') \)

else

\(x \)

in

\(f(7) \)

\[\Gamma = \{ f \mapsto \perp, x \mapsto 7 \}, \Omega = \{ f \} \]
let rec f(x) =
 \[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = {} \]

 let x' = sub(x, x)
 \[\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 0 \}, \Omega = {} \]

 in
 if x' then
 f(x')
 else
 x

 in
 f(7)

 \[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ f \} \]
letrec f(x) =

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ \} \]

let x' = sub(x, x)

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ \} \]

in

if x' then

f(x')

else

x

\[\Gamma = \{ f \mapsto 7, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ f \} \]

in

f(7)

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ f \} \]
letrec f(x) =
 \(\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ \} \)

let x' = sub(x, x)
 \(\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ \} \)

in
 if x' then
 f(x')
 else
 x
 \(\Gamma = \{ f \mapsto 7, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ f \} \)

in
 f(7)
 \(\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ f \} \)
 \(\Gamma = \{ f \mapsto 7, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ f \} \)
letrec f(x) =

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ \} \]
\[\Gamma = \{ f \mapsto 7, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ \} \]

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ \} \]
\[\Gamma = \{ f \mapsto 7, x \mapsto 7, x' \mapsto 0 \}, \Omega = \{ \} \]

let x' = sub(x, x)

in

if x' then
 f(x')
else
 x

in

f(7)
letrec f(x) =

 let x' = sub(x, 1)

 in
 if x' then
 f(x')

 else
 x

 in
 f(7)
letrec f(x) =

\[\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ \} \]

let x' = sub(x, 1)

in

if x' then
 f(x')
else
 x

in

f(7)
\[
\text{letrec } f(x) =
\]
\[
\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{
\}
\]
\[
\text{let } x' = \text{sub}(x, \ 1)
\]
\[
\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 6 \}, \Omega = \{
\}
\]
\[
in
\]
\[
\text{if } x' \text{ then}
\]
\[
f(x')
\]
\[
\text{else}
\]
\[
x
\]
\[
in
\]
\[
f(7)
\]
letrec f(x) =

\[
\Gamma = \{ f \mapsto \bot, x \mapsto 7 \}, \Omega = \{ \}
\]

let x' = sub(x, 1)

\[
\Gamma = \{ f \mapsto \bot, x \mapsto 7, x' \mapsto 6 \}, \Omega = \{ \}
\]

in

if x' then

 f(x')

else

 x

in

f(7)
letrec f(x) =

let x' = sub(x, 1)

in

if x' then
 f(x')

else
 x

in

f(7)
letrec f(x) =

Γ = \{f \mapsto \bot, x \mapsto 7\}, \Omega = \{

Γ = \{f \mapsto \bot, x \mapsto \top, x' \mapsto 6\}, \Omega = \{

Γ = \{f \mapsto \bot, x \mapsto \top, x' \mapsto \top\}, \Omega = \{

Γ = \{f \mapsto \bot, x \mapsto \top, x' \mapsto 6\}, \Omega = \{f\}

let x' = sub(x, 1)

Γ = \{f \mapsto \bot, x \mapsto 7, x' \mapsto 6\}, \Omega = \{

Γ = \{f \mapsto \bot, x \mapsto \top, x' \mapsto \top\}, \Omega = \{

Γ = \{f \mapsto \bot, x \mapsto \top, x' \mapsto 6\}, \Omega = \{f\}

in

if x' then

f(x')

else

x

in

f(7)
letrec f(x) =

let x' = sub(x, 1)

in
if x' then
 f(x')
else
 x

in
f(7)