
Value Range Propagation
in

LLVM

Adam Wiggins

Patryk Zadarnowski

{awiggins,patrykz}@cse.unsw.edu.au

17 June 2003

University of New South Wales

Sydney



MOTIVATION

The Problem:

X Layout of basic blocks in LLVM is brain-dead.

The Solution:

• Calculate the probability of each branch being taken.

• Arrange the most probably control flow path in a straight

line.

Possible Approaches:

X Code annotations

X Static heuristics

X Profiling

V Value range propagation

MOTIVATION 2



VALUE RANGE PROPAGATION

for (x = 0; x < 10; ++x)

{

if (x > 7)

y = 1;

else

y = x;

// . . .

if (y == 1)

// SOME CODE

// . . .

}

Need information on possible ranges for variable values!

VALUE RANGE PROPAGATION 3



DATA-FLOW ANALYSIS BY ABSTRACT INTERPRETATION

➜ Interpret the program sequentially as if executing it, but:

➜ Instead of run-time values, operates over abstract values

arranged into a lattice. Eg:
⊤

V0 V1 V2 . . . Vn

⊥

(value not representable)

(value unknown)

➜ When interpretation terminates, the environment contains

information for all variables in the program encoded as abstract

values.

➜ But what do we do about the loops?

DATA-FLOW ANALYSIS BY ABSTRACT INTERPRETATION 4



FIXPOINT CALCULATION

➜ Interpret the program along every possible path through the

control flow graph (CFG).

➜ For φ nodes, merge the values calculated along each path

using a suitable ⊓ (meet) function.

➜ If ⊓ changed the abstract value, re-evaluate the block.

➜ To ensure termination, define ⊓ so that an abstract value can

change only a finite number of times:

• For each change, make sure that ⊓ raises the value to a

higher level in the lattice.

➜ When nothing changes, we’ve reached the fixpoint!

FIXPOINT CALCULATION 5



INFINITE LATTICES

Problem: value range propagation lattices are TALL!

⊤

[min, max − 1] [min + 1, max]

[min, max − 2] [min + 1, max − 1] [min + 2, max]

...
...

...

[min, min] . . . [−1, −1] [0, 0] [+1, +1] . . . [max, max]

⊥

INFINITE LATTICES 6



REDUCING THE PROBLEM I

block1

block2

block3

block4

block5

block6

block7

block8

No merging, no problem.

REDUCING THE PROBLEM I 7



REDUCING THE PROBLEM II

block1

block2

block3

block4

block5

block6

block7

block8

With cross-edges, number of merges is bound.

REDUCING THE PROBLEM II 8



REDUCING THE PROBLEM III

block1

block2

block3

block4

block5

block6

block7

block8

But with back-edges (i.e. loops) we hit the brick wall!

REDUCING THE PROBLEM III 9



SYMBOLIC EVALUATION

➜ Flatten the matrix to a single level for all “constant cells”.

➜ Allow non-raising ⊓ when following normal edges.

➜ To handle back-edges, introduce a symbolic level into the

lattice:
⊤

op0(x0) op1(x1) op2(x2) . . . opn(xn)

V0 V1 V2 . . . Vn

⊥

(value not representable)

(value unknown)

➜ Always raise the level when merging along back-edges.

➜ Computes symbolic expressions instead of constant values for

loop-indexed variables.

➜ Symbolic values can be folded once the fixpoint is reached.

SYMBOLIC EVALUATION 10



OUR ITERATIVE APPROACH I

➜ Similar to SCCANF (see: [CKZ2003])

➜ We adopt it for SSA and extend to support value numbering.

➜ Numerous advantages compared to other published

approaches:

V An iterative approach, therefore works with our symbolic

lattice.

V Good asymptotic complexity.

V Supports inter-procedural analysis transparently.

V Rigorous formal definition and soundness proof.

V Can be extended to handle higher-order programs

(function pointer variables.)

OUR ITERATIVE APPROACH I 11



OUR ITERATIVE APPROACH II

➜ Collects rich information about integers:

• minimum, maximum, stride

• bits known to be set and cleared

• lists of the above qualified by boolean predicates

➜ Collects probabilities for boolean conditions.

➜ Supports multiple predicated ranges in each lattice cell.

➜ The ⊓ function:

{0.7[32 : 256 : 1], 0.3[3 : 21 : 3]}

+ {0.6[16 : 100 : 4], 0.4[8 : 8 : 0]}
= {0.42[48 : 356 : 1], 0.28[40 : 264 : 1],

0.18[19 : 121 : 1], 0.12[11 : 29 : 3]}

OUR ITERATIVE APPROACH II 12



OUR ITERATIVE APPROACH III

➜ Data Structures:

• A work list Ω of blocks to be processed.

• Environment Γ mapping variables to abstract values.

• Environment R mapping blocks to abstract values.

➜ Operation:

• φ nodes treated as formal parameters to blocks in which

they appear.

• Start with the entry block of main in Ω.

• Iterate until Ω empty.

• Update items in Γ and R using ⊓ whenever recomputing a

variable already there. For jumps and function calls simply

use the current information from R.

• If ⊓ changes Γ or R, add all blocks (functions) referencing

that variable back to Ω.

OUR ITERATIVE APPROACH III 13



CONCLUSIONS

➜ Collects a lot of inter-procedural data-flow information:

• value ranges

• value probabilities

• flow of data across conditional branches

➜ Many different optimizations can utilize range information:

• basic block layout

• branch prediction hints

• inter-procedural conditional constant propagation

• variable retyping and resizing

• data packing for vector instructions

• data speculation on IA-64.

➜ The statically-computed results of the analysis can complement

profiling information in the same analysis group.

➜ The algorithm is not restricted to collecting a particular kind of

information.

CONCLUSIONS 14



letrec f(x) =

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)

CONCLUSIONS 15



letrec f(x) =

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

CONCLUSIONS 15-A



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

CONCLUSIONS 15-B



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

CONCLUSIONS 15-C



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

CONCLUSIONS 15-D



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

CONCLUSIONS 15-E



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

let x’ = sub(x, x)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 0},Ω = {}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

in

if x’ then

f(x’)

else

x

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {}

in

f(7)

Γ = {f 7→⊥, x 7→ 7},Ω = {f}

Γ = {f 7→ 7, x 7→ 7, x′ 7→ 0},Ω = {f}

CONCLUSIONS 15-F



letrec f(x) =

let x’ = sub(x, 1)

in

if x’ then

f(x’)

else

x

in

f(7)

CONCLUSIONS 16



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

in

if x’ then

f(x’)

else

x

in

f(7)

CONCLUSIONS 16-A



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

else

x

in

f(7)

CONCLUSIONS 16-B



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)

CONCLUSIONS 16-C



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)

CONCLUSIONS 16-D



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

else

x

in

f(7)

CONCLUSIONS 16-E



letrec f(x) =

Γ = {f 7→⊥, x 7→ 7},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {}

let x’ = sub(x, 1)

Γ = {f 7→⊥, x 7→ 7, x′ 7→ 6},Ω = {}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

in

if x’ then

f(x’)

Γ = {f 7→⊥, x 7→⊤, x′ 7→ 6},Ω = {f}

Γ = {f 7→⊥, x 7→⊤, x′ 7→⊤},Ω = {}

else

x

Γ = {f 7→⊤, x 7→⊤, x′ 7→⊤},Ω = {f}

in

f(7)

CONCLUSIONS 16-F


